Frenet-Serret and the Estimation of Curvature and Torsion

Peter Kim

University of Guelph

August 29, 2011 BIRS

Joint work with Kang-Rae Kim (Korea University), Ja-Yong Koo (Korea University) and Michael

Pierrynowski (McMaster University)

Outline

Preliminaries

Peter Kim Frenet-Serret and the Estimation of Curvature and Torsion

Outline

Preliminaries

Curvature and Torsion

Peter Kim Frenet-Serret and the Estimation of Curvature and Torsion

Outline

Preliminaries

Curvature and Torsion

Statistical Estimation

Outline

Preliminaries

Curvature and Torsion

Statistical Estimation

Application to Biomechanics

Preliminaries

differentiable curve $\alpha : [a, b] \rightarrow \mathbb{R}^3$

Preliminaries

differentiable curve $\alpha : [a, b] \rightarrow \mathbb{R}^3$

curve is parameterized by arclength $\|\alpha'(t)\| = 1$ for $t \in [a, b]$

Preliminaries

differentiable curve $\alpha : [a, b] \rightarrow \mathbb{R}^3$

curve is parameterized by arclength $\| \alpha'(t) \| = 1$ for $t \in [a,b]$

 $T=\alpha'$ the tangent

Preliminaries

differentiable curve $\alpha : [a, b] \rightarrow \mathbb{R}^3$

curve is parameterized by arclength $\|lpha'(t)\|=1$ for $t\in [a,b]$

- ${\cal T}=\alpha'$ the tangent
- $\textit{N}=\textit{T}'/{\|\textit{T}'\|}$ the normal

Preliminaries

differentiable curve $\alpha : [a, b] \rightarrow \mathbb{R}^3$

curve is parameterized by arclength $\|lpha'(t)\|=1$ for $t\in[a,b]$

- ${\cal T}=\alpha'$ the tangent
- $N = T' / \|T'\|$ the normal
- $B = T \times N$ the binormal

Preliminaries

differentiable curve $\alpha : [\mathbf{a}, \mathbf{b}] \to \mathbb{R}^3$

curve is parameterized by arclength $\|lpha'(t)\|=1$ for $t\in[a,b]$

- ${\cal T}=\alpha'$ the tangent
- $\mathit{N} = \mathit{T}' / \| \mathit{T}' \|$ the normal
- $B = T \times N$ the binormal

where $^\prime$ indicates differentiation and \times denotes cross product

Preliminaries-Frenet-Serret

 $\{T, N, B\}$ are pairwise orthonormal hence form an orthonormal basis for \mathbb{R}^3 for each $t \in [a, b]$

Preliminaries-Frenet-Serret

 $\{T, N, B\}$ are pairwise orthonormal hence form an orthonormal basis for \mathbb{R}^3 for each $t \in [a, b]$

Frenet-Serret frame

Preliminaries-Frenet-Serret

 $\{T, N, B\}$ are pairwise orthonormal hence form an orthonormal basis for \mathbb{R}^3 for each $t \in [a, b]$

Frenet-Serret frame satisfies the differential equation

$$\left(\begin{array}{c}T'\\N'\\B'\end{array}\right) = \left(\begin{array}{cc}0&\kappa&0\\-\kappa&0&\tau\\0&-\tau&0\end{array}\right) \left(\begin{array}{c}T\\N\\B\end{array}\right)$$

Preliminaries-Frenet-Serret

 $\{T, N, B\}$ are pairwise orthonormal hence form an orthonormal basis for \mathbb{R}^3 for each $t \in [a, b]$

Frenet-Serret frame satisfies the differential equation

$$\left(\begin{array}{c}T'\\N'\\B'\end{array}\right) = \left(\begin{array}{cc}0&\kappa&0\\-\kappa&0&\tau\\0&-\tau&0\end{array}\right) \left(\begin{array}{c}T\\N\\B\end{array}\right)$$

Frenet-Serret formulas

Curvature and Torsion

$$\kappa(t) = \| {\mathcal T}'(t) \|$$
 is the curvature

Curvature and Torsion

$$\kappa(t) = \| {f T}'(t) \|$$
 is the curvature $au(t) = - \langle {f N}(t), B'(t)
angle$ is the torsion

Curvature and Torsion

$$\kappa(t) = \|T'(t)\|$$
 is the curvature
 $au(t) = -\langle \textit{N}(t), B'(t)
angle$ is the torsion

curvature measures how fast the unit tangent vector rotates

Curvature and Torsion

$$\kappa(t) = \| extsf{T}'(t) \|$$
 is the curvature $au(t) = - \langle extsf{N}(t), extsf{B}'(t)
angle$ is the torsion

curvature measures how fast the unit tangent vector rotates

torsion characterizes the non-planarity of a three-dimensional space curve

Curvature and Torsion

$$\kappa(t) = \| extsf{T}'(t) \|$$
 is the curvature $au(t) = - \langle extsf{N}(t), extsf{B}'(t)
angle$ is the torsion

curvature measures how fast the unit tangent vector rotates

torsion characterizes the non-planarity of a three-dimensional space curve

Curvature and Torsion - non unit speed

previous formula assumes unit speed, if we take the original curve $\alpha:[\mathbf{a},\mathbf{b}]\to\mathbb{R}^3$

Curvature and Torsion - non unit speed

previous formula assumes unit speed, if we take the original curve $\alpha : [a, b] \to \mathbb{R}^3$ $\kappa(t) = \frac{\|\alpha'(t) \times \alpha''(t)\|}{\|\alpha'(t)\|^3}$ is the curvature

Curvature and Torsion - non unit speed

previous formula assumes unit speed, if we take the original curve $\alpha : [a, b] \to \mathbb{R}^3$ $r(t) = \frac{\|\alpha'(t) \times \alpha''(t)\|}{|\alpha'(t)||}$ is the curvature

$$\tau(t) = -\frac{\langle \alpha'(t) \times \alpha''(t), \alpha'''(t) \rangle}{\|\alpha'(t) \times \alpha''(t)\|^2}$$
 is the torsion

Curvature and Torsion - non unit speed

previous formula assumes unit speed, if we take the original curve $\alpha : [a, b] \to \mathbb{R}^3$ $\kappa(t) = \frac{\|\alpha'(t) \times \alpha''(t)\|}{\|\alpha'(t)\|^3}$ is the curvature $\tau(t) = -\frac{\langle \alpha'(t) \times \alpha''(t), \alpha'''(t) \rangle}{\|\alpha'(t) \times \alpha''(t)\|^2}$ is the torsion curvature measures how fast the tangent vector rotates

Curvature and Torsion - non unit speed

previous formula assumes unit speed, if we take the original curve $\alpha : [a, b] \to \mathbb{R}^3$ $\kappa(t) = \frac{\|\alpha'(t) \times \alpha''(t)\|}{\|\alpha'(t)\|^3}$ is the curvature $\tau(t) = -\frac{\langle \alpha'(t) \times \alpha''(t), \alpha'''(t) \rangle}{\|\alpha'(t) \times \alpha''(t)\|^2}$ is the torsion curvature measures how fast the tangent vector rotates

torsion characterizes the non-planarity of a three-dimensional space curve

Curvature and Torsion - non unit speed

previous formula assumes unit speed, if we take the original curve $\alpha : [a, b] \to \mathbb{R}^3$ $\kappa(t) = \frac{\|\alpha'(t) \times \alpha''(t)\|}{\|\alpha'(t)\|^3}$ is the curvature $\tau(t) = -\frac{\langle \alpha'(t) \times \alpha''(t), \alpha'''(t) \rangle}{\|\alpha'(t) \times \alpha''(t)\|^2}$ is the torsion curvature measures how fast the tangent vector rotates

torsion characterizes the non-planarity of a three-dimensional space curve

Statistical Estimation

consider $h_i = f(t_i) + \varepsilon_i$ using data (t_i, h_i) and assuming ε_i are errors , i = 1, ..., n

Statistical Estimation

consider $h_i = f(t_i) + \varepsilon_i$ using data (t_i, h_i) and assuming ε_i are errors , i = 1, ..., n

consider K knots, $\xi_1 < \xi_2 < \ldots < \xi_K$, and take B-spline basis functions, $B_j, j = 1, \ldots, K$

Statistical Estimation

consider $h_i = f(t_i) + \varepsilon_i$ using data (t_i, h_i) and assuming ε_i are errors , i = 1, ..., n

consider K knots, $\xi_1 < \xi_2 < \ldots < \xi_K$, and take B-spline basis functions, $B_j, j = 1, \ldots, K$

then form
$$s(t;\beta) = \sum_{j=1}^{K} \beta_j B_j(t)$$

Statistical Estimation

consider $h_i = f(t_i) + \varepsilon_i$ using data (t_i, h_i) and assuming ε_i are errors , i = 1, ..., n

consider K knots, $\xi_1 < \xi_2 < \ldots < \xi_K$, and take B-spline basis functions, $B_j, j = 1, \ldots, K$

then form
$$s(t; \beta) = \sum_{j=1}^{K} \beta_j B_j(t)$$

estimate β by

$$\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} (h_i - \beta^{\top} B(t_i))^2,$$

Statistical Estimation

consider $h_i = f(t_i) + \varepsilon_i$ using data (t_i, h_i) and assuming ε_i are errors , i = 1, ..., n

consider K knots, $\xi_1<\xi_2<\ldots<\xi_K$, and take B-spline basis functions, $B_j, j=1,\ldots,K$

then form
$$s(t;\beta) = \sum_{j=1}^{K} \beta_j B_j(t)$$

estimate β by

$$\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} (h_i - \beta^{\top} B(t_i))^2,$$

the estimator of f is defined by $\hat{f} = \sum_{i=1}^{K} \hat{\beta}_i B_i$

Model Selection

since we do not know which basis functions are useful in fitting, we adopt a model selection procedure as follows:

Model Selection

since we do not know which basis functions are useful in fitting, we adopt a model selection procedure as follows:

set \mathcal{K}_0 initial knots with equally spaced percentiles among the data points

Model Selection

since we do not know which basis functions are useful in fitting, we adopt a model selection procedure as follows:

set K_0 initial knots with equally spaced percentiles among the data points

sequentially delete the basis function having the minimum absolute *t*-statistic

Model Selection

since we do not know which basis functions are useful in fitting, we adopt a model selection procedure as follows:

set K_0 initial knots with equally spaced percentiles among the data points

sequentially delete the basis function having the minimum absolute *t*-statistic

select the model having the minimum Akaike information criterion (AIC) statistic

Estimation of curvature and torsion

let $\alpha_n(t) = (\alpha_{1,n}(t), \alpha_{2,n}(t), \alpha_{3,n}(t))^\top$ be the fitted curve

Estimation of curvature and torsion

let $\alpha_n(t) = (\alpha_{1,n}(t), \alpha_{2,n}(t), \alpha_{3,n}(t))^\top$ be the fitted curve define $\alpha_n^{(\ell)}(t) = (\alpha_{1,n}^{(\ell)}(t), \alpha_{2,n}^{(\ell)}(t), \alpha_{3,n}^{(\ell)}(t))^\top$ be the ℓ -th derivative

Estimation of curvature and torsion

let
$$\alpha_n(t) = (\alpha_{1,n}(t), \alpha_{2,n}(t), \alpha_{3,n}(t))^\top$$
 be the fitted curve
define $\alpha_n^{(\ell)}(t) = (\alpha_{1,n}^{(\ell)}(t), \alpha_{2,n}^{(\ell)}(t), \alpha_{3,n}^{(\ell)}(t))^\top$ be the ℓ -th derivative
alternatively one may start with an ℓ -th derivative and integrate
to get lower order derivatives

Estimation of curvature and torsion

let
$$\alpha_n(t) = (\alpha_{1,n}(t), \alpha_{2,n}(t), \alpha_{3,n}(t))^\top$$
 be the fitted curve
define $\alpha_n^{(\ell)}(t) = (\alpha_{1,n}^{(\ell)}(t), \alpha_{2,n}^{(\ell)}(t), \alpha_{3,n}^{(\ell)}(t))^\top$ be the ℓ -th derivative
alternatively one may start with an ℓ -th derivative and integrate
to get lower order derivatives
 $\hat{\kappa}_n(t) = \frac{\|\alpha'_n(t) \times \alpha''_n(t)\|}{\|\alpha'_n(t)\|^3}$ is the curvature estimator

Estimation of curvature and torsion

let
$$\alpha_n(t) = (\alpha_{1,n}(t), \alpha_{2,n}(t), \alpha_{3,n}(t))^\top$$
 be the fitted curve
define $\alpha_n^{(\ell)}(t) = (\alpha_{1,n}^{(\ell)}(t), \alpha_{2,n}^{(\ell)}(t), \alpha_{3,n}^{(\ell)}(t))^\top$ be the ℓ -th derivative
alternatively one may start with an ℓ -th derivative and integrate

to get lower order derivatives

$$\hat{\kappa}_n(t) = \frac{\|\alpha'_n(t) \times \alpha''_n(t)\|}{\|\alpha'_n(t)\|^3}$$
 is the curvature estimator
 $\hat{\tau}_n(t) = -\frac{\langle \alpha'_n(t) \times \alpha''_n(t), \alpha'''_n(t) \rangle}{\|\alpha'_n(t) \times \alpha''_n(t)\|^2}$ is the torsion estimator

Knee data

Peter Kim Frenet-Serret and the Estimation of Curvature and Torsion