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SHAPE

Geometrical properties that are invariant
under certain registration transformations.
Some examples...

Euclidean Shape: point sets which
invariant under translation, rotation and
scale
Size-and-shape: point sets which invariant
under translation and rotation
Closed outline shapes: curves which are
invariant under diffeomorphic
transformations of arc-length.
Note: Quotient spaces often appropriate.



logo

Introduction Shape Curves Shape Splines Discussion

SHAPE

Geometrical properties that are invariant
under certain registration transformations.
Some examples...
Euclidean Shape: point sets which
invariant under translation, rotation and
scale

Size-and-shape: point sets which invariant
under translation and rotation
Closed outline shapes: curves which are
invariant under diffeomorphic
transformations of arc-length.
Note: Quotient spaces often appropriate.



logo

Introduction Shape Curves Shape Splines Discussion

SHAPE

Geometrical properties that are invariant
under certain registration transformations.
Some examples...
Euclidean Shape: point sets which
invariant under translation, rotation and
scale
Size-and-shape: point sets which invariant
under translation and rotation

Closed outline shapes: curves which are
invariant under diffeomorphic
transformations of arc-length.
Note: Quotient spaces often appropriate.



logo

Introduction Shape Curves Shape Splines Discussion

SHAPE

Geometrical properties that are invariant
under certain registration transformations.
Some examples...
Euclidean Shape: point sets which
invariant under translation, rotation and
scale
Size-and-shape: point sets which invariant
under translation and rotation
Closed outline shapes: curves which are
invariant under diffeomorphic
transformations of arc-length.

Note: Quotient spaces often appropriate.



logo

Introduction Shape Curves Shape Splines Discussion

SHAPE

Geometrical properties that are invariant
under certain registration transformations.
Some examples...
Euclidean Shape: point sets which
invariant under translation, rotation and
scale
Size-and-shape: point sets which invariant
under translation and rotation
Closed outline shapes: curves which are
invariant under diffeomorphic
transformations of arc-length.
Note: Quotient spaces often appropriate.



logo

Introduction Shape Curves Shape Splines Discussion

Landmark shapes

EXAMPLE: Object: k points in m dimensions X ∈ IRkm

Transformation group: Translation, rotation and scale.
Here there are k = 50 points in m = 2 dimensions.

Kendall’s (1984) shape space: Σk
m = S(k−1)m−1/SO(m).

Quotient space: Pre-shape sphere with rotation removed.
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Practicalities: Procrustes matching

We wish to register the man (X1) on to the fish (X2), using
translation, rotation and scale.
X1,X2 are k ×m matrices, which are centered ( 1T

k Xj = 0 )

X1 X2 X P
1 ,X2

Explicit solution: SVD. Procrustes shape distance d([X P
1 ], [X2]).
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MINIMAL GEODESICS

A PRE-SHAPE has had location and scale removed BUT
NOT rotation. It lives on a sphere.

Given two pre-shapes µ, z the minimal geodesic between
their shapes corresponds to

Γ(s) = µ cos s + z sin s, 0 ≤ s ≤ π/2

where z has been Procrustes rotated to µ.

Note that this is the horizontal lift of the minimal geodesic
in shape space.
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EXAMPLE

GEODESIC PATH: Fish − > Fishman − > Man

Γ(s) = µ cos s + z sin s, 0 ≤ s ≤ π/2.
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EXAMPLE: RAT SKULLS

Bookstein’s (1991) rat skull data.
The rats were carefully X-rayed at age N days, where
N ∈ {7,14,21,30,40,60,90,150},

[Image: Bookstein, 1991]

There are n = 18 rats with complete sets of k = 8 landmarks at
each age in m = 2 dimensions.
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PCA in tangent space
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Minimal geodesic
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SHAPE CURVE FAMILY

Joint work with Kim Kenobi and Huiling Le (Nottingham).
Let us consider an extension by introducing another
pre-shape w2 which is orthogonal to w1 and µ.
Also, consider a function t1(s) which gives the position in
the direction w2 for each s.
The shape curve lifted to the the pre-shape space is then
defined as:

Γ(µ,w1,w2; t1)(s) = cos{t1(s)} {(cos s)µ+ (sin s) w1}+ sin{t1(s)}w2, −r ≤ s ≤ r .
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QUADRATIC SHAPE CURVE

t1(s) = a0 + a1s + a2s2

Γ(µ,w1,w2; t1)(s) = cos{t1(s)} {(cos s)µ+ (sin s) w1}+ sin{t1(s)}w2, −r ≤ s ≤ r .
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ESTIMATION

Best fitting curve: Minimise

F (a) =

g∑
i=1

ni∑
j=1

d2{[Zij ], γ(ŝi)}

over the parameters a, where ŝi minimises

Fγ,i(s) =

ni∑
j=1

d2{[Zij ], γ(s)}, i = 1, . . . ,g,

and γ() is the shape corresponding to pre-shape Γ(), [Z ] is the
shape of Z , and d() is a shape distance.
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PRACTICALITIES

In practice we often have the shapes of µ,w1 estimated to
be almost identical to the Procrustes mean and the first
shape PC.
The use of the Procrustes mean and shape PCAs gives an
excellent approximation in many applications.
For small s and t1(s):

Γ(µ,w1,w2; t1)(s) ≈ µ+ sw1 + t1(s)w2.
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QUADRATIC-CUBIC SHAPE CURVE

t1(s) = a0 + a1s + a2s2

t2(s) = b0 + b1s + b2s2 + b3s3

Γ(µ,w1,w2,w3; t1,t2)(s) = cos{t2(s)} Γ(µ,w1,w2; t1)(s) + sin{t2(s)}w3,
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HYPOTHESIS TESTS

In the quadratic-cubic model there are seven free parameters,
{a0,a1,a2,b0,b1,b2,b3}, which specify the curves.
We set up three hypotheses which express the different
relationships.

H0: a0 = a1 = . . . = b3 = 0 (Geodesic)
H1: At least one of a0,a1,a2 is non-zero and
b0 = b1 = b2 = b3 = 0. (Quadratic)
H2: At least one of a0,a1,a2 is non-zero and at least one of
b0,b1,b2,b3 is non-zero. (Quadratic-cubic)
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LIKELIHOOD RATIO TEST

Using a complex Watson model

f ([z]) ∝ exp(κ cos2 d([z], [µ])),

gives the log-likelihoods under the three models as

l0 = 4766.26, l1 = 5040.40, l2 = 5076.82.

Thus −2(l0 − l1) = 548.27,−2(l1 − l2) = 72.85.

Comparing these statistics with a χ2
3 and a χ2

4 distribution
respectively shows that each reduction in the sum of
squares is highly significant.
There is strong evidence against the geodesic and
quadratic models in favour of the quadratic-cubic model.
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GROWTH ALONG THE QUADRATIC-CUBIC CURVE
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ANOTHER EXAMPLE: HOMINIDS

Lumbar vertebra 1-4. Chimpanzee, Gorilla, Human.
k = 62 landmarks in m = 3 dimensions, n = 22 per group.
Data from Paul O’Higgins.
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VERTEBRA
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SAMSI AOOD program, North Carolina

Joint work with Jingyong Su, Anuj Srivastava and Eric
Klassen (Florida State) and Huiling Le (Nottingham).
Consider points pi on manifold M at times ti , i = 1, . . . ,n.

[Credit: Jingyong Su]
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Motivating example

Sequence of outlines of a dancer: 100 points located on outline
in 2D.

Translation, rotation and scale invariance.
Manifold is Kendall’s shape space (complex projective
space).

Either: interpolate between data points (here shapes in 2D)

Or: smooth a noisy sequence of shapes
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Roughness penalty approach

Find an optimal path γ̂ by minimizing

λ1

2

n∑
i=1

d(γ(ti),pi)
2 +

λ2

2
R(γ).

Example roughness penalty: R(γ) =
∫ 1

0

〈
D2γ
dt2 ,

D2γ
dt2

〉
dt .

Objective function: Data term and Smoothing term.

S = λ1Ed + λ2Es.

Using the Palais metric an explicit expression for the
gradient is obtained, leading to a practical fitting algorithm.
Can use cross-validation to choose λ2/λ1.
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Video dancer
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OTHER APPROACHES

Unrolling and unwrapping splines: Kume et al. (2007)

Geodesic curves: Le and Kume (2000). Principal
geodesics: Huckemann et al (2010), Fletcher et al. (2004)
Tangent space functional curves: Kent et al. (2001)
Principal nested spheres: Jung et al (2011)
Local Polynomial Regression: Yuan et al (2011)
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Discussion

Many other types of non-Euclidean data, high-dimensional,
requiring new statistical methodology.

Statistics/biology/computer science/mathematics/other
bridges
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Further information

Kenobi, K., Dryden, I.L. and Le, H. (2010). Shape curves
and geodesic modelling Biometrika. 97 (3): 567-584.
J. Su, I. L. Dryden, E. Klassen, H. Le and A. Srivastava
(2011). Fitting Smoothing Splines to Time-Indexed, Noisy
Points on Nonlinear Manifolds. Submitted to Journal of
Image and Vision Computing

Support: EPSRC, Leverhulme Trust, SAMSI

Thank you!
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Palais Metric

Samir et al. (2011) used the Palais metric for computing
the gradient of the objective function S.
Let γ be a twice differentiable path in manifold M and let
v ,w be two smooth vector fields along γ, i.e.
v(t),w(t) ∈ Tγ(t)(M) for t ∈ [0,1]. Then, the second-order
Palais (1963) metric is:

< v(0),w(0) >γ(0) +

〈
Dv
dt

(0),
Dw
dt

(0)

〉
γ(0)

+

∫ 1

0

〈
D2v
dt2 ,

D2w
dt2

〉
γ(t)

dt .

The explicit form of the gradient is useful for in a practical
algorithm for fitting the spline.
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