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Principal Component Analysis (PCA)

1. Study population of shape representations

2. Exploratory statistics
- Visualization of data structure

3. Dimension reduction and Estimation of Probability distribution

Generalization of PCA to shape representations

• Shape representations are either spheres, quotient of spheres,
or involve position-tuples, directions, and (log) sizes

• PCA suited for this type of manifolds

More details on skeletal models (Pizer)

Models of object interiors designed for probability distribution
estimation: s-reps
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Examples of image/shape analysis

1. Landmark based shapes

Kendall (1984), Bookstein (1986), Dryden and Mardia (1998)

• Work with a set of landmarks on object

• Shape: Invariant under translation, scale, and rotation

• Kendall’s Shape Space is a curved manifold (CPk−2)

Example: Shapes of rat skulls

(left) biological landmarks of rat skull, (right) two sets of landmarks
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Examples of image/shape analysis

2. Shapes by modern techniques

• Point Distribution Models (PDM):many landmarks automatically

determined

• Point and Normal Distribution Models (PNDM): PDM +

Normal directions at landmarks

• Warps of an atlas
• Displacement vector, or
• Velocity array by t over [0, 1]

• Continuous outlines and surfaces (Srivastava, Kurtek)

(left) PDM of Lung, (right) illustrative example of Points and Normals
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Examples of image/shape analysis

3. Skeletal representations (s-rep)

Siddiqi and Pizer (2008), Pizer et al. (2011)

• Special case: Medial representations (m-rep)

• Capturing interior of objects

• Suitable for statistical analysis

• More details covered in Pizer’s talk

medial atom, slabular m-rep model, slabular s-rep, quasi-tubular s-rep,

multi-object
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Two equivalent formulations of Euclidean PCA
Forward stepwise view of PCA: center point - line - plane - ...

Backward stepwise view of PCA:

1. Begin with full data space (Rd)

2. Find d− 1 dim’l affine subspace (best approximates data)

3. Reduce dimension further to d− 2, d− 3, . . . , 0.

Euclidean case: Forward PCA = Backward PCA
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PCA generalizations

Complications on manifolds

• Orthogonal lines → Orthogonal geodesics

• Need to find an appropriate ‘mean’

Approaches of manifold PCA

1. Tangent Space Approach [Dryden and Mardia (1998), Principal

Geodesic Analysis by Fletcher et al. (2004)]

Forward approximation

2. Direct Geodesic Fitting [Geodesic PCA by Huckemann, Ziezold

and Munk (2006, 2010)]

Partially backward approach

3. Small Circle Fitting for S2 [Principal Arc Analysis by Jung,

Foskey and Marron ’11]

Backward approach
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Analysis of Principal Nested Spheres

Jung, Dryden and Marron ’11

• Generalization of Principal Arc Analysis to Sd, d ≥ 2.

• Decomposition of Sd captures non-geodesic variation in lower
dimensional spheres.

• Ak: k-dimensional Principal Nested Sphere (PNS)

A0 ⊂ A1 ⊂ · · · ⊂ Ad−1 ⊂ Sd.

• Works for Kendall’s landmark shape data through the
preshape space Sd.

• Fitted in backward stepwise fashion.
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Sequence of Principal Nested Spheres

Begin with x1, . . . ,xn ∈ Sd

1. Fit Ad−1
∼= (d− 1)-sphere

• best non-geodesic (d-1) dim’l approximation

2. Fit Ad−2
∼= (d− 2)-sphere

...

3. Reach A0 (PNSmean)

4. Result in A0 ⊂ A1 ⊂ · · · ⊂ Ad−1 ⊂ Sd
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Best fitting subsphere

• Samples: x1, . . . ,xn ∈ Sd

• Subsphere: Ad−1(v1, r1) ⊂ Sd

• Residual ξ of x from a subsphere Ad−1

- Signed length of the minimal geodesic that joins x to Ad−1.

Subsphere fitting

Âd−1 ≡ Ad−1(v̂1, r̂1) minimizes the sum of squared residuals

n∑
i=1

ξi(v1, r1)
2 =

n∑
i=1

{ρd(xi,v1)− r1}2,

among all v1 ∈ Sd, r1 ∈ (0, π/2]. Detail....
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Byproducts of PNS

Euclidean-Type Representation (Principal Scores matrix)

• Stacked residuals from each layer

• Analogue of principal component scores

• Used to visualize the data, and for further analysis

% Variance explained

• Sample variance of residuals (from each layer) over the sum of
all variances

Principal Arc

• the direction of major variations defined by PNS
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A special case: PNG

A great sphere is a sphere with radius 1 (or r = π/2).
Interesting & important special case of PNS:

Principal Nested Great Spheres (PNG)

• Setting r = π/2 for each subsphere fitting.

• Principal arcs become great circles (i.e. geodesics).

• The principal geodesics, found by PNG, are similar to the
geodesic-based PCs.

• Close to the Geodesic PCA (direct geodesic fitting) than the
tangent space approach.
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Choice between small and great sphere

1. Strictly using small spheres (PNS) —nongeodesic decomp.

2. Adopted tests:
H0 : Great Sphere (r = π/2) vs H1 : Small sphere

(r < π/2).

3. Strictly using great Spheres (PNG) —geodesic decomp.

4. Soft decision between small and great sphere. —Ongoing
work.
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Kendall’s 2D landmark shape space

Planar shape space Σk
2

• A shape is a point in Kendall’s shape space with dimension
2k − 2− 1− 1

Preshape space Sk2 ∼= Sd

• Preshape is what is left from removing location and scale
• Dimensionality of preshape space is d = 2k − 2− 1

PNS to shape data

• Desire that Ad−1 of Sd leaves zero residuals.

• Achieved when each shape is aligned to a common base shape
(e.g. Procrustes mean)
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Example: Shape of Rat Skulls

- Shape data with 8 landmarks on plane in Σ8
2

• Non-geodesic variation captured by PNS (and not by PNG)

• Scatterplot given by Principal Scores

• Shape changes related to growth of rats.
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Rat Skulls: Major mode of variation by PNS

1st Princ. Geod by PNGS 2nd Princ. Geod by PNGS

1st Princ. Arc by PNS 2nd Princ. Arc by PNS
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Rat Skulls: Scatterplots
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• PNS need 1 mode (PNG need 2 modes) to capture the
non-geodesic variation

• Shape change by growth of rats explained by PNS 1
• PNS 1 linearly correlated with size of skulls (R = 0.9705)
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CPNS on Lung Respiratory Motion
Jung, Liu, Pizer and Marron ’10

• PDM represents shape of human lung, pre-aligned with N
points
- Scaled PDM is ∈ S3N−1

- Size variable is ∈ R+

• PDM in R3N = ScaledPDM ⊕ Size ∈ S3N−1 ⊗ R+

- Thus want composite of PNS (S3N−1) and R1.
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Composite PNS for PDM

Must capture correlations between Euclidean and non-Euclidean
features
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Respiratory Motion Analysis in the Lung
n = 10, N = 10550.
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S-reps:3D model of object interior

• Interior-filling skeletal model of an object

• Stable topology
- no branches
- skeletal locus: fully folded, multi-sided

• Stable geometry
- as medial as possible
- correspondence of primitives over population

• Continuous: Folded sheet of non-intersecting spoke vectors

• Types: Slabular and Quasi-tubular

• Discrete: sampled continuous s-reps
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Fitting s-reps to signed distances

By optimization of objective function summing 2 terms

• Geometric properties
- Spokes do not cross
- As medial as possible

- Near orthogonality of spoke directions to ∆distance
- Near equality of spoke lengths with spokes sharing the same hub

- Difference of spoke directions nearly normal to skeletal sheet

• Data (distance function) match
- All spoke ends on boundary
- End spoke vector triples properly fit into crest of zero level
set of distance
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Fitting s-reps: Results

Hippocampi in study of schizophrenia
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Correspondence across training s-reps

1. By analogy to shifting points on boundaries in PDMs via
entropies (Cates 2007, Oguz 2008)

2. But for spokes:
- tightest prob. distribution on geometry of spokes tuples
- uniformity of interior coverage of spokes in each case

3. Retain spoke orthogonality to bdry

4. Results in separated discrete spoke hubs on top & bottom of
skeletal sheet
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Abstract space of discrete s-reps with n spokes

• Each spoke direction ∈ S2

• log (spoke length) ∈ Rn

• After centering and scaling of tuple of p(u) values,

• These points are in R× S3(n−1)−1 (same as for the PDMs)

The s-rep is a point ∈ Rn+1 × (S2)n × S2(n−1)−1

Composite Principal Nested Sphere is applied

Separately analyze each sphere into Euclideanized variables and,
Composite with Euclidean variable to take correlation into account.
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Transformations of S-reps

For global rotation

• Each spoke direction moves on a small circle on S2;

• the circles share a common axis

• Scaled tuple of spoke tails move on a small circle (1D sphere)
on S3n−4

For rotational fold and twists about an axis

• All spoke directions move on small circles on S2

• The circles share a common axis

Experimentally, analysis via small sphere motions is useful
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Shape Probabilities via CPNS

• Successive dimension reduction for spherical variables

• Composite scores from each sphere with Euclidean part, then
SVD

• Yields fewer eigenmodes to explain variation
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Shape Probabilities via CPNS
Modes of variation by principal arcs:

rotation, pinching / elongation, swelling / twisting, swelling in the bottom 30 / 33
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Summary

• Backward PCA approaches on spheres and composite space
with Euclidean space

• Shown useful for 2D, 3D landmark data (PDM)

• S-reps provide a basis for statistics on objects

• In the size and shape changes of hipposcampi s-reps,
composite PNS yields succinct description of data
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