Whole Body Image Parsing Using Machine Learning

S. Kevin Zhou, Ph.D. Image Analytics and Informatics Siemens Corporate Research Princeton, NJ

with contributions from Siemens colleagues and clinical collaborators

Long Term Research Goal

Anatomies

SCR - Comprehensive Research on Biomedical Imaging

strenens Corporate rectiniology

3

Cardiac Function – Computed Tomography

• Presented in RSNA 2009

- Isolate the heart from the chest wall
- Quantify left and right ventricular ejection fraction and left ventricular mass

• Y. Zheng et al, Four-Chamber Heart Modeling and Automatic Segmentation for 3D Cardiac CT Volumes using Marginal Space Learning and Steerable Features, IEEE TMI, 2008

eSie Left Ventricle Analysis on SC2000

 Automatic navigation, detection, tracking and quantification of the left ventricle in 3D+T ultrasound imaging

Work based on eSie LVA compared with MRI is one of the 5 Young Investigator's Award finalists presented at the American College of Cardiography (ACC) Scientific Sessions 2011

Patient-Specific Modeling of the Heart Valves

• Full valvular apparatus - aortic, mitral, pulmonary, tricuspid

7

Heart Physiome: Computational Hemodynamics

Mihalef et al : Patient-Specific Modeling of Left Heart Anatomy, Dynamics and Hemodynamics from High 7 Resolution 4D CT, Royal Society, 2011 © 2011 Siemens Corporate Technology

Automatic Volume Parsing and Metadata Indexing

- Volume parsing: Detects slides, 3D landmarks, organs, delineate organs
- S. Seifert et al: Semantic Annotation of Medical Images, Hierarchical Parsing and Semantic Navigation of Full Body CT Data, SPIE Medical Imaging, 2009-2010

Appearance variations

Challenges

Whole Body Analysis using Machine Learning

 Trainable solutions for fast, automatic landmark detection, organ labeling, segmentation, motion estimation and abnormally detection

Outline

Landmarks

Skull Base Lung Top

OPI

Liver, Sternum

Liver, Hip

Hip, Kidney

Knee

238 landmarks

Characteristics

- Used as pre-processing step to trigger other tasks in 3D
- Handles objects with large appearance variability
- Accuracy
 - Near zero false negative and false positive rates
- Speed
 - Has to be fast as the first step.

Independent vs. Sequential Search

Independent Search

- Ignore the spatial relationship between landmarks
- Computational complexity linearly depends on the volume size, the classifier complexity and the number of landmarks. SLOW

Sequential Search

- Leverage the spatial relationship between landmarks
- Break down the linear dependency on volume size. FAST
- Questions: What is the optimal search order?

Determining the Search Order

Exhaustively evaluating the search order in 1 volume

- 12 landmarks: 12! x 1sec /60/60/24/365 > 15 years
- 43 landmarks: 43! x 1sec /60/60/24/365 > 1045 years
- Difficult to find the best search order even offline
- The landmarks could be missing.

"Greedy Search" for Fast Detection [Liu et al. CVPR 2010]

"Greedy Search" for Fast Detection

18

18

Algorithm

- In each round of the greedy algorithm, each detected landmark d provides a search space V_{ud} for each undetected landmark u

$$d \in S_{(1):(k)} = \{l_{(1)} \prec l_{(2)} \prec \dots \prec l_{(k)}\}$$

Each un-detected landmark selects the smallest search space

$$\forall u , V_u(S_{(1):(k)}) = \min_{d \in S_{(1):(k)}} V_{ud}$$

 The un-detected landmark that has the smallest search space is chosen, and the cost is

$$C_{k+1}(S_{(1):(k)}) = \min_{u} V_{u}(S_{(1):(k)})$$

This algorithm approximately solves

$$\min \sum_{k=2}^{N} C_{k}(S_{(1):(k-1)})$$

Submodular Maximization

Define $F_k(S) = C_k(\phi) - C_k(S)$

$$\min \sum_{k=2}^{N} C_k(S_{(1):(k-1)}) \rightarrow \max \sum_{k=2}^{N} F_k(S_{(1):(k-1)})$$

 $F_k(.)$ is a submodular function

 $F_k(S \cup \{l\}) - F_k(S) \ge F_k(T \cup \{l\}) - F_k(T) \qquad \forall S \subseteq T$

• Theorem: If *F* is a submodular, nondecreasing function and $F(\phi) = 0$, then the greedy algorithm finds a set *S*' such that

 $F(S') \ge (1 - 1/e) \max F(S)$

 Approximation reaches at least 63% of optimal solution (off-line bound)

"Greedy Search" is adaptive

23000GpSKp.11.1.detRaw

1 LiverTop

 \rightarrow Skull

→ 3 HipR (2)

 \rightarrow 2 FemurHeadR (1)

 \rightarrow 4 HipL (2)

- \rightarrow 5 KidneyR (2) \rightarrow 6 KidneyL (2)
- \rightarrow **7** LungTopL (4) \rightarrow **8** LungTopL (7)

1 LiverTop

 \rightarrow Skull

. . .

. . .

- \rightarrow 2 AortaRoot (1) \rightarrow TracheaBif (1)
- \rightarrow LungTopL (1)
- \rightarrow LiverCent (1)

- → FemurHeadR
- \rightarrow 3 SternumBot (1)
- \rightarrow 4 KidneyL (1)

MZ-143330-CTSV_3042.3874.5.1.detRaw

Time vs. Volume Size

Figure 4. Detection time as a function of volume size. Blue (+): independent landmark detectors. Red (x): Greedy search.

Detection Time

	mean	std	Q95	max
Independent $D_{8mm} N = 63$	17.30	6.16	46.24	84.51
Greedy $D_{8mm} N = 63$	1.14	0.47	1.92	2.44
Independent $D_{8mm} N = 25$	6.72	6.40	17.73	35.00
Greedy $D_{8mm} N = 25$	0.65	0.43	1.26	5.08

FPR and **FNR**

	Crocky		maoponaom		
	FP_A	FN_A	FP_B	FN_B	
SkullBase	0 (193)	0 [50]	1 (192)	0 [50]	
R.LungTop	0 (84)	1 [114]	1 (83)	1 [114]	
LiverDome	0 (86)	2 [65]	0 [86)	2 [65]	
R.HipTip	0 (131)	0 [94]	1 (130)	0 [94]	
R.Knee	0 (265)	0 [12]	0 (265)	0 [12]	
LiverBott.	2 (33)	1 [33]	2 (33)	1 [33]	
TracheaBif.	0 (44)	0 [41]	0 (44)	0 [41]	
LiverCent.	0 (90)	1 [136]	2 (88)	1 [136]	
L.HumerusHead	0 (96)	1 [12]	0 (96)	1 [12]	
R.HumerusHead	1 (80)	2 [7]	1 (80)	2 [7]	
L.LungTop	0 (61)	1 [21]	1 (61)	1 [20]	
L.HipTip	0 (94)	1 [46]	2 (92)	2 [45]	
L.FemurHead	0 (124)	0 [16]	0 (124)	0 [16]	
R.FemurHead	0 (120)	0 [16]	0 (120)	0 [16]	
CoccyxTip	0 (118)	0 [16]	0 (118)	0 [16]	
PubicSymph.Top	0 (133)	0 [23]	0 (133)	0 [23]	
SternumTip	3 (51)	1 [22]	3 (51)	1 [22]	
AortaBend	0 (31)	1 [53]	1 (30)	1 [53]	
Brachioceph.	1 (35)	3 [132]	1 (35)	3 [132]	
R.Kidney	2 (59)	5 [61]	2 (59)	5 [61]	
L.Kidney	0(71)	0 [76]	0(71)	0 [76]	

Greedy Independent

MMBIA 2012

IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA)

January 9th, 2012

Breckenridge, Colorado

http://www.mmbia.org/mmbia2012

Important Dates

Paper Submission Deadline: <u>September 12th, 2011</u> Paper Decisions: October 31st, 2011 Final Papers Due: December 1st, 2011

Outline

Shape Regression Machine (SRM) [Zhou MIA 2010]

Efficient deformable shape segmentation

Learning: Regression

Annotation: Full shape

Inference: Sample averaging

Context: Shape, anatomy, appearance

Shape Representation & Two-Stage Approach

• Shape $C = rigid \theta + deformable S$

- For LV endocardium, $\theta = (t_x, t_y, log(s_x), log(s_y), \alpha)$
- S consists of a cohort of landmarks $(x_1, y_1, x_2, y_2, ..., x_N, y_N)$

Object Detection and Context

no context

weak context

strong context

Regression-Based Object Detection: Basic Idea

Basic idea

Regress the difference vector

 $d\theta = \mathcal{F}_1(I(\theta))$

Estimate the ground truth

 $\underline{\theta}_0 = \theta + d\theta = \theta + \mathcal{F}_1(I(\theta))$

One scan solution!

Two Questions?

Does such an oracle F₁ exist?

- Context in anatomy and appearance at a global level
- How to learn the oracle \mathcal{F}_1 ?
 - Annotated database & machine learning

Robust Detection

- Algorithm
 - Sample
 - $\{\theta^{<1>},\theta^{<2>},\ldots,\theta^{<M>}\}$
 - Estimate

 $d\theta^{< m >} = \mathcal{F}_1(I(\theta^{< m >}))$

Predict

$$\underline{\theta}_0^{} = \theta^{} + d\theta^{}$$

Fuse by averaging

 $\underline{\theta}_0 = M^{-1} \Sigma_{m=1:M} \underline{\theta}_0^{<m>}$

Improved Localization

- Confidence score
 - Train a binary classifier
 - *p_d* is the posterior prob. from the binary classifier

Weighted averaging

$$\underline{\theta}_0 = \frac{\sum_j p_d^{} \theta_0^{}}{\sum_j p_d^{}}$$

- Faster computation
 - Early stop

Regression-Based Deformable Shape Inference

- Basic idea $S = \mathcal{F}_2(I(\underline{\theta}_0))$. $I(\underline{\theta}_0)$: Estimated ground truth patch
- Does such an oracle T_2 exist?
 - Context in shape and appearance at a *local* level

- How to learn the oracle \mathcal{F}_2 ?
 - Annotated database & machine learning
 - Perturb the rigid parameter to allow imperfect detection

Deformable Shape Inference Algorithm

- Algorithm
 - Sample

Perturb the bounding box to generate *K* random samples $\{I^{<1>}, I^{<2>}, ..., I^{<K>}\}$

Estimate

 $S^{< k >} = \mathcal{F}_2(I^{< k >})$

- Fuse
 - Build a nonparametric kernel density $p_s(S)$
 - Weighted averaging

$$\underline{S} = \frac{\sum_{k} p_{s}^{\langle k \rangle} S^{\langle k \rangle}}{\sum_{k} p_{s}^{\langle k \rangle}}$$

Discriminative Learning for Deformable Shape **SIEMENS** Segmentation [Zhang et al. ECCV 2008]

Learn a score function s(I, C) using classification, regression, or ranking.

- Maximize the score function using standard optimization methods (e.g., simplex).
- Better feature representation.

Marginal Space Learning (MSL) [Zheng et al. TMI 2008]

- Efficient anatomy detection from 3D volumes
- Rigid parameterization (9D)
 - 3 for translation α
 - 3 rotation β
 - 3 for anisotropic scale γ

Learning: Binary classification

Annotation: Bounding box

Inference: Exhaustive scanning

Context: Shape & appearance

Classification-based Object Detection [Voila & Jones]

• Object detection: MAP in the search space Θ

 $(\underline{\alpha}, \underline{\beta}, \underline{\gamma}) = \text{arg max}_{\{(\alpha, \beta, \gamma) \text{ in } \Theta\}} \mathsf{Pr}(\alpha, \beta, \gamma | \mathsf{V})$

Offline learning

Learn Pr(α,β,γ|V) via binary classification

 $\mathsf{Pr}(+1|\mathsf{V}[\alpha,\beta,\gamma]) = \mathsf{Pr}(\alpha,\beta,\gamma|\mathsf{V})$

- High learning complexity: 1-vs-all
- Computationally challenging

Online inference

Exhaustive search in the full 9D space is prohibitive

Marginal Space Learning (MSL)

Offline learning

Break down the learning complexity

 $\Pr(\alpha,\beta,\gamma|V) = \frac{\Pr(\alpha|V)}{\Pr(\alpha,\beta|V)} \times \frac{\Pr(\alpha,\beta|V)}{\Pr(\alpha|V)} \times \frac{\Pr(\alpha,\beta,\gamma|V)}{\Pr(\alpha,\beta|V)}$

Translation detector: $Pr(+1|V[\alpha]) = Pr(\alpha|V)$

Rotation detector: $Pr(+1|V[\alpha,\beta]) = Pr(\alpha,\beta|V)$

Scale detector: $Pr(+1|V[\alpha,\beta,\gamma]) = Pr(\alpha,\beta,\gamma|V)$

Bootstrapping to reduce the number of negatives

Online inference

Search in three spaces: {T}, {T,R}, {T,R,S}

Extensible to cope with deformable shape space

Hierarchical MSL – Image Pyramid to Improved **SIEMENS** Robustness [Sokfa et al, CVPR 2010]

Example: Liver segmentation [Ling et al. CVPR 2007]

Combine Learning-based and PDE-based techniques NS [Kohlberger et al. MICCAI 2011]

System Concept

Special features + PBT

Integrated Detection Toolkit (IDTK) ---Building the Whole Body Parsing Project

- Coding anatomical relationships by a network structure
- Flexible configuration
- Visual programming
- Scalable technology

MMBIA 2012

IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA)

January 9th, 2012

Breckenridge, Colorado

http://www.mmbia.org/mmbia2012

Important Dates

Paper Submission Deadline: <u>September 12th, 2011</u> Paper Decisions: October 31st, 2011 Final Papers Due: December 1st, 2011