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Design Mathematical Methods and Algorithms to Model and Analyze the Anatomy
 Statistics of organ shapes across subjects in species, populations, diseases… 

 Mean shape
 Shape variability (Covariance)

 Model organ development across time (heart-beat, growth, ageing, ages…)
 Predictive (vs descriptive) models of evolution

 Correlation with clinical variables

Computational Anatomy



Longitudinal deformation analysis in AD
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How to transport longitudinal deformation across subjects?
What are the convenient mathematical settings?  
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Roadmap

Statistics on shapes: the Riemannian setting

The Stationary Velocity Fields (SVF) framework

Modeling longitudinal evolution in AD

Conclusion and challenges
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Riemannian geometry is a powerful structure to 
build consistent statistical computing algorithms

Shape spaces & directional statistics
 [Kendall StatSci 89, Small 96, Dryden & Mardia 98]

Numerical integration, dynamical systems & optimization
 [Helmke & Moore 1994, Hairer et al 2002]
 Matrix Lie groups [Owren BIT 2000, Mahony JGO 2002]
 Optimization on Matrix Manifolds [Absil, Mahony, Sepulchre, 2008] 

Information geometry (statistical manifolds)
 [Amari 1990 & 2000, Kass & Vos 1997]
 [Oller & Corcuera Ann. Stat. 1995, Battacharya & Patrangenaru, Ann. Stat. 2003 & 2005]

Statistics for image analysis
 Rigid body transformations [Pennec PhD96]
 General Riemannian manifolds [Pennec JMIV98, NSIP99, JMIV06]
 PGA for M-Reps [Fletcher IPMI03, TMI04]
 Planar curves [Klassen & Srivastava PAMI 2003]

Geometric computing
 Subdivision scheme [Rahman,…Donoho, Schroder SIAM MMS 2005]

Présentateur
Commentaires de présentation
Mettre a jour les refs
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The geometric framework: Riemannian Manifolds
Riemannian metric :

 Dot product on tangent space 
 Speed, length of a curve
 Distance and geodesics

 Closed form for simple metrics/manifolds
 Optimization for more complex 

Operator Euclidean space Riemannian manifold

Subtraction
Addition
Distance

Gradient descent )( ttt xCxx ∇−=+ εε
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Unfolding (Logx), folding (Expx)
 Vector -> Bipoint (no more equivalent class)

Exponential map (Normal coord. syst.) :
 Geodesic shooting: Expx(v) = γ(x,v)(1)
 Log: find vector to shoot right (geodesic completeness!)
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First statistical tools: moments
Probability measures

 Metric -> Volume form                         dM(x)
 Intrinsic probability density functions   dP(z) = p(z).dM(z)

Expectation of a function from M into R 
 Variance :

 Information :

Fréchet / Karcher mean: minimize the variance

 Optimum: exponential barycenter

 Gauss-Newton Geodesic marching

Covariance (tPCA) and higher orders
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[Oller & Corcuera 95, Battacharya & Patrangenaru 2002, Pennec, JMIV06, NSIP’99 ]
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Shapes: forms & deformations
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Riemannian Shape space setting
 Forms live in a shape space with a Riemannian metric
 Use Frechet/Karcher mean, covariance, Tangent PCA

Measure of deformation [D’Arcy Thompson 1917, Grenander & Miller]
 Observation = “random” deformation of a reference template 
 Deterministic template = anatomical invariants [Atlas ~ mean]
 Random deformations = geometrical variability [Covariance matrix]
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Riemannian metrics on diffeomorphisms
Space of deformations

 Transformation y=φ(x)
 Curves in transformation spaces: φ(x,t)
 Tangent vector = speed vector field 

Right invariant metric 
 Eulerian scheme 
 Sobolev Norm Hk or H∞ (RKHS) in LDDMM  diffeomorphisms [Miller, 

Trouve, Younes, Dupuis 1998 – 2009]

Geodesics determined by optimization of a time-varying vector field
 Distance

 Geodesics characterized by initial momentum
 Point supported objects (Currents, e.g. curves, surface): finite 

dimensional parameterization with Dirac currents

 Images: more difficult implementation [Beg IJCV 2005, Niethammer 09]
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Statistics on which deformations feature?

Space of “initial momentum” [Quantity of motion instead of speed]
 [Vaillant et al., NeuroImage, 04, Durrleman et al, MICCAI’07]
 Based on right-invariant metrics on diffeos [Trouvé, Younes et al.]
 No more finite dimensional parameterization with images 
 Computationally intensive for images

Global statistics on displacement field or B-spline parameters
 [Rueckert et al., TMI, 03], [Charpiat et al., ICCV’05],[P. Fillard, stats on sulcal lines] 
 Simple vector statistics, but inconsistency with group properties

Local statistics on local deformation (mechanical properties)
 Gradient of transformation, strain tensor
 Riemannian elasticity [Pennec, MICCAI’05, MFCA’06] 
 TBM [N. Lepore & C. Brun, MICCAI’06 & 07, ISBI’08, Neuroimage09]

An alternative: “log-Euclidean” statistics on diffeomorphisms?
 [Arsigny, MICCAI’07]
 [Bossa, MICCAI’07, Vercauteren MICCAI’07, Ashburner NeuroImage 2007]
 Mathematical problems but efficient numerical methods!
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Roadmap

Statistics on shapes: the Riemannian setting

The Stationary Velocity Fields (SVF) framework

Modeling longitudinal evolution in AD

Conclusion and challenges
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The SVF framework for  Diffeomorphisms
Framework of [Arsigny et al., MICCAI 06]

 Use one-parameter subgroups

Exponential of a smooth vector field is a diffeomorphism
 u is a smooth stationary velocity field
 Exponential: solution at time 1 of ODE ∂x(t) / ∂t = u( x(t) )

•exp

Stationary velocity field Diffeomorphism

X. Pennec - Geometry for Anatomy W. Banff 2011-08-31
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Efficient numerical methods
 Take advantage of algebraic properties of exp and log.

 exp(t.V) is a one-parameter subgroup.

→ Direct generalization of numerical matrix algorithms.

Efficient parametric diffeomorphisms
 Computing the deformation: Scaling and squaring 

recursive use of exp(v)=exp(v/2) o exp(v/2)
[Arsigny MICCAI 2006]

 Updating the deformation parameters: 
BCH formula [Bossa MICCAI 2007]
exp(v) ○ exp(εu) = exp( v + εu + [v,εu]/2 + [v,[v,εu]]/12 + … )
 Lie bracket       [v,u](p) = Jac(v)(p).u(p) - Jac(u)(p).v(p)

The SVF framework for  Diffeomorphisms
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Symmetric log-demons [Vercauteren MICCAI 08]

Idea: [Arsigny MICCAI 2006, Bossa MICCAI 2007, Ashburner Neuroimage 2007]
 Parameterize the deformation by SVFs 
 Time varying (LDDMM) replaced by stationary vector fields
 Efficient scaling and squaring methods to integrate autonomous ODEs

Log-demons with SVFs

 Efficient optimization with BCH formula
 Inverse consistent with symmetric forces
 Open-source ITK implementation

 Very fast 
 http://hdl.handle.net/10380/3060 
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Similarity

Measures how much the 
two images differ

Coupling

Couples the correspondences 
with the smooth deformation

Regularisation

Ensures 
deformation 
smoothness

[ T Vercauteren, et al.. Symmetric 
Log-Domain Diffeomorphic
Registration: A Demons-based 
Approach, MICCAI 2008 ]
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The SVF framework for  Diffeomorphisms
Can we justify that?  [Pennec & Lorenzi, MFCA11]

 Drop the metric, use connection to define geodesics
 Canonical symmetric Cartan Connection: unique symmetric left AND right 

invariant linear connection on a Lie group
 Null torsion, Curvature 

What we gain  
 Geodesics are left (and right) translations of one-parameter subgroups
 Invariance by left and right translations + inversion
 Efficiency (PDEs -> ODEs)

What we loose
 No compatible metric for non compact non abelian groups
 Geodesic completeness but no Hopf-Rinow theorem 

 There is not always a smooth geodesic joining two points (e.g. SL2, no pb for GLn)

 Infinite dimensions: exponential might not be locally diffeomorphic
 Known examples on Diff(S1) but with

In practice
 Reachable diffeos seem to be sufficient to describe anatomical deformations

∞ → +∞→k
H kφ
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Generalizing the statistical setting to 
affine connection spaces?

Intuition: from Euclidean to affine spaces (but with curvature)
Mean value

 Fréchet / Karcher means not usable (no distance)
 Can be defined through exponential barycenters
 Existence? Uniqueness? OK for convex affine manifolds with semi-local 

convex geometry [Arnaudon & Li, Ann. Prob. 33-4, 2005]
 Algorithm to compute the mean: fixed point iteration (stability?)
 Cannonical symmetric Cartan connection:

Bi-invariant mean on Lie groups [Arsigny Preprint 2006 + PhD 2006]

Covariance matrix & higher order moments
 Cannot be defined as Σij = E( <x|ei><x|ej>) (no dot product)
 Σij = E( xi.xj) can be defined in any specific basis (but depends on it)
 PCA has no meaning: change it to ICA?
 Anyway, the distribution is more important than the distance [Anuj yesterday]
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Roadmap

Statistics on shapes: the Riemannian setting

The Stationary Velocity Fields (SVF) framework

Modeling longitudinal evolution in AD

Conclusion and challenges



Longitudinal structural damage in AD

18

baseline 2 years follow-up

Ventricle’s expansionHippocampal atrophyWidespread cortical thinning
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Modeling longitudinal atrophy in AD from images
 From patient specific evolution to population trend

(parallel transport of deformation trajectories) 
 Inter-subject and longitudinal deformations are of different nature

and might require different deformation spaces/metrics
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PhD Marco Lorenzi - Collaboration With G. Frisoni (IRCCS FateBenefratelli, Brescia)

Patient A

Patient B

? ?Template



Parallel transport of deformations

Encode longitudinal deformation by its initial tangent (co-) vector
 Momentum (LDDMM) / SVF

Parallel transport 
 (small) longitudinal deformation vector
 along the large inter-subject normalization deformation

Existing methods
 Vector reorientation with Jacobian of inter-subject deformation
 Conjugate action on deformations (Rao et al. 2006)
 Resampling of scalar maps (Bossa et al, 2010)
 LDDMM setting: parallel transport along geodesics via Jacobi fields 

[Younes et al. 2008]

Intra and inter-subject deformations/metrics are of different nature 
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Parallel transport along arbitrary curves
Infinitesimal parallel transport = connection

∇γ’(X) : TMTM

A numerical scheme to integrate for symmetric connections: 
Schild’s Ladder [Elhers et al, 1972]
 Build geodesic parallelogrammoid
 Iterate along the curve 
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[Lorenzi, Ayache, Pennec: Schild's Ladder for the parallel transport of
deformations in time series of images, IPMI 2011 ]



Efficient Schild’s Ladder with SVFs

Numerical scheme
 Direct computation:

 Using the BCH:
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[Lorenzi, Ayache, Pennec: Schild's Ladder for the parallel transport of
deformations in time series of images, IPMI 2011 ]



Synthetic experiments (Consistency)
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Vector 
transport

Scalar 
transport

Scalar summary 

Scalar summary

(Jacobian det, logJacobian det, …)

Vector measure Scalar measure



Synthetic experiments (Consistency)
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Original longitudinal Log-Jacobian 
map

Scalar transport

Conjugation
(deformation field)

Reorientation
(velocity field)

Schild’s Ladder
(velocity field)

Vector transport:



Modeling longitudinal atrophy in AD from images

One year structural changes for 70 Alzheimer's patients 
 Median evolution model and significant atrophy (FdR corrected)
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Contraction Expansion 

[Lorenzi et al, in Proc. 
of IPMI 2011]



Modeling longitudinal atrophy in AD from images

One year structural changes for 70 Alzheimer's patients 
 Median evolution model and significant atrophy (FdR corrected)
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[Lorenzi et al, in Proc. 
of IPMI 2011]

Contraction Expansion 



Modeling longitudinal atrophy in AD from images

One year structural changes for 70 Alzheimer's patients 
 Median evolution model and significant atrophy (FdR corrected)
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Contraction Expansion 

[Lorenzi et al, in Proc. 
of IPMI 2011]



Modeling longitudinal atrophy in AD from images

One year structural changes for 70 Alzheimer's patients 
 Median evolution model and significant atrophy (FdR corrected)
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Contraction Expansion 

[Lorenzi et al, in Proc. 
of IPMI 2011]



Longitudinal model for AD
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Modeled changes from 70 AD subjects (ADNI data)

Extrapolation

ObservedExtrapolated Extrapolated
year
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Analysis of longitudinal datasets
Multilevel framework

31

Single-subject, two time points

Single-subject, multiple time points

Multiple subjects, multiple time points

Log-Demons (LCC criteria)

4D registration of time series within the 
Log-Demons registration.

Schild’s Ladder

[Lorenzi et al, in Proc. of MICCAI 2011]
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Study of prodromal Alzheimer’s disease 
 98 healthy subjects, 5 time points (0 to 36 months).
 41  subjects Aβ42 positive (“at risk” for Alzheimer’s)
 Q: Different morphological evolution for Aβ+ vs Aβ-?
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Average SVF
for normal
evolution (Aβ-)

[Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011]



Study of prodromal Alzheimer’s disease 
Linear regression of the SVF over time: interpolation + prediction
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Multivariate group-wise comparison 
of the transported SVFs shows 
statistically significant differences 
(nothing significant on log(det) )

[Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011]
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Conclusion

Algorithms for SVFs
 Log-demons: Open-source ITK implementation http://hdl.handle.net/10380/3060 
 Tensor (DTI) Log-demons: https://gforge.inria.fr/projects/ttk 
 LCC time-consistent log-demons for AD available soon
 ITK class for SVF diffeos currently under development

Schilds Ladder for parallel transport  
 Effective instrument for the transport of deformation trajectories 
 Key component for multivariate analysis and modeling of longitudinal data
 Stability and sensitivity

From group models to subject-specific measures
 Faithful measure at individual level: diagnosis / follow-up 
 Model at group level: statistical prediction (extrapolation)
 Personalized model: prediction (prognosis)
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Conclusion

Affine connection instead of Riemannian spaces?
 A symmetric connection defines geodesics but no length along them
 Not always a geodesic joining two points
 Covariance matrix makes sense in a basis but no canonical basis
 PCA -> ICA?

An apparently nice setting for transformation groups
 Canonical Cartan connection on Lie groups: one-parameters subgroups
 Bi-invariant mean on Lie groups [Arsigny Preprint + PhD 2006]
 Parallel transport is easy using Schilds Ladder

Left/right invariant metrics (LDDMM) and symmetric Cartan connection 
 Quantify differences between geodesics
 Evaluate the practical impact on statistics



Advertisement 
Master of Science in Computational Biology 
at Nice-Sophia Antipolis University

 http://www.computationalbiology.eu

Workshop Mathematical Foundations of Computational 
Anatomy at MICCAI 2011
 Toronto, September 18 or 22, 2011

 http://www-sop.inria.fr/asclepios/events/MFCA08/
 http://www-sop.inria.fr/asclepios/events/MFCA06/
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Publications: http://www.inria.fr/sophia/asclepios/biblio

Software: http://www.inria.fr/sophia/asclepios/software/MedINRIA.

Thank You!

Special thanks to Pierre Fillard for many illustrations!
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