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Introduction

SHAPE

@ Geometrical properties that are invariant
under certain registration transformations.
Some examples...

@ Euclidean Shape: point sets which
invariant under translation, rotation and
scale

@ Size-and-shape: point sets which invariant
under translation and rotation

@ Closed outline shapes: curves which are
invariant under diffeomorphic
transformations of arc-length.

@ Note: Quotient spaces often appropriate.




Introduction

Landmark shapes

@ EXAMPLE: Object: k points in m dimensions X € R*™
@ Transformation group: Translation, rotation and scale.
@ Here there are k = 50 points in m = 2 dimensions.

X

@ Kendall's (1984) shape space: X£, = Sk—=1)m=1/50(m).
@ Quotient space: Pre-shape sphere with rotation removed.



Introduction

Practicalities: Procrustes matching

We wish to register the man (X7) on to the fish (X2), using
translation, rotation and scale.
Xi, Xo are k x m matrices, which are centered ( 1[)(,- =0)

> O

X Xo XP X

Explicit solution: SVD. Procrustes shape distance d([X], [Xz]).
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Shape Curves

MINIMAL GEODESICS

@ A PRE-SHAPE has had location and scale removed BUT
NOT rotation. It lives on a sphere.

@ Given two pre-shapes p, z the minimal geodesic between
their shapes corresponds to

M(s) =pcoss+zsins, 0 <s<n/2

where z has been Procrustes rotated to .

@ Note that this is the horizontal lift of the minimal geodesic
in shape space.
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EXAMPLE

GEODESIC PATH: Fish — > Fishman — > Man

O 3 W B

r(s)=pucoss+zsins, 0 <s<m/2.



Shape Curves

EXAMPLE: RAT SKULLS

Bookstein’s (1991) rat skull data.
The rats were carefully X-rayed at age N days, where
N € {7,14,21,30,40, 60,90, 150},

[Image: Bookstein, 1991]

There are n = 18 rats with complete sets of k = 8 landmarks at
each age in m = 2 dimensions.



Shape Curves

PCA in tangent space
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Shape Curves

Minimal geodesic
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Shape Curves

SHAPE CURVE FAMILY

@ Joint work with Kim Kenobi and Huiling Le (Nottingham).

@ Let us consider an extension by introducing another
pre-shape w, which is orthogonal to wy and p.

@ Also, consider a function t;(s) which gives the position in
the direction w, for each s.

@ The shape curve lifted to the the pre-shape space is then
defined as:

(w1 (8) = cos{ti(s)} {(cos 8)u + (sin s) w1 } + sin{ti(s)} wa,
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QUADRATIC SHAPE CURVE

ti(s)=ay+ais+ 3282

[ (s, me; 1) (S) = cos{ti(s)} {(cos s)uu + (sin s) wy } + sin{t;(s)} we,
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Shape Curves

ESTIMATION

Best fitting curve: Minimise

g n

Fla) =YY d*{Z], v(3)}

=1 j=1
over the parameters a, where S; minimises
nj
Fi(s)=>Y_d*{[Z], v(s)}, i=1,....9
j=1

and () is the shape corresponding to pre-shape I'(), [Z] is the
shape of Z, and d() is a shape distance.



Shape Curves

PRACTICALITIES

@ In practice we often have the shapes of i, wy estimated to
be almost identical to the Procrustes mean and the first
shape PC.

@ The use of the Procrustes mean and shape PCAs gives an
excellent approximation in many applications.

@ For small s and t(s):

r(M7W17W2; 1‘1)(3) A+ SWy + b (S)Wg.



Shape Curves

QUADRATIC-CUBIC SHAPE CURVE

ti(s)=ay+ais+ 3282
to(s) = by + bys + bps? + bss®

r(p,,W1,W2,W3; t1,t2)(s) = COS{tZ(S)} r(u,Wth; t1)(s) + Sln{tZ(S)} W37
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Shape Curves

HYPOTHESIS TESTS

In the quadratic-cubic model there are seven free parameters,
{ao, a1, az, by, b1, b2, b3}, which specify the curves.
We set up three hypotheses which express the different
relationships.
@ Hy:ag=ay =... = bz =0 (Geodesic)
@ H,: At least one of ag, a4, a» is non-zero and
by = by = bo = bz = 0. (Quadratic)
@ H,: At least one of ag, aj, a» is non-zero and at least one of
bg, b1, bo, bs is non-zero. (Quadratic-cubic)



Shape Curves

LIKELIHOOD RATIO TEST

@ Using a complex Watson model

f([2]) o< exp(x cos? d([2], [u])),

gives the log-likelihoods under the three models as

Iy = 4766.26, l; = 5040.40, ), = 5076.82.
Thus —2(lp — /) = 548.27, —2(} — ) = 72.85.
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LIKELIHOOD RATIO TEST

@ Using a complex Watson model

f([2]) o< exp(x cos? d([2], [u])),

gives the log-likelihoods under the three models as

Iy = 4766.26, Iy = 5040.40, [, = 5076.82.

Thus —2(lp — 1) =548.27, -2(ly — k) = 72.85.

@ Comparing these statistics with a x3 and a x? distribution
respectively shows that each reduction in the sum of
squares is highly significant.

@ There is strong evidence against the geodesic and
quadratic models in favour of the quadratic-cubic model.
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GROWTH ALONG THE QUADRATIC-CUBIC CURVE
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Shape Curves

ANOTHER EXAMPLE: HOMINIDS
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Lumbar vertebra 1-4. Chimpanzee, Gorilla, Human.
k = 62 landmarks in m = 3 dimensions, n = 22 per group.
Data from Paul O’Higgins.
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VERTEBRA

Quadratic/quadratic - chimpanzees, PC1 vs PC2 Quadpaticiquadratic - chimpanzees, PC1 vs PC3
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Shape Splines

SAMSI AOOD program, North Carolina

@ Joint work with Jingyong Su, Anuj Srivastava and Eric
Klassen (Florida State) and Huiling Le (Nottingham).

@ Consider points p; on manifold M attimes t;, i =1,...,n.

Given Time-Indexed Data
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[Credit: Jingyong Su]



Shape Splines

Motivating example

Sequence of outlines of a dancer: 100 points located on outline
in 2D.
@ Translation, rotation and scale invariance.

@ Manifold is Kendall’s shape space (complex projective
space).
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Shape Splines

Motivating example

Sequence of outlines of a dancer: 100 points located on outline
in 2D.

@ Translation, rotation and scale invariance.

@ Manifold is Kendall’s shape space (complex projective
space).
@ Either: interpolate between data points (here shapes in 2D)

4220202227

@ Or: smooth a noisy sequence of shapes



Shape Splines

Roughness penalty approach

@ Find an optimal path 4 by minimizing

o Example roughness penalty: R() = [, <?ﬁ§, ij >df

Objective function: Data term and Smoothing term.
S=MEyg+ ME;.

@ Using the Palais metric an explicit expression for the
gradient is obtained, leading to a practical fitting algorithm.

@ Can use cross-validation to choose A/ 1.
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Shape Splines

OTHER APPROACHES

@ Unrolling and unwrapping splines: Kume et al. (2007)
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Shape Splines

OTHER APPROACHES

@ Unrolling and unwrapping splines: Kume et al. (2007)

@ Geodesic curves: Le and Kume (2000). Principal
geodesics: Huckemann et al (2010), Fletcher et al. (2004)

@ Tangent space functional curves: Kent et al. (2001)
@ Principal nested spheres: Jung et al (2011)
@ Local Polynomial Regression: Yuan et al (2011)
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@ Many other types of non-Euclidean data, high-dimensional,
requiring new statistical methodology.
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Discussion

@ Many other types of non-Euclidean data, high-dimensional,
requiring new statistical methodology.

@ Statistics/biology/computer science/mathematics/other
bridges
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Further information

@ Kenobi, K., Dryden, I.L. and Le, H. (2010). Shape curves
and geodesic modelling Biometrika. 97 (3): 567-584.

@ J. Sy, I. L. Dryden, E. Klassen, H. Le and A. Srivastava
(2011). Fitting Smoothing Splines to Time-Indexed, Noisy
Points on Nonlinear Manifolds. Submitted to Journal of
Image and Vision Computing
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Further information

@ Kenobi, K., Dryden, I.L. and Le, H. (2010). Shape curves
and geodesic modelling Biometrika. 97 (3): 567-584.

@ J. Sy, I. L. Dryden, E. Klassen, H. Le and A. Srivastava
(2011). Fitting Smoothing Splines to Time-Indexed, Noisy
Points on Nonlinear Manifolds. Submitted to Journal of
Image and Vision Computing

@ Support: EPSRC, Leverhulme Trust, SAMSI
EPSRC .rm

Thank you!




Discussion

Palais Metric

@ Samir et al. (2011) used the Palais metric for computing
the gradient of the objective function S.

@ Let v be a twice differentiable path in manifold M and let
v, w be two smooth vector fields along ~, i.e.
v(t),w(t) € T, (M) for t € [0,1]. Then, the second-order
Palais (1963) metric is:

Dv . Dw '/ D?v D?w
< v(0), w(0) >,(g) +<dt(o)’cﬂ(0)>7(o)+/o <dt2’dt2 >W)

@ The explicit form of the gradient is useful for in a practical
algorithm for fitting the spline.
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