Tuner - finding the best parameters for your algorithm

Torsten Möller Graphics, Usability, and Visualization Lab Simon Fraser University

Quiz - question I

- "Each match must agree within 15 degrees orientation, $\sqrt{2}$ change in scale, and 0.2 times maximum model size in terms of location. If fewer than 3 points remain after discarding outliers, then the match is rejected."
- Lowe, 1999, Object recognition from local scale-invariant features (SIFT)

Quiz - question 2

- "In our numerical experiments, we generally choose the parameters as follows: $\lambda_1 = \lambda_2 = 0$, $\nu = 0$, h = 1 (the step space), $\Delta t = 0.1$ (the time step). We only use the approximations $H_{2,\epsilon}$ and $\delta_{2,\epsilon}$ of the Heaviside and Dirac delta functions ($\epsilon = h = 1$), in order to automatically detect interior contours, and to insure the computation of a global minimizer. Only the length parameter μ , which has a scaling role, is not the same in all experiments."
- Chan+Vese, 2001, Active contours without edges

gruvi graphics + usability + visualization

Overview

- Problem setting
- Sampling multi-d spaces
- Exploring multi-d spaces
- Trading off multiple objectives
- Results

Problem Setting

Image segmentation

- many thresholds, e.g.
 - max vessel diameter
 - max vessel curvature, etc.
- variational / energy minimisation

 $E(\phi, I) = \alpha_1 E_1(\phi, I) + \alpha_2 E_2(\phi, I) + \dots + \alpha_k E_k(\phi, I)$

• abstracted (black-box) scheme:

- we can tell **Inputs** from **Outputs**
- we can query this box / algorithm at every "point"

• abstracted (black-box) scheme:

- we can tell **Inputs** from **Outputs**
- we can query this box / algorithm at every "point"

Objective measure

- one-dimensional ("goodness") rating: d(object) = quantitative grade
- two-dimensional comparison:
 d(O₁, O₂) = quantitative similarity
- objective measures can be
 - exact (reliable)
 - approximate about right, but not 100% precise
 - unknown (active learning)

in our case ...

- used (several) one-dimensional measures
 - dice
 - error
 - precision / recall
- need the user in the loop to find the best trade-off

We would like to ...

- sample the input space exhaustively
- explore / understand the space of all segmentations
- find **the** best segmentation (and its parameters)

Three challenges

- How to sample the input space exhaustively?
- How to explore / understand the space of all segmentations?
- How to find the best segmentation (and it's parameters)?

Sampling

Sampling

- trading-off time and accuracy
- time would like to get an answer in less than a day (samples are expensive!)
- accuracy would like to have as dense a sampling as possible
- typically reconstruct / infer values at nonsampled values from sampled neighbors

Common strategy

- user gives a sampling budget
- split into
 - uniform sampling at start
 - adaptively refine according to some refinement criteria

Sampling Exploration Optima Results Setting

Our implementation

- 2 sampling strategies
 - Random
 - Latin Hypercube
- live preview
- estimate running time

Reconstruction

- Gaussian process model, i.e.
 - essentially a convolution with adapted kernel parameters
- refine where the user tells us to

Understanding the parameter space

Setting Sampling Exploration Optima Results

BIRS September 2011

Response Views

Histograms

- One histogram per output
- Glyph shows where point of focus lies w.r.t. optimum
- People didn't really seem to use these

The best segmentation

BIRS September 2011

Torsten Möller

Optimization: subtasks

- facilitate understanding of trade-offs
- applying constraints on (output) parameters
- refine sampling at potential optima

Pareto Panel

BIRS September 2011

Refinement

Mark the region of interest

Refinement

- identical interface to initial sampling
- clicking "Run"
 button runs samples
 through black box
 code
- GP model is automatically rebuilt

Results

Two scenarios

- 8d dPET image segmentation
- 3d microtubule tracing algorithm

Electron Microscopy

- Samples: eggs of C.Elegans during mitosis
- Preparation: Samples are dry frozen, stained, embedded in plastic and sectioned into ~300nm thick slices
- Image acquisition: Volume is reconstructed from a series of projections in different tilt angles taken with a transmission electron microscope (TEM)

Results

Microtubule tracing

"No more making stupid plots"

gruvi graphics + usability + visualization

Microtubule tracing

BIRS September 2011

Summary

- principled way of exploring multi-d parameter space
- understanding trade-off of multiple objectives
- "This reduced the work of days to a couple of hours."
- lots of things to improve!
- not everything is an optimization

Canada Foundation for Innovation

Fondation canadienne pour l'innovation

Acknowledgments

Thomas-Torsney Weir SFU

Steven Bergner SFU

Ahmed Saad SFU

Britta Weber Zuse I Berlin

Hans-Christian Hege Zuse I Berlin

Jean-Marc Verbavatz MPI-CBG Dresden

BIRS September 2011

gruvi graphics + usability + visualization

IEEE Symposium on **Biological Data Visualization** www.biovis.net 23-24 Oct 2011 / Providence, RI, USA @ IEEE VisWeek 2011 early registration deadline - 16 September **20** papers + **27** abstracts Visualization Challenge (focus on eQTL) **Deadline Sep 7th** Keynote by Lynda Chin Invited Session by Arthur Olson, Cydney Nielsen, Willy Supatto Tutorial by Larry Hunter, Kun Huang

Questions?

torsten@sfu.ca

http://gruvi.cs.sfu.ca

BIRS September 2011

Torsten Möller