Spatio-temporal Analysis of Connectivity Patterns for White Matter Injury Detection in the Preterm Infant Brain

Brian G. Booth¹

(with Steven P. Miller² and Ghassan Hamarneh¹)

¹Medical Image Analysis Lab School of Computing Science Simon Fraser University

SIMON FRASER UNIVERSITY THINKING OF THE WORLD

Geometry for Anatomy Workshop, August 30, 2011

Brian G. Booth: bgb2@sfu.ca

Focus: Infants born prematurely

Focus: Infants born prematurely

- High incidence of neurodevelopmental disability
- Believed to be a result of white matter injuries [Dudink et al., Early Human Devel., 2008]

Focus: Infants born prematurely

- High incidence of neurodevelopmental disability
- Believed to be a result of white matter injuries [Dudink et al., Early Human Devel., 2008]

Goal: Assess white matter injuries early

• Determine their causes & improve treatment

Focus: Infants born prematurely

- High incidence of neurodevelopmental disability
- Believed to be a result of white matter injuries [Dudink et al., Early Human Devel., 2008]

Goal: Assess white matter injuries early

- Determine their causes & improve treatment
- Diffusion MRI

Focus: Infants born prematurely

- High incidence of neurodevelopmental disability
- Believed to be a result of white matter injuries [Dudink et al., Early Human Devel., 2008]
- Goal: Assess white matter injuries early
 - Determine their causes & improve treatment
 - Diffusion MRI

Hypothesis:

• Flag abnormalities via differences in brain connectivity.

Data Acquisition

The cohort:

- 205 Subjects
- Born 24-32 Weeks GA
- DTI Scan "at birth" and at term

Data Acquisition

The cohort:

- 205 Subjects
- Born 24-32 Weeks GA
- DTI Scan "at birth" and at term

Scans manually scored for:

- White matter injury
- Intraventricular hemorrhages

What is normal development?

What is normal development?

What is normal development?

e How Should we Measure Connectivity?

How Should we Examine the Rate of Development?

What is normal development?

How Should we Examine the Rate of Development?

Capturing the Bounds of Normal Development

Idea: Age-specific DTI atlases

- Use only subject scans marked as healthy
- Three week time windows to reduce variability
- Full tensor atlases and scalar atlases (*i.e.* FA, MD, λ₁, ···)

Capturing the Bounds of Normal Development

Idea: Age-specific DTI atlases

- Use only subject scans marked as healthy
- Three week time windows to reduce variability
- Full tensor atlases and scalar atlases (*i.e.* FA, MD, λ₁, ···)

Why?

- Provide voxel-wise mean and (co-)variance
- Provide a standard space for tractography
- Examine intra-window variance

DTI Atlas Creation Workflow

Atlas Creation by Pairwise Registration [Guimond et al., 2002]

Preliminary Atlas Results

Tensor Means:

• Repeat for scalar maps (i.e. FA, MD, λ_1, \cdots)

Brian G. Booth: bgb2@sfu.ca

What is normal development?

How Should we Examine the Rate of Development?

Brian G. Booth: bgb2@sfu.ca

What is normal development?

- Creation of Age-specific DTI atlas
- Voxelwise statistical testing

e How Should we Measure Connectivity?

Item Should we Examine the Rate of Development?

What is normal development?

- Creation of Age-specific DTI atlas
- Voxelwise statistical testing

e How Should we Measure Connectivity?

Item Should we Examine the Rate of Development?

There are limitations to tractography

- Error accumulation along tract
- Decisions are made locally & independantly
- Tract Jumping

There are limitations to tractography

- Error accumulation along tract
- Decisions are made locally & independantly
- Tract Jumping

Goal: Improve tractography robustness

There are limitations to tractography

- Error accumulation along tract
- Decisions are made locally & independantly
- Tract Jumping

Goal: Improve tractography robustness

Idea: Competitive Tractography

- Encode DTI into graph representation
- Tractography via graph-based random walks
- Introduce multi-region competition

There are limitations to tractography

- Error accumulation along tract
- Decisions are made locally & independantly
- Tract Jumping

Goal: Improve tractography robustness

Idea: Competitive Tractography

- Encode DTI into graph representation
- Tractography via graph-based random walks
- Introduce multi-region competition

Graph encoding by ODF Integration

• Diffusion ODF \rightarrow Edge Weight

Graph encoding by ODF Integration

- Diffusion ODF \rightarrow Edge Weight
- Integrate ODF over cone

Graph encoding by ODF Integration

- Diffusion ODF \rightarrow Edge Weight
- Integrate ODF over cone
- We contribute an analytical solution
 - Avoid adding approximation error

The Effect of the Graph Encoding¹

Testing graph encoding with minimal path tractography

[Zalesky, TMI, 2008]

¹B.G. Booth, G. Hamarneh; IEEE ISBI (2011).

Examples of Tractography Error

Tract Jumping Clearly Present

Examples of Tractography Error

Tract Jumping Clearly Present

Idea: Competitive Tractography

• Allow a tract to affect the position of other tracts

Idea: Competitive Tractography

- Allow a tract to affect the position of other tracts
- Consider a tract as a trajectory from a random walk

Idea: Competitive Tractography

- Allow a tract to affect the position of other tracts
- Consider a tract as a trajectory from a random walk
- Transition probabilites reflect the presence of a tract
 - Our graph encoding of diffusion MRI

Idea: Competitive Tractography

- Allow a tract to affect the position of other tracts
- Consider a tract as a trajectory from a random walk
- Transition probabilites reflect the presence of a tract
 - Our graph encoding of diffusion MRI

Given:

- Graph encoding of diffusion MRI
- Random walker at node u
- Seed regions $\mathcal{R}_1, \cdots, \mathcal{R}_k$

Idea: Competitive Tractography

- Allow a tract to affect the position of other tracts
- Consider a tract as a trajectory from a random walk
- Transition probabilites reflect the presence of a tract
 - Our graph encoding of diffusion MRI

Given:

- Graph encoding of diffusion MRI
- Random walker at node u
- Seed regions $\mathcal{R}_1, \cdots, \mathcal{R}_k$

Compute:

• Probability of the random walker reaching region \mathcal{R}_i first.

Idea: Competitive Tractography

- Allow a tract to affect the position of other tracts
- Consider a tract as a trajectory from a random walk
- Transition probabilites reflect the presence of a tract
 - Our graph encoding of diffusion MRI

Given:

- Graph encoding of diffusion MRI
- Random walker at node u
- Seed regions $\mathcal{R}_1, \cdots, \mathcal{R}_k$

Compute:

• Probability of the random walker reaching region \mathcal{R}_i first.

Compute:

• Probability of the random walker reaching region \mathcal{R}_i first.

Compute:

• Probability of the random walker reaching region \mathcal{R}_i first.

Closed-form connection probabilities [Grady, PAMI 2006]

 $\mathbf{L}_{u}\mathbf{X} = -\mathbf{B}^{T}\mathbf{M}$

Compute:

• Probability of the random walker reaching region \mathcal{R}_i first.

Closed-form connection probabilities [Grady, PAMI 2006]

 $\mathbf{L}_{u}\mathbf{X}=-\mathbf{B}^{T}\mathbf{M}$

L_u, B: Blocks of the Graph Laplacian
 Contain the edge weights (DTI Information)

Compute:

• Probability of the random walker reaching region \mathcal{R}_i first.

Closed-form connection probabilities [Grady, PAMI 2006]

 $\mathbf{L}_{u}\mathbf{X} = -\mathbf{B}^{T}\mathbf{M}$

- L_u, B: Blocks of the Graph Laplacian
 Contain the edge weights (DTI Information)
- Unknown Connection Probabilities X

Compute:

• Probability of the random walker reaching region \mathcal{R}_i first.

Closed-form connection probabilities [Grady, PAMI 2006]

 $\mathbf{L}_{\boldsymbol{U}}\mathbf{X} = -\mathbf{B}^{T}\mathbf{M}$

- L_u, **B**: Blocks of the Graph Laplacian
 - Contain the edge weights (DTI Information)
- Unknown Connection Probabilities X
- Seeds M:
 - Note: Background (FA < τ) included as a seed region

Preliminary Results

Tract Jumping Has Decreased

Preliminary Results

Tract Jumping Has Decreased

What is normal development?

- Creation of Age-specific DTI atlas
- Voxelwise statistical testing

e How Should we Measure Connectivity?

Item Should we Examine the Rate of Development?

What is normal development?

- Creation of Age-specific DTI atlas
- Voxelwise statistical testing

e How Should we Measure Connectivity?

- Error-free Graph-based DTI encoding
- Competitive tractography via Random Walks
- Item Should we Examine the Rate of Development?

What is normal development?

- Creation of Age-specific DTI atlas
- Voxelwise statistical testing
- e How Should we Measure Connectivity?
 - Error-free Graph-based DTI encoding
 - Competitive tractography via Random Walks
- How Should we Examine the Rate of Development?

Brian G. Booth: bgb2@sfu.ca

29 Weeks GA

44 Weeks GA

Longitudinal registration

\bullet Longitudinal registration \rightarrow Robust metric

- Longitudinal registration \rightarrow Robust metric
- Idea: Diffusion Tensor Mutual Information

Measuring DT Mutual Information

Existing Approaches:

 $\bullet~$ Dimensionality Reduction $\rightarrow~$ Histogram Binning

e.g. [van Hecke et al., TMI, 2007]

Measuring DT Mutual Information

Existing Approaches:

 $\bullet~$ Dimensionality Reduction $\rightarrow~$ Histogram Binning

e.g. [van Hecke et al., TMI, 2007]

Our Approach:

- Estimate MI from nearest-neighbour distances
- Tensor distance metrics for computing nearest-neighbours

Measuring DT Mutual Information

Existing Approaches:

 $\bullet~$ Dimensionality Reduction $\rightarrow~$ Histogram Binning

e.g. [van Hecke et al., TMI, 2007]

Our Approach:

- Estimate MI from nearest-neighbour distances
- Tensor distance metrics for computing nearest-neighbours
- Nearest-Neighbour MI Estimator [Neemuchwala and Hero, 2005]

$$MI(\mathbf{X}, \mathbf{Y}, \alpha) = \frac{1}{\alpha - 1} \log \left[\frac{1}{N^{\alpha}} \sum_{i=1}^{N} \left(\frac{\eta(\mathbf{z}_i)}{\sqrt{\eta(\mathbf{x}_i)\eta(\mathbf{y}_i)}} \right)^{2d(1-\alpha)} \right]$$

Metric Evaluation²

²B.G. Booth, G. Hamarneh; IEEE HISB (2011).

Metric Evaluation²

²B.G. Booth, G. Hamarneh; IEEE HISB (2011).

What is normal development?

- Creation of Age-specific DTI atlas
- Voxelwise statistical testing
- e How Should we Measure Connectivity?
 - Error-free Graph-based DTI encoding
 - Competitive tractography via Random Walks
- How Should we Examine the Rate of Development?

What is normal development?

- Creation of Age-specific DTI atlas
- Voxelwise statistical testing
- e How Should we Measure Connectivity?
 - Error-free Graph-based DTI encoding
 - Competitive tractography via Random Walks
- How Should we Examine the Rate of Development?
 - Longitudinal Registration
 - New Metric: Full Tensor Mutual Information

DTI Atlas of normal development

Tractography via Graph-based Random Walks

Full Tensor Mutual Information

DTI Atlas of normal development

Practography via Graph-based Random Walks

Full Tensor Mutual Information

DTI Atlas of normal development

Full Tensor Mutual Information

Thank You Questions?

Brian G. Booth: bgb2@sfu.ca

