Convex Energy Minimization Over Multi-Region, Probabilistic Segmentation Spaces

Shawn Andrews (with Chris McIntosh and Ghassan Hamarneh)

September 1st, 2011

Shawn Andrews (with Chris McIntosh and Ghassan Hamarneh) Convex Energy Minimization Over Multi-Region, Probabilistic

Medical Image Segmentation

- Segmentation is a fundamental task in medical image analysis
- Shape of organs and tissues crucial
- Enables analysis, diagnosis, and treatment

Medical Image Segmentation

- Segmentation is a fundamental task in medical image analysis
- Shape of organs and tissues crucial
- Enables analysis, diagnosis, and treatment
- Manual segmentation most accurate, but too expensive
- Semi and fully automatic methods greatly decrease time required by an expert
- Difficulties: noise, large image sizes, partial volume effects, and anatomical variability

Minimization Energy Construction Segmentation Domain

Energy Functions

- Formulate methods as an energy minimization problem
- Domain of the energy function is a set of possible segmentations:

Optimal Segmentation = $\arg \min E(Possible Segs.)$

Minimization Energy Construction Segmentation Domain

Energy Functions

- Formulate methods as an energy minimization problem
- Domain of the energy function is a set of possible segmentations:

Optimal Segmentation = $\arg \min E(Possible Segs.)$

- Energy function construction:
 - 1. User input
 - 2. Image information
 - 3. Prior knowledge

Minimization Energy Construction Segmentation Domain

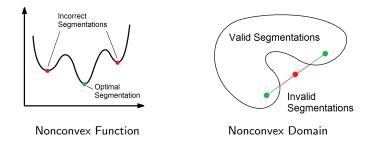
Energy Minimization

Global minimum cannot always be found

Minimization Energy Construction Segmentation Domain

Energy Minimization

Global minimum cannot always be found



Minimization Energy Construction Segmentation Domain

Convexity

Nonconvex energies, local minimum found depends on

- 1. Optimization scheme
- 2. Initialization

Minimization Energy Construction Segmentation Domain

Convexity

Nonconvex energies, local minimum found depends on

- 1. Optimization scheme
- 2. Initialization
- But, convexity limits expressibility

Minimization Energy Construction Segmentation Domain

Convexity

Nonconvex energies, local minimum found depends on

- 1. Optimization scheme
- 2. Initialization
- But, convexity limits expressibility
- Question 1: What features can our function include while maintaining convexity?

Minimization Energy Construction Segmentation Domain

Image Information

- Energy functions must incorporate image information to be meaningful
- Many convex terms exist

Minimization Energy Construction Segmentation Domain

Image Information

- Energy functions must incorporate image information to be meaningful
- Many convex terms exist
- Image information often not sufficient...

Minimization Energy Construction Segmentation Domain

Shape Priors

- Regions' shapes usually conform to a distribution
- Shape priors greatly increase accuracy

Corpus Callosum

Minimization Energy Construction Segmentation Domain

Shape Priors

- Regions' shapes usually conform to a distribution
- Shape priors greatly increase accuracy

Corpus Callosum

A complex shape prior may result in nonconvexity

Minimization Energy Construction Segmentation Domain

Convex Domain

- Many segmentation representations exist
- Nonconvexity allows more descriptive, anatomically justified representations

Minimization Energy Construction Segmentation Domain

Convex Domain

- Many segmentation representations exist
- Nonconvexity allows more descriptive, anatomically justified representations
- If domain nonconvex, global minimum may be unattainable

Minimization Energy Construction Segmentation Domain

Convex Domain

- Many segmentation representations exist
- Nonconvexity allows more descriptive, anatomically justified representations
- If domain nonconvex, global minimum may be unattainable
- Question 2: What can we encode in a representation while maintaining convexity?

Minimization Energy Construction Segmentation Domain

Binary vs. Multi-Region

- Often multiple regions of interest
- Multi-region representations explicitly encode regional interactions

Minimization Energy Construction Segmentation Domain

Binary vs. Multi-Region

- Often multiple regions of interest
- Multi-region representations explicitly encode regional interactions

Thigh MRI

Multi-Region

Minimization Energy Construction Segmentation Domain

Crisp vs. Probabilistic

- Probabilistic representations encode uncertainty
- ▶ Partial volume effect, probabilistic prior models, etc.

Minimization Energy Construction Segmentation Domain

Crisp vs. Probabilistic

- Probabilistic representations encode uncertainty
- Partial volume effect, probabilistic prior models, etc.

Thigh MRI

Probabilistic

Goals Shape Priors ILR Representation ILR Energy Terms

Method

- Answering Question 1 & 2: We create an energy incorporating probabilistic, multi-region shape priors, while maintaining convexity
- First try: create shape priors using principal component analysis (PCA) on training segmentations (Cremers et al. '08)

Goals Shape Priors ILR Representation ILR Energy Terms

Method

- Answering Question 1 & 2: We create an energy incorporating probabilistic, multi-region shape priors, while maintaining convexity
- First try: create shape priors using principal component analysis (PCA) on training segmentations (Cremers et al. '08)
- But this has limitations...

Goals Shape Priors ILR Representation ILR Energy Terms

Notation

- Ω : image domain, with *n* pixels
- ► *R*: number of regions
- S^R : the simplex of size R,

$$\mathcal{S}^{R} = \left\{ \{x_1, \dots, x_R\} \in \mathbb{R}^{R} \left| \sum_{r=1}^{R} x_r = 1 \right\} \right\}$$

Probabilistic, multi-region segmentation:

$$q:\Omega \to \mathcal{S}^R$$

Goals Shape Priors ILR Representation ILR Energy Terms

Training Data

- Enforce a statistically feasible segmentation space
- PCA on training data
- N ground truth (GT) segmentations:

 $\{q_1,\ldots,q_N\}$

Goals Shape Priors ILR Representation ILR Energy Terms

Principal Component Analysis

- ▶ q₀: mean of training GTs
- Ψ : an $(nR) \times k$ matrix of the k eigenmodes
- Statistically feasible segmentations parameterized by $\alpha \in \mathbb{R}^k$:

$$q(\alpha) = q_0 + \Psi \alpha$$

Goals Shape Priors ILR Representation ILR Energy Terms

Principal Component Analysis

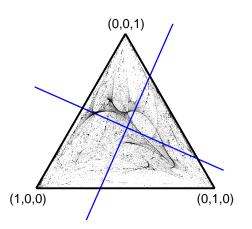
- q₀: mean of training GTs
- Ψ : an $(nR) \times k$ matrix of the k eigenmodes
- Statistically feasible segmentations parameterized by $\alpha \in \mathbb{R}^k$:

$$q(\alpha) = q_0 + \Psi \alpha$$

• Not all α give valid segmentations

Goals Shape Priors ILR Representation ILR Energy Terms

Simplex PCA



Goals Shape Priors ILR Representation ILR Energy Terms

Simplicial Geometry

• Want: $T : S^R \to \mathbb{R}^{R-1}$

Goals Shape Priors ILR Representation ILR Energy Terms

Simplicial Geometry

- Want: $T: S^R \to \mathbb{R}^{R-1}$
- For $p = \{p_1, \ldots, p_R\} \in S^R$, LogOdds (Pohl et al. '08):

$$\mathsf{LogOdds}(p) = \left\{ \mathsf{log} \, \frac{p_1}{p_R}, \dots, \mathsf{log} \, \frac{p_{R-1}}{p_R} \right\} \in \mathbb{R}^{R-1}$$

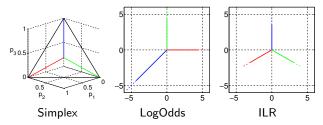
Goals Shape Priors ILR Representation ILR Energy Terms

Simplicial Geometry

- Want: $T: \mathcal{S}^R \to \mathbb{R}^{R-1}$
- For $p = \{p_1, \ldots, p_R\} \in S^R$, LogOdds (Pohl et al. '08):

$$\mathsf{LogOdds}(p) = \left\{ \log \frac{p_1}{p_R}, \dots, \log \frac{p_{R-1}}{p_R} \right\} \in \mathbb{R}^{R-1}$$

LogOdds not symmetric, but the isometric log-ratio (ILR) transform (Egozcue et al. '03) is:



Shawn Andrews (with Chris McIntosh and Ghassan Hamarneh)

Convex Energy Minimization Over Multi-Region, Probabilistic

Goals Shape Priors ILR Representation ILR Energy Terms

Simplicial Geometry (cont'd)

• (Aitchison '86): a Hilbert space structure for S^R

Goals Shape Priors ILR Representation ILR Energy Terms

Simplicial Geometry (cont'd)

- (Aitchison '86): a Hilbert space structure for S^R
- ▶ $p, q \in S^R$, $\alpha \in \mathbb{R}$, $C[\cdot]$: normalization function, $g(\cdot)$: geometric mean

$$p \oplus q = \mathcal{C}[p_1q_1, \dots, p_nq_n],$$

$$\alpha \odot p = \mathcal{C}[p_1^{\alpha}, p_2^{\alpha}, \dots, p_n^{\alpha}],$$

$$\langle p, q \rangle_S = \sum_{i=1}^n \log \frac{p_i}{g(p)} \log \frac{q_i}{g(q)},$$

$$d_S(p, q) = \sqrt{\sum_{i=1}^n \left(\log \frac{p_i}{g(p)} - \log \frac{q_i}{g(q)}\right)^2}$$

Goals Shape Priors ILR Representation ILR Energy Terms

ILR Representation

ILR maps operations to Euclidean counterparts

Goals Shape Priors ILR Representation ILR Energy Terms

ILR Representation

- ILR maps operations to Euclidean counterparts
- Find basis for S^R , $E = \{e_1, \ldots, e_{R-1}\}$
- ILR projects onto E:

$$\mathsf{ILR}(p) = (\langle p, e_1 \rangle_S, \dots \langle p, e_{R-1} \rangle_S) \in \mathbb{R}^{R-1}$$

Goals Shape Priors ILR Representation ILR Energy Terms

ILR Representation

- ILR maps operations to Euclidean counterparts
- Find basis for S^R , $E = \{e_1, \ldots, e_{R-1}\}$
- ILR projects onto E:

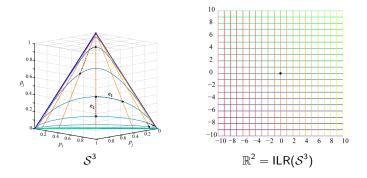
$$\mathsf{ILR}(p) = (\langle p, e_1 \rangle_S, \dots \langle p, e_{R-1} \rangle_S) \in \mathbb{R}^{R-1}$$

Probabilistic, multi-region segmentation:

$$\eta = \mathsf{ILR}(q) : \Omega \to \mathbb{R}^{R-1}$$

Goals Shape Priors ILR Representation ILR Energy Terms

ILR Visualization



Goals Shape Priors ILR Representation ILR Energy Terms

PCA Revisited

- GTs mapped to ILR space
- η_0 : mean of training GTs
- Ψ' : an $(n(R-1)) \times k$ matrix of the k eigenmodes

 $\eta(\alpha) = \eta_0 + \Psi' \alpha$

Goals Shape Priors ILR Representation ILR Energy Terms

PCA Revisited

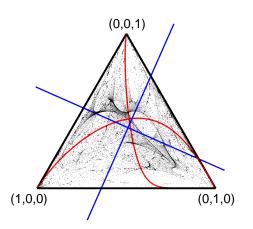
- GTs mapped to ILR space
- η_0 : mean of training GTs
- Ψ' : an $(n(R-1)) \times k$ matrix of the k eigenmodes

$$\eta(\alpha) = \eta_0 + \Psi' \alpha$$

- Every $\alpha \in \mathbb{R}^k$ is valid
- Vector space representation achieved

Goals Shape Priors ILR Representation ILR Energy Terms

ILR PCA



Goals Shape Priors ILR Representation ILR Energy Terms

Energy Formulation

• Energy functional $E(\eta)$ is constructed with 3 terms:

$$E(\eta) = w_1 E_{\text{Intensity}}(\eta) + w_2 E_{\text{Gradient}}(\eta) + w_3 E_{\text{Shape}}(\eta)$$

► Each term ⇔ different segmentation property

Goals Shape Priors ILR Representation ILR Energy Terms

Intensity Energy Term

- Construct regional intensity distributions
- Intensity-based probabilistic segmentation:

$$p:\Omega\to \mathcal{S}^R$$

Goals Shape Priors ILR Representation ILR Energy Terms

Intensity Energy Term

- Construct regional intensity distributions
- Intensity-based probabilistic segmentation:

$$p:\Omega\to \mathcal{S}^R$$

Use squared distance:

$$E_{\text{Intensity}}(\eta) = \int_{x} \|\eta(x) - \text{ILR}(p(x))\|^2 \, d\Omega$$

Goals Shape Priors ILR Representation ILR Energy Terms

Gradient Energy Term

- b(x): boundary indicator at pixel x
- ► *h*(*x*): measure of the rate of segmentation change:

$$\eta(x) = \{\eta_1(x), \dots, \eta_{R-1}(x)\} \in \mathbb{R}^{R-1}$$

 $h(x) = \sum_{r=1}^{R-1} \|\nabla_x \eta_r(x)\|^2$

Goals Shape Priors ILR Representation ILR Energy Terms

Gradient Energy Term

- b(x): boundary indicator at pixel x
- ► *h*(*x*): measure of the rate of segmentation change:

$$\eta(x) = \{\eta_1(x), \dots, \eta_{R-1}(x)\} \in \mathbb{R}^{R-1}$$
$$h(x) = \sum_{r=1}^{R-1} \|\nabla_x \eta_r(x)\|^2$$

Gradient-based term:

$$E_{\text{Gradient}}(\eta) = \int_{x} (1 - b(x))h(x)d\Omega$$

Goals Shape Priors ILR Representation ILR Energy Terms

Shape Energy Term

- Modes with greater variance should have greater freedom
- A: $k \times k$ diagonal matrix with variances the diagonal

$$E_{\mathsf{Shape}}(\eta(\alpha)) = \alpha^{\mathsf{T}} \Lambda^{-1} \alpha$$

Goals Shape Priors ILR Representation ILR Energy Terms

Shape Energy Term

- Modes with greater variance should have greater freedom
- A: $k \times k$ diagonal matrix with variances the diagonal

$$E_{\mathsf{Shape}}(\eta(\alpha)) = \alpha^{\mathsf{T}} \Lambda^{-1} \alpha$$

• Strictly convex $\Rightarrow E$ is strictly convex

Goals Shape Priors ILR Representation ILR Energy Terms

Final Segmentation

- $\eta(\alpha)$ is linear in $\alpha \Rightarrow E(\eta(\alpha))$ is convex in α
- Final segmentation q*:

$$\alpha^* = \operatorname*{arg\,min}_{lpha} E(\eta(lpha)), \quad q^* = \mathsf{ILR}^{-1}(\eta(lpha^*))$$

Convex, multi-region, and includes a general shape prior

Goals Shape Priors ILR Representation ILR Energy Terms

Feature Table

	Features			
Methods	Convex Energy	Shape Prior	Multi- Region	Probab- ilistic
Chan '04	\checkmark	Х	Х	√ *
Ishikawa '03	\checkmark	Х	$\sqrt{1}$	Х
Veksler '08	\checkmark	$\sqrt{1}$	Х	Х
Vu '08	Х	\checkmark	\checkmark	Х
Pock '08, Brown '09, Delong '09	\checkmark	Х	\checkmark	Х
Lellmann '09, Pock '09, Zach '08	\checkmark	Х	\checkmark	$\sqrt{*}$
Song '10	\checkmark	√ ‡	\checkmark	Х
Pohl '07	Х	\checkmark	\checkmark	\checkmark
Grady '05	\checkmark	Х	\checkmark	\checkmark
Cremers '08	\checkmark	\checkmark	Х	\checkmark
Our Method	\checkmark	\checkmark	\checkmark	\checkmark

* Relaxed 0-1 segmentations could be informally treated as probabilities.

† Allows only limited regional interaction terms.

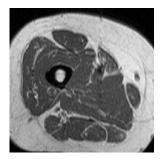
‡ Only applicable to restricted classes of shapes.

Implementation Details

- Simple affine registration scheme sufficiently aligned images
- Energy term weights determined from the training data
- Validation using a leave-one-out heuristic

Thigh MRI Data

- ▶ 40 volumetric MRI thigh scans of size 175 × 175 × 85 had all 11 knee extensor and flexor muscles segmented, for 12 regions
- \blacktriangleright Despite very poor intensity priors and borders, our method achieved an average DSC of 0.92 \pm 0.03 with the GT



Thigh Muscle Segmentation



 A resulting segmentation of our method overlaid on several image slices

Thigh Muscle Segmentation

Conclusion

Multi-region shape priors while maintaining convexity

- Multi-region shape priors while maintaining convexity
- Strictly convex unconstrained energy

- Multi-region shape priors while maintaining convexity
- Strictly convex unconstrained energy
- ILR-based segmentation simplifies statistical analysis

Future Work

Include pose estimation

Future Work

- Include pose estimation
- Segmentation tasks with weak image information but strong shape priors

Future Work

- Include pose estimation
- Segmentation tasks with weak image information but strong shape priors
- More flexible shape spaces

Questions

