Curve modeling in shape spaces

lan Dryden

Geometry for Anatomy Workshop, BIRS, Banff, August 29-September 2, 2011

(日) (日) (日) (日) (日) (日) (日)

Introduction	Shape Curves	Shape Splines	Discussion
Outline			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	Shape Curves	Shape Splines	Discussion
Outline			

2 Shape Curves

3 Shape Splines

 Geometrical properties that are invariant under certain registration transformations. Some examples...

<ロト <回 > < 注 > < 注 >

- Geometrical properties that are invariant under certain registration transformations. Some examples...
- Euclidean Shape: point sets which invariant under translation, rotation and scale

(日)

- Geometrical properties that are invariant under certain registration transformations. Some examples...
- Euclidean Shape: point sets which invariant under translation, rotation and scale
- Size-and-shape: point sets which invariant under translation and rotation

イロト イ理ト イヨト イヨト

- Geometrical properties that are invariant under certain registration transformations. Some examples...
- Euclidean Shape: point sets which invariant under translation, rotation and scale
- Size-and-shape: point sets which invariant under translation and rotation
- Closed outline shapes: curves which are invariant under diffeomorphic transformations of arc-length.

- Geometrical properties that are invariant under certain registration transformations. Some examples...
- Euclidean Shape: point sets which invariant under translation, rotation and scale
- Size-and-shape: point sets which invariant under translation and rotation
- Closed outline shapes: curves which are invariant under diffeomorphic transformations of arc-length.
- Note: Quotient spaces often appropriate.

Landmark shapes

- EXAMPLE: Object: *k* points in *m* dimensions $X \in \mathbb{R}^{km}$
- Transformation group: Translation, rotation and scale.
- Here there are k = 50 points in m = 2 dimensions.

- Kendall's (1984) shape space: $\Sigma_m^k = S^{(k-1)m-1} / SO(m)$.
- Quotient space: Pre-shape sphere with rotation removed.

Practicalities: Procrustes matching

We wish to register the man (X_1) on to the fish (X_2) , using translation, rotation and scale.

 X_1, X_2 are $k \times m$ matrices, which are centered ($1_k^T X_j = 0$)

Introduction	Shape Curves	Shape Splines	Discussion
Outline			

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

MINIMAL GEODESICS

 A PRE-SHAPE has had location and scale removed BUT NOT rotation. It lives on a sphere.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

MINIMAL GEODESICS

- A PRE-SHAPE has had location and scale removed BUT NOT rotation. It lives on a sphere.
- Given two pre-shapes μ, z the minimal geodesic between their shapes corresponds to

 $\Gamma(s) = \mu \cos s + z \sin s, \ 0 \le s \le \pi/2$

where *z* has been Procrustes rotated to μ .

MINIMAL GEODESICS

- A PRE-SHAPE has had location and scale removed BUT NOT rotation. It lives on a sphere.
- Given two pre-shapes μ, z the minimal geodesic between their shapes corresponds to

 $\Gamma(s) = \mu \cos s + z \sin s, \ 0 \le s \le \pi/2$

where *z* has been Procrustes rotated to μ .

 Note that this is the horizontal lift of the minimal geodesic in shape space.

GEODESIC PATH: Fish -> Fishman -> Man

$$\Gamma(s) = \mu \cos s + z \sin s, \ 0 \le s \le \pi/2.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

EXAMPLE: RAT SKULLS

Bookstein's (1991) rat skull data. The rats were carefully X-rayed at age N days, where $N \in \{7, 14, 21, 30, 40, 60, 90, 150\}$,

[Image: Bookstein, 1991]

There are n = 18 rats with complete sets of k = 8 landmarks at each age in m = 2 dimensions.

Shape Splines

PCA in tangent space

・ロト ・回 ・ ・ ヨト

ъ

Shape Splines

Minimal geodesic

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

(日) (日) (日) (日) (日) (日) (日)

SHAPE CURVE FAMILY

- Joint work with Kim Kenobi and Huiling Le (Nottingham).
- Let us consider an extension by introducing another pre-shape w₂ which is orthogonal to w₁ and μ.
- Also, consider a function t₁(s) which gives the position in the direction w₂ for each s.
- The shape curve lifted to the the pre-shape space is then defined as:

 $\Gamma_{(\mu, w_1, w_2; t_1)}(s) = \cos\{t_1(s)\} \{(\cos s)\mu + (\sin s)w_1\} + \sin\{t_1(s)\}w_2,$

QUADRATIC SHAPE CURVE

$$t_1(s) = a_0 + a_1 s + a_2 s^2$$

 $\Gamma_{(\mu, w_1, w_2; t_1)}(s) = \cos\{t_1(s)\} \{(\cos s)\mu + (\sin s)w_1\} + \sin\{t_1(s)\}w_2, \quad d \in \{t_1(s)\} \}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ESTIMATION

Best fitting curve: Minimise

$$\mathcal{F}(\underline{a}) = \sum_{i=1}^{g} \sum_{j=1}^{n_i} d^2 \{ [Z_{ij}], \gamma(\hat{s}_i) \}$$

over the parameters \underline{a} , where \hat{s}_i minimises

$$F_{\gamma,i}(\boldsymbol{s}) = \sum_{j=1}^{n_i} d^2 \{ [Z_{ij}], \gamma(\boldsymbol{s}) \}, \ i = 1, \dots, g,$$

and $\gamma()$ is the shape corresponding to pre-shape $\Gamma()$, [*Z*] is the shape of *Z*, and *d*() is a shape distance.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

PRACTICALITIES

- In practice we often have the shapes of μ, w₁ estimated to be almost identical to the Procrustes mean and the first shape PC.
- The use of the Procrustes mean and shape PCAs gives an excellent approximation in many applications.
- For small s and t₁(s):

$$\mathsf{F}_{(\mu, w_1, w_2; t_1)}(s) \approx \mu + sw_1 + t_1(s)w_2.$$

э

QUADRATIC-CUBIC SHAPE CURVE

$$t_1(s) = a_0 + a_1s + a_2s^2$$

 $t_2(s) = b_0 + b_1s + b_2s^2 + b_3s^3$

 $\Gamma_{(\mu, w_1, w_2, w_3; t_1, t_2)}(s) = \cos\{t_2(s)\} \Gamma_{(\mu, w_1, w_2; t_1)}(s) + \sin\{t_2(s)\} w_3,$

(日) (日) (日) (日) (日) (日) (日)

HYPOTHESIS TESTS

In the quadratic-cubic model there are seven free parameters, $\{a_0, a_1, a_2, b_0, b_1, b_2, b_3\}$, which specify the curves. We set up three hypotheses which express the different relationships.

- $H_0: a_0 = a_1 = \ldots = b_3 = 0$ (Geodesic)
- H_1 : At least one of a_0, a_1, a_2 is non-zero and $b_0 = b_1 = b_2 = b_3 = 0$. (Quadratic)
- H₂: At least one of a₀, a₁, a₂ is non-zero and at least one of b₀, b₁, b₂, b₃ is non-zero. (Quadratic-cubic)

LIKELIHOOD RATIO TEST

• Using a complex Watson model

$$f([z]) \propto \exp(\kappa \cos^2 d([z], [\mu])),$$

gives the log-likelihoods under the three models as

 $l_0 = 4766.26, l_1 = 5040.40, l_2 = 5076.82.$

Thus $-2(l_0 - l_1) = 548.27, -2(l_1 - l_2) = 72.85.$

(日) (日) (日) (日) (日) (日) (日)

LIKELIHOOD RATIO TEST

• Using a complex Watson model

$$f([z]) \propto \exp(\kappa \cos^2 d([z], [\mu])),$$

gives the log-likelihoods under the three models as

$$l_0 = 4766.26, l_1 = 5040.40, l_2 = 5076.82.$$

Thus $-2(l_0 - l_1) = 548.27, -2(l_1 - l_2) = 72.85.$

• Comparing these statistics with a χ_3^2 and a χ_4^2 distribution respectively shows that each reduction in the sum of squares is highly significant.

LIKELIHOOD RATIO TEST

• Using a complex Watson model

$$f([z]) \propto \exp(\kappa \cos^2 d([z], [\mu])),$$

gives the log-likelihoods under the three models as

$$l_0 = 4766.26, l_1 = 5040.40, l_2 = 5076.82.$$

Thus $-2(l_0 - l_1) = 548.27, -2(l_1 - l_2) = 72.85.$

- Comparing these statistics with a χ_3^2 and a χ_4^2 distribution respectively shows that each reduction in the sum of squares is highly significant.
- There is strong evidence against the geodesic and quadratic models in favour of the quadratic-cubic model.

Discussion

< ≣⇒

GROWTH ALONG THE QUADRATIC-CUBIC CURVE

Shape Splines

Discussion

ANOTHER EXAMPLE: HOMINIDS

Lumbar vertebra 1-4. Chimpanzee, Gorilla, Human. k = 62 landmarks in m = 3 dimensions, n = 22 per group. Data from Paul O'Higgins.

VERTEBRA

Quadratic/quadratic - humans, PC1 vs PC2

・ロト ・ 四ト ・ ヨト ・ ヨト æ

Introduction	Shape Curves	Shape Splines	Discussion
Outline			

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

SAMSI AOOD program, North Carolina

- Joint work with Jingyong Su, Anuj Srivastava and Eric Klassen (Florida State) and Huiling Le (Nottingham).
- Consider points p_i on manifold M at times t_i , i = 1, ..., n.

[Credit: Jingyong Su]

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Motivating example

Sequence of outlines of a dancer: 100 points located on outline in 2D.

- Translation, rotation and scale invariance.
- Manifold is Kendall's shape space (complex projective space).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Motivating example

Sequence of outlines of a dancer: 100 points located on outline in 2D.

- Translation, rotation and scale invariance.
- Manifold is Kendall's shape space (complex projective space).
- Either: interpolate between data points (here shapes in 2D)

Motivating example

Sequence of outlines of a dancer: 100 points located on outline in 2D.

- Translation, rotation and scale invariance.
- Manifold is Kendall's shape space (complex projective space).
- Either: interpolate between data points (here shapes in 2D)

• Or: smooth a noisy sequence of shapes

Roughness penalty approach

• Find an optimal path $\hat{\gamma}$ by minimizing

$$\frac{\lambda_1}{2}\sum_{i=1}^n d(\gamma(t_i), p_i)^2 + \frac{\lambda_2}{2}\mathcal{R}(\gamma).$$

• Example roughness penalty: $\mathcal{R}(\gamma) = \int_0^1 \left\langle \frac{D^2 \gamma}{dt^2}, \frac{D^2 \gamma}{dt^2} \right\rangle dt$. Objective function: Data term and Smoothing term.

$$S = \lambda_1 E_d + \lambda_2 E_s.$$

- Using the Palais metric an explicit expression for the gradient is obtained, leading to a practical fitting algorithm.
- Can use cross-validation to choose λ₂/λ₁.

Video dancer

OTHER APPROACHES

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

OTHER APPROACHES

Unrolling and unwrapping splines: Kume et al. (2007)

 Geodesic curves: Le and Kume (2000). Principal geodesics: Huckemann et al (2010), Fletcher et al. (2004)

・ロト・日本・日本・日本・日本

OTHER APPROACHES

- Geodesic curves: Le and Kume (2000). Principal geodesics: Huckemann et al (2010), Fletcher et al. (2004)
- Tangent space functional curves: Kent et al. (2001)

OTHER APPROACHES

- Geodesic curves: Le and Kume (2000). Principal geodesics: Huckemann et al (2010), Fletcher et al. (2004)
- Tangent space functional curves: Kent et al. (2001)
- Principal nested spheres: Jung et al (2011)

OTHER APPROACHES

- Geodesic curves: Le and Kume (2000). Principal geodesics: Huckemann et al (2010), Fletcher et al. (2004)
- Tangent space functional curves: Kent et al. (2001)
- Principal nested spheres: Jung et al (2011)
- Local Polynomial Regression: Yuan et al (2011)

Introduction	Shape Curves	Shape Splines	Discussion
Quilling			
Outline			

 Many other types of non-Euclidean data, high-dimensional, requiring new statistical methodology.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• Many other types of non-Euclidean data, high-dimensional, requiring new statistical methodology.

(日) (日) (日) (日) (日) (日) (日)

 Statistics/biology/computer science/mathematics/other bridges

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Further information

- Kenobi, K., Dryden, I.L. and Le, H. (2010). Shape curves and geodesic modelling *Biometrika*. 97 (3): 567-584.
- J. Su, I. L. Dryden, E. Klassen, H. Le and A. Srivastava (2011). Fitting Smoothing Splines to Time-Indexed, Noisy Points on Nonlinear Manifolds. *Submitted to Journal of Image and Vision Computing*

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Further information

- Kenobi, K., Dryden, I.L. and Le, H. (2010). Shape curves and geodesic modelling *Biometrika*. 97 (3): 567-584.
- J. Su, I. L. Dryden, E. Klassen, H. Le and A. Srivastava (2011). Fitting Smoothing Splines to Time-Indexed, Noisy Points on Nonlinear Manifolds. *Submitted to Journal of Image and Vision Computing*
- Support: EPSRC, Leverhulme Trust, SAMSI

Thank you!

Palais Metric

- Samir et al. (2011) used the Palais metric for computing the gradient of the objective function *S*.
- Let γ be a twice differentiable path in manifold M and let v, w be two smooth vector fields along γ , i.e. $v(t), w(t) \in T_{\gamma(t)}(M)$ for $t \in [0, 1]$. Then, the second-order Palais (1963) metric is:

$$< \mathbf{v}(\mathbf{0}), \mathbf{w}(\mathbf{0}) >_{\gamma(\mathbf{0})} + \left\langle \frac{D\mathbf{v}}{dt}(\mathbf{0}), \frac{D\mathbf{w}}{dt}(\mathbf{0}) \right\rangle_{\gamma(\mathbf{0})} + \int_{\mathbf{0}}^{1} \left\langle \frac{D^{2}\mathbf{v}}{dt^{2}}, \frac{D^{2}\mathbf{w}}{dt^{2}} \right\rangle_{\gamma(t)}$$

• The explicit form of the gradient is useful for in a practical algorithm for fitting the spline.