Counting Faces in Polytopes

Margaret Bayer
University of Kansas

Algebraic Combinatorixx 2011

Definitions

CONVEX POLYTOPE:

$$
P=\operatorname{conv}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subset \mathbf{R}^{d}
$$

Definitions

CONVEX POLYTOPE:

$$
P=\operatorname{conv}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subset \mathbf{R}^{d}
$$

proper FACE:
intersection of supporting hyperplane with P

Definitions

CONVEX POLYTOPE:

$$
P=\operatorname{conv}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subset \mathbf{R}^{d}
$$

proper FACE:
intersection of supporting hyperplane with P

FACE LATTICE:
\emptyset, P, and proper faces, ordered by inclusion

Definitions

CONVEX POLYTOPE:

$$
P=\operatorname{conv}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subset \mathbf{R}^{d}
$$

proper FACE:
intersection of supporting hyperplane with P

FACE LATTICE:

\emptyset, P, and proper faces, ordered by inclusion

FACE VECTOR:

$$
\begin{gathered}
\left(f_{0}(P), f_{1}(P), \ldots, f_{d-1}(P)\right) \\
f_{i}(P)=\# \text { of } i \text {-dimensional faces of } P
\end{gathered}
$$

The main problem

BIG PROBLEM:

Characterize the face vectors of d-dimensional convex polytopes

The main problem

BIG PROBLEM:
Characterize the face vectors of d-dimensional convex polytopes

KNOWN:

- face vectors of 3-dimensional polytopes (Steinitz)
- face vectors of simplicial polytopes (Stanley and Billera \& Lee)
- affine span (Euler's equation: Poincaré and Höhn)

The main problem

BIG PROBLEM:
Characterize the face vectors of d-dimensional convex polytopes

KNOWN:

- face vectors of 3-dimensional polytopes (Steinitz)
- face vectors of simplicial polytopes (Stanley and Billera \& Lee)
- affine span (Euler's equation: Poincaré and Höhn)

UNKNOWN:

- face vectors of polytopes of dimension 4 and higher
- face vectors of zonotopes, cubical polytopes

Flag vectors: Definition

Let $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}<\subseteq\{0,1, \ldots, d-1\}$

Definition
An S-flag of P is a chain

$$
\emptyset \subset F_{1} \subset F_{2} \subset \cdots \subset F_{k} \subset P
$$

with $\operatorname{dim} F_{i}=s_{i}$
$f_{S}(P)=\#$ of S-flags of P
$\left(f_{S}(P)\right)_{S \subseteq\{0,1, \ldots, d-1\}}$ is the flag vector of P

Example

$$
\begin{aligned}
& f_{6}=1 \\
& f_{0}=5 \\
& f_{1}=8 \\
& f_{2}=5 \\
& f_{01}=16 \\
& f_{02}=16 \\
& f_{12}=16 \\
& f_{012}=32
\end{aligned}
$$

Flag vectors

BIG PROBLEM:

Characterize the flag vectors of d-dimensional convex polytopes

Flag vectors

BIG PROBLEM:

Characterize the flag vectors of d-dimensional convex polytopes

KNOWN:

- flag vectors of 3-dimensional polytopes
- flag vectors of simplicial polytopes
- affine span
(generalized Dehn-Sommerville equations: Bayer \& Billera)

Flag vectors

BIG PROBLEM:

Characterize the flag vectors of d-dimensional convex polytopes

KNOWN:

- flag vectors of 3-dimensional polytopes
- flag vectors of simplicial polytopes
- affine span
(generalized Dehn-Sommerville equations: Bayer \& Billera)

UNKNOWN:

- flag vectors of polytopes of dimension 4 and higher
- flag vectors of zonotopes, cubical polytopes

Methods: Constructions

Special polytopes:

- simplicial/simple
- zonotopes (more generally: Minkowski sums of polytopes)
- cubical polytopes
- cyclic polytopes (vertices on the moment curve)

Methods: Constructions

Special polytopes:

- simplicial/simple
- zonotopes (more generally: Minkowski sums of polytopes)
- cubical polytopes
- cyclic polytopes (vertices on the moment curve)

New polytopes out of old:

- pyramids (more generally: join of polytopes)
- bipyramids (more generally: free sum of polytopes)
- prisms (more generally: Cartesian products of polytopes)
- sewing (introducing one vertex at a time; Shemer)

Methods: Commutative Algebra

Stanley-Reisner ring
P a simplicial polytope with vertices $v_{1}, v_{2}, \ldots, v_{n}$
Associate with every nonface $\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}\right\}$ the monomial $x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}$
Let I be the ideal generated by these monomials
The Stanley-Reisner ring is $k\left[x_{1}, x_{2}, \ldots, x_{n}\right] / /$

Methods: Commutative Algebra

Stanley-Reisner ring
P a simplicial polytope with vertices $v_{1}, v_{2}, \ldots, v_{n}$
Associate with every nonface $\left\{v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}\right\}$ the monomial $x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}$
Let I be the ideal generated by these monomials
The Stanley-Reisner ring is $k\left[x_{1}, x_{2}, \ldots, x_{n}\right] / I$
h-vector
From the Hilbert function of the Stanley-Reisner ring is extracted the h-vector
The h-vector is linearly equivalent to the face vector
The h-vector was first noted by Sommerville, 1927 (without knowing the algebra connection)

Methods: Toric Varieties

Associated with every rational (embedded) polytope is a toric variety The toric variety encodes the affine dependencies of the vertices of the polytope

Methods: Toric Varieties

Associated with every rational (embedded) polytope is a toric variety The toric variety encodes the affine dependencies of the vertices of the polytope

Simplicial Polytopes
h-vector give ranks of cohomology of the toric variety

Methods: Toric Varieties

Associated with every rational (embedded) polytope is a toric variety The toric variety encodes the affine dependencies of the vertices of the polytope

Simplicial Polytopes
h-vector give ranks of cohomology of the toric variety

Rational Polytopes

h-vector gives middle perversity intersection homology Betti numbers of the toric variety
Definition extended to Eulerian posets
Components of general h-vector are linear functions of the flag vector Interpretation of general h-vector for nonrational polytopes

Methods: cd-index

Flag vectors modulo generalized Dehn-Sommerville equations

$$
\Rightarrow \text { cd-index }
$$

Methods: cd-index

Flag vectors modulo generalized Dehn-Sommerville equations

$$
\Rightarrow \text { cd-index }
$$

Hopf Algebra setting where cd-index computations happen
(Ehrenborg \& Readdy)

Results: Polytopes

- inequalities on face vectors of simplicial spheres come from results on Hilbert functions of Gorenstein rings
- all inequalities on face vectors of simplicial polytopes come from Hard Lefschetz Theorem for toric varieties
(Stanley and Billera \& Lee))
- inequalities on flag vectors of polytopes come from toric varieties (weaker than simplicial case)
- inequalities on flag vectors of polytopes come from nonnegativity of cd-index
(Stanley and Karu)
- flag vector inequalities project to give face vector inequalities

Results: More on inequalities

For Polytopes

- new inequalities generated from old by combinatorial convolutions
- new inequalities generated from old by operations in Hopf algebra (Ehrenborg \& Readdy)
- inequalities for zonotopes/central hyperplane arrangements (Billera, Ehrenborg \& Readdy)

Results: More on inequalities

For Polytopes

- new inequalities generated from old by combinatorial convolutions
- new inequalities generated from old by operations in Hopf algebra (Ehrenborg \& Readdy)
- inequalities for zonotopes/central hyperplane arrangements
(Billera, Ehrenborg \& Readdy)

For Posets

- conical span of flag vectors of all ranked posets
(Billera \& Hetyei)
- conical span of flag vectors of all Eulerian posets for low ranks (Bayer \& Hetyei)

The End

Thank you.

