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Definitions

CONVEX POLYTOPE:

P = conv{x1, x2, . . . , xn} ⊂ Rd

proper FACE:

intersection of supporting hyperplane with P

FACE LATTICE:

∅, P, and proper faces, ordered by inclusion

FACE VECTOR:

(f0(P), f1(P), . . . , fd−1(P))

fi (P) = # of i-dimensional faces of P
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The main problem

BIG PROBLEM:

Characterize the face vectors of d-dimensional convex polytopes

KNOWN:

face vectors of 3-dimensional polytopes (Steinitz)

face vectors of simplicial polytopes (Stanley and Billera & Lee)

affine span (Euler’s equation: Poincaré and Höhn)

UNKNOWN:

face vectors of polytopes of dimension 4 and higher

face vectors of zonotopes, cubical polytopes
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Flag vectors: Definition

Let S = {s1, s2, . . . , sk}< ⊆ {0, 1, . . . , d − 1}

Definition

An S-flag of P is a chain

∅ ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fk ⊂ P

with dimFi = si

fS(P) = # of S-flags of P
(fS(P))S⊆{0,1,...,d−1} is the flag vector of P
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Example

f∅ = 1
f0 = 5
f1 = 8
f2 = 5
f01 = 16
f02 = 16
f12 = 16
f012 = 32
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Flag vectors

BIG PROBLEM:

Characterize the flag vectors of d-dimensional convex polytopes

KNOWN:

flag vectors of 3-dimensional polytopes

flag vectors of simplicial polytopes

affine span
(generalized Dehn-Sommerville equations: Bayer & Billera)

UNKNOWN:

flag vectors of polytopes of dimension 4 and higher

flag vectors of zonotopes, cubical polytopes
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Methods: Constructions

Special polytopes:

simplicial/simple

zonotopes (more generally: Minkowski sums of polytopes)

cubical polytopes

cyclic polytopes (vertices on the moment curve)

New polytopes out of old:

pyramids (more generally: join of polytopes)

bipyramids (more generally: free sum of polytopes)

prisms (more generally: Cartesian products of polytopes)

sewing (introducing one vertex at a time; Shemer)
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Methods: Commutative Algebra

Stanley-Reisner ring

P a simplicial polytope with vertices v1, v2, . . . , vn
Associate with every nonface {vi1 , vi2 , . . . , vik} the monomial xi1xi2 · · · xik
Let I be the ideal generated by these monomials
The Stanley-Reisner ring is k[x1, x2, . . . , xn]/I

h-vector

From the Hilbert function of the Stanley-Reisner ring is extracted the
h-vector

The h-vector is linearly equivalent to the face vector
The h-vector was first noted by Sommerville, 1927 (without knowing the
algebra connection)

Marge Bayer (University of Kansas) Counting Faces in Polytopes Algebraic Combinatorixx 2011 8 / 13



Methods: Commutative Algebra

Stanley-Reisner ring

P a simplicial polytope with vertices v1, v2, . . . , vn
Associate with every nonface {vi1 , vi2 , . . . , vik} the monomial xi1xi2 · · · xik
Let I be the ideal generated by these monomials
The Stanley-Reisner ring is k[x1, x2, . . . , xn]/I

h-vector

From the Hilbert function of the Stanley-Reisner ring is extracted the
h-vector

The h-vector is linearly equivalent to the face vector
The h-vector was first noted by Sommerville, 1927 (without knowing the
algebra connection)

Marge Bayer (University of Kansas) Counting Faces in Polytopes Algebraic Combinatorixx 2011 8 / 13



Methods: Toric Varieties

Associated with every rational (embedded) polytope is a toric variety
The toric variety encodes the affine dependencies of the vertices of

the polytope

Simplicial Polytopes

h-vector give ranks of cohomology of the toric variety

Rational Polytopes

h-vector gives middle perversity intersection homology Betti numbers of
the toric variety

Definition extended to Eulerian posets (Stanley)
Components of general h-vector are linear functions of the flag vector
Interpretation of general h-vector for nonrational polytopes (Karu)
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Methods: cd-index

Flag vectors modulo generalized Dehn-Sommerville equations
⇒ cd-index (Fine; Bayer & Klapper)

Hopf Algebra setting where cd-index computations happen
(Ehrenborg & Readdy)
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Results: Polytopes

inequalities on face vectors of simplicial spheres come from results on
Hilbert functions of Gorenstein rings (Stanley)

all inequalities on face vectors of simplicial polytopes come from Hard
Lefschetz Theorem for toric varieties (Stanley and Billera & Lee))

inequalities on flag vectors of polytopes come from toric varieties
(weaker than simplicial case)

inequalities on flag vectors of polytopes come from nonnegativity of
cd-index (Stanley and Karu)

flag vector inequalities project to give face vector inequalities

Marge Bayer (University of Kansas) Counting Faces in Polytopes Algebraic Combinatorixx 2011 11 / 13



Results: More on inequalities

For Polytopes

new inequalities generated from old by combinatorial convolutions
(Kalai)

new inequalities generated from old by operations in Hopf algebra
(Ehrenborg & Readdy)

inequalities for zonotopes/central hyperplane arrangements
(Billera, Ehrenborg & Readdy)

For Posets

conical span of flag vectors of all ranked posets (Billera & Hetyei)

conical span of flag vectors of all Eulerian posets for low ranks
(Bayer & Hetyei)

Marge Bayer (University of Kansas) Counting Faces in Polytopes Algebraic Combinatorixx 2011 12 / 13



Results: More on inequalities

For Polytopes

new inequalities generated from old by combinatorial convolutions
(Kalai)

new inequalities generated from old by operations in Hopf algebra
(Ehrenborg & Readdy)

inequalities for zonotopes/central hyperplane arrangements
(Billera, Ehrenborg & Readdy)

For Posets

conical span of flag vectors of all ranked posets (Billera & Hetyei)

conical span of flag vectors of all Eulerian posets for low ranks
(Bayer & Hetyei)

Marge Bayer (University of Kansas) Counting Faces in Polytopes Algebraic Combinatorixx 2011 12 / 13



The End

Thank you.
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