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Medical Image Segmentation

I Segmentation is a fundamental task in medical image analysis

I Shape of organs and tissues crucial

I Enables analysis, diagnosis, and treatment

I Manual segmentation most accurate, but too expensive

I Semi and fully automatic methods greatly decrease time
required by an expert

I Difficulties: noise, large image sizes, partial volume effects,
and anatomical variability
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Energy Functions

I Formulate methods as an energy minimization problem

I Domain of the energy function is a set of possible
segmentations:

Optimal Segmentation = arg minE (Possible Segs.)

I Energy function construction:

1. User input
2. Image information
3. Prior knowledge
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Energy Minimization

I Global minimum cannot always be found

Nonconvex Function Nonconvex Domain
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Convexity

I Nonconvex energies, local minimum found depends on

1. Optimization scheme
2. Initialization

I But, convexity limits expressibility

I Question 1: What features can our function include while
maintaining convexity?
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Image Information

I Energy functions must incorporate image information to be
meaningful

I Many convex terms exist

I Image information often not sufficient...
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Shape Priors

I Regions’ shapes usually conform to a distribution

I Shape priors greatly increase accuracy

Corpus Callosum

I A complex shape prior may result in nonconvexity
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Convex Domain

I Many segmentation representations exist

I Nonconvexity allows more descriptive, anatomically justified
representations

I If domain nonconvex, global minimum may be unattainable

I Question 2: What can we encode in a representation while
maintaining convexity?
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Binary vs. Multi-Region

I Often multiple regions of interest

I Multi-region representations explicitly encode regional
interactions

Thigh MRI Binary Multi-Region
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Crisp vs. Probabilistic

I Probabilistic representations encode uncertainty

I Partial volume effect, probabilistic prior models, etc.

Thigh MRI Crisp Probabilistic
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Method

I Answering Question 1 & 2: We create an energy incorporating
probabilistic, multi-region shape priors, while maintaining
convexity

I First try: create shape priors using principal component
analysis (PCA) on training segmentations (Cremers et al. ’08)

I But this has limitations...
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Notation

I Ω: image domain, with n pixels

I R: number of regions

I SR : the simplex of size R,

SR =

{
{x1, . . . , xR} ∈ RR

∣∣∣∣∣
R∑

r=1

xr = 1

}

I Probabilistic, multi-region segmentation:

q : Ω→ SR
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Training Data

I Enforce a statistically feasible segmentation space

I PCA on training data

I N ground truth (GT) segmentations:

{q1, . . . , qN}
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Principal Component Analysis

I q0: mean of training GTs

I Ψ: an (nR)× k matrix of the k eigenmodes

I Statistically feasible segmentations parameterized by α ∈ Rk :

q(α) = q0 + Ψα

I Not all α give valid segmentations
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Simplex PCA

(0,1,0)

(0,0,1)

(1,0,0)
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Simplicial Geometry
I Want: T : SR → RR−1

I For p = {p1, . . . , pR} ∈ SR , LogOdds (Pohl et al. ’08):

LogOdds(p) =

{
log

p1
pR
, . . . , log

pR−1
pR

}
∈ RR−1

I LogOdds not symmetric, but the isometric log-ratio (ILR)
transform (Egozcue et al. ’03) is:
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Simplicial Geometry (cont’d)

I (Aitchison ’86): a Hilbert space structure for SR

I p, q ∈ SR , α ∈ R, C[·]: normalization function, g(·):
geometric mean

p ⊕ q = C[p1q1, . . . , pnqn] ,

α� p = C[pα1 , p
α
2 , . . . , p

α
n ] ,

〈p, q〉S =
n∑

i=1

log
pi

g(p)
log

qi
g(q)

,

dS(p, q) =

√√√√ n∑
i=1

(
log

pi
g(p)

− log
qi

g(q)

)2

.
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ILR Representation

I ILR maps operations to Euclidean counterparts

I Find basis for SR , E = {e1, . . . , eR−1}
I ILR projects onto E :

ILR(p) = (〈p, e1〉S , . . . 〈p, eR−1〉S) ∈ RR−1.

I Probabilistic, multi-region segmentation:

η = ILR(q) : Ω→ RR−1
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ILR Visualization
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PCA Revisited

I GTs mapped to ILR space

I η0: mean of training GTs

I Ψ′: an (n(R − 1))× k matrix of the k eigenmodes

η(α) = η0 + Ψ′α

I Every α ∈ Rk is valid

I Vector space representation achieved
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Energy Formulation

I Energy functional E (η) is constructed with 3 terms:

E (η) = w1EIntensity(η) + w2EGradient(η) + w3EShape(η)

I Each term ⇔ different segmentation property
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Intensity Energy Term

I Construct regional intensity distributions

I Intensity-based probabilistic segmentation:

p : Ω→ SR

I Use squared distance:

EIntensity(η) =

∫
x
‖η(x)− ILR(p(x))‖2 dΩ
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Gradient Energy Term

I b(x): boundary indicator at pixel x

I h(x): measure of the rate of segmentation change:

η(x) = {η1(x), . . . , ηR−1(x)} ∈ RR−1

h(x) =
R−1∑
r=1

‖∇xηr (x)‖2

I Gradient-based term:

EGradient(η) =

∫
x
(1− b(x))h(x)dΩ
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Shape Energy Term

I Modes with greater variance should have greater freedom

I Λ: k × k diagonal matrix with variances the diagonal

EShape(η(α)) = αTΛ−1α

I Strictly convex ⇒ E is strictly convex
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Final Segmentation

I η(α) is linear in α ⇒ E (η(α)) is convex in α

I Final segmentation q∗:

α∗ = arg min
α

E (η(α)), q∗ = ILR−1(η(α∗))

I Convex, multi-region, and includes a general shape prior
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Feature Table
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Implementation Details

I Simple affine registration scheme sufficiently aligned images

I Energy term weights determined from the training data

I Validation using a leave-one-out heuristic
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Thigh MRI Data

I 40 volumetric MRI thigh scans of size 175× 175× 85 had all
11 knee extensor and flexor muscles segmented, for 12 regions

I Despite very poor intensity priors and borders, our method
achieved an average DSC of 0.92± 0.03 with the GT
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Thigh Muscle Segmentation

I A resulting segmentation of our method overlaid on several
image slices

Shawn Andrews (with Chris McIntosh and Ghassan Hamarneh) Convex Energy Minimization Over Multi-Region, Probabilistic Segmentation Spaces



Background
Energy Functions

Segmentation Framework
Results

Conclusion

Thigh Muscle Segmentation

GT Result GT Result GT Result
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Conclusion

I Multi-region shape priors while maintaining convexity

II Strictly convex unconstrained energy

II ILR-based segmentation simplifies statistical analysis
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Future Work

I Include pose estimation

II Segmentation tasks with weak image information but strong
shape priors

II More flexible shape spaces
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