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differentiable curve α : [a, b] → R
3

curve is parameterized by arclength ‖α′(t)‖ = 1 for t ∈ [a, b]

T = α′ the tangent

N = T ′/‖T ′‖ the normal

B = T × N the binormal

where ′ indicates differentiation and × denotes cross product
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consider K knots, ξ1 < ξ2 < . . . < ξK , and take B-spline basis
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then form s(t;β) =
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β̂ = arg min
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∑

i=1

(

hi − β⊤B(ti)
)2

,

the estimator of f is defined by f̂ =
K
∑

j=1
β̂jBj
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Model Selection

since we do not know which basis functions are useful in fitting, we
adopt a model selection procedure as follows:

set K0 initial knots with equally spaced percentiles among the data
points

sequentially delete the basis function having the minimum absolute
t-statistic

select the model having the minimum Akaike information criterion
(AIC) statistic
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