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Motivation: new analog-to-digital converter

Analog-to-information (A2l) converter

signal x
2.5 GHz

Measurements are linear:
b= Ax

Convex optimization to recover x

Sample at 400 MHz
Output:

b, kel



Typical problems

b=Ax+z, AeR™"
T is sparse, m <K n

Basis Pursuit BP

min ||z||; subjectto Ax =1b
x

or if x is “W-sparse”: i.e. 3o € R? sparse, such that WTa ~ z.

Basis Pursuit Denoising B P-, analysis

min ||Wz||; subject to |Az —b|s <e
T

Alternatives:

Dantzig Selector

min ||z||; subject to [|AT(Az —b)|joo <0
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Why largescale?

Window size N = 1024
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Rectangular window|
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Interior Point methods
Experiments that ran on a cluster (2008) are now run

Time to solve (in seconds)
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on a laptop.
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Interior Point methods (2)
But accuracy of first-order methods. .. ? Not a problem.
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First-order methods

Conclusion: due to size of
problem, first-order methods
beat IPM for this application.

Difficult to exploit fast
operators (FFT,...)

Similar fact: homotopy-type
methods don't do well either
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For Every Winner, THERE ARE oF Losers.
Qpns ARE YOU'RE One .




Existing first-order solvers

. , A
min |[Wa|, min |[Wal|y + Z|| Az —b]f3

subject to [|[Ax — blj2 < &

@ Require AAT =T or solve inner subproblem
e NESTA (B., Bobin, Candgs)
C-SALSA (Afonso, Figueiredo, Bioucas-Dias)
Z. Lu (for the Dantzig)
(Lu, Pong, Zhang) ADM for Dantzig

@ Restrictions on W
e SPGL1 (Friedlander, van den Berg)

© Solve un-constrained version, or equality constraints only
e FPC, FPC-AS, GPSR, SpaRSA, FISTA, Bregman, ...



Can we do better?

Challenges
© How to project onto |[Ax — bl < e ?

@ Non-smooth, so slower convergence



TFOCS ideas: fundamentals

min f(z) + Y(Ax + b)

@ Find conic formulation*
© Add strongly convex term

@ fu(z) = f(z)+ &llz — z0l?
e can now calculate dual
e dual is smooth

© Solve dual problem

@ composite approach

® § = Gsmooth + h
e h nonsmooth but

wos
nice

Extends (e.g., atomic norms)



TFOCS ideas: fundamentals

min f(z) + Y(Ax + b)

@ Find conic formulation*

© Add strongly convex term
Q@ fu(z) = f(z) + 4llz — =0
e can now calculate dual
e dual is smooth

© Solve dual problem
@ composite approach

® § = Gsmooth + h
e h nonsmooth but
“nice”

Extends (e.g., atomic norms)

Potential drawbacks:
@ Primal iterate is not

feasible
o ||Ax —b|| <e, buteis
estimate!

o Effect of smoothing

e use continuation

e made rigorous in
proximal point
framework

o accelerated continuation

e sometimes no effect
even for u > 0



Benefits of duality 1: projection

Dual cone K*
AeKif (\z)>0Vrek J

Lagrangian cross-terms: — (A(z), A) with A(z) € K and \ € K*

Our constraint set, C' = {x : ||Ax — b||2 < €} is a cone:

(A.’I: — b,&?) €Ky

Epigraph cone ), J

Kp CR™L, 1y = {(2,) : allp < 1}

ex. K1 and K are dual, Ky is self-dual.



Benefits of duality 1: projection

Many projections known in closed form. Projecting onto I vs onto
K* makes little difference.

@ Project onto /5 ball: just re-scale.
e Cost: O(N)
e Project onto Kg similar: O(N)

@ Project onto ¢1 ball or KC1: sort, then soft-threshold.
o Cost: O(Nlog(N))

© Project onto £, ball: truncation
Key observation:
Projecting = onto {y : y € K} is (usually) easy

Projecting = onto {y : Ay € K} is (usually) hard



Benefits of duality 2: better smoothing

Dual smoothing:
primal has kink

Smooth problems: much
faster convergence, i.e. O(7%)
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Example: Dantzig

minimize  ||z||; — minimize ||z + &z — zo||?
subject to  ||AT(Az — b)||eo < 6 subject to  (A(z) +b,9) € Ko

A ATA, b+ —ATb

Dual problem

maximizey  inf {||z| —l—HHZ‘—.’Eo’P — (N A@) + b0} — 6M I
x 2 ——
—gem(N) h(A)

e “Simple gradient” (z) unique minimizer above)

Vgsm(z) = A(zy +b)



Example: Dantzig, version 2

minimize ||z} —  minimize 4+ 4|z — zol?
subject to || AT (Az — b)|joo <6 subject to  (A(z) + b,9) € Koo
(z,t) € Ky
A« ATA, b+ —ATp
Dual problem
MaXy (v,s)ekoe — 5||)‘||1 +..
——
h(A)
inf {¢ + ng — o) = (N, A(z) +B) — (v, z) — st}

_gsm(/\)

Similar algorithm, but now x , is linear in A and v, so dual is
constrained quadratic (and with 2x variables).



General form

Two viewpoints: conic dual or Fenchel dual

Fenchel duality view

min f(x) + Z Ui (Ajx + b;)

where f, 1)} are “prox-capable”, 1; — R

© Dantzig style 1 corresponds to:
f(@) =z, ¥1(diz+b)=1c

@ Dantzig style 2 corresponds to:
f=0, () =llzllr, v2(Aiz+b)=1c
where C = {z: ||[AT(Az — bl < 6}

If f =0, dual is always (constrained) quadratic.



Solving the dual
“Proximal gradient descent”, aka “forward-backward” algorithm.
Handles smooth + nonsmooth (Fukushima and Mine, 1981).

@ Gradient projection step for minimizing smooth g:

) L
Akg1 al;gfélm g(Ak) + (Vg Ae)s A — i) + 5”)\ — |2
e *

o Generalized gradient projection for minimizing g + h (h
nonsmooth)

. L
Akl ¢ argmin 9(Ak) +(Vg(Ap), )\—)\k>+§||)\—>\k|\2+h()\)

@ Solution is proximity operator of h. Often known.

e Ex. h = x¢, then proximity operator is just projection onto C'
o Ex. h = |jz|1, then proximity operator is shrinkage

@ Works with backtracking and Nesterov acceleration



Generic algorithm (Nesterov's style)

Auslender-Teboulle version, no backtracking
def

min, f(z) +¢(Az +b), h=y*

Algorithm 1 Generic algorithm for the conic standard form

Require: \g, 29 € R", > 0, step sizes {{1}

1:
2: for k=0,1,2,... do
3:
4. mp + argming f(x) + p/2||r — z0]|? — <AT7(Vk),x>_
5 Mg 4 argming A(A) + g (1A = Al + (Alzr) +6,0)
6:
7
8: end for
x is primal

A, v,v are dual, 0 is scalar



Algorithm for Dantzig selector

Algorithm 2 Algorithm excerpt for DS

4: xp < SoftThreshold(zg — pu~ ' AT Avy, u=1).
5: A1 < SoftThreshold( Ay — 0} 't AT (v — Axy), 0, 't40)

SoftThreshold(z, 7) = sign(x) - max{|z| — 7,0}

Not previously considered



TFOCS ideas: extras

Software is modular. Easy to add constraints, change solver. ..

Overview

@ 6 first-order methods (GRA + 5 accelerated methods)

o Efficient step size procedures (based on Tseng's convergence
analysis): no Lipschitz constant needed

o Efficient use of linear operator structure: crucial when
backtracking occurs

minimize  gem(ATN) + h(N\)

@ Accelerated continuation

@ Exact perturbation

@ Restart strategies

@ New convergence proofs




CG

Advantage of modularity: easy to try new solvers, line search.
Plans for non-linear CG, (L-)BFGS, SESOP, ...

[l =2l

-12 —tfocs (GRA)
r —tfocs (AT)
tfocs w/ restart
‘ ‘ ‘ ‘ —tfocs with CG

| | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
number of calls to A and A*

Ex: Non-linear CG (Polak-Ribiere), noiseless basis pursuit, N = 2048.



Standard continuation
Want perturbation small

minimize f(z) + dpllz — 202
subjectto  A(z)+beK

Problem: L o<1/

Algorithm 3 Standard continuation

Require: Yy, o >0, 8 <1
1: for j=0,1,2,... do
»
2 Xjp1 ¢ argmin f(z) + 2|z - V|3
Az)+bek 2
30 Vi1 Xjp1 (or Vi < Yo)

4 pj1 < Puyj
5. end for

FPC: Hale, Yin, and Zhang ('08)



Moreau-Yosida regularization

Moreau envelope  A(Y) = min f(z) + &z — V|2
zeC 2

Moreau proximity operator Xy =argmin f(x) + ng — Y3
zeC

Theorem

h is continuously differentiable with gradient
Vh(Y) = ulY — Xy)

The gradient is Lipschitz continuous with constant L = p

Minimizing h by gradient descent — proximal point algorithm
(PPA) (Rockafellar, 70s)



Accelerated continuation (Nesterov style)

Algorithm 4 Accelerated continuation

Require: Y, o >0
1. Xo< Y
2. for j =0,1,2,... do
33 Xj1 ¢ argmin f(x)+ %Hx Y3

A(z)+bek
4 Yin & Xy + (X — Xj)
5. (optional) increase or decrease y;
6: end for

Keep 11; = p so subproblems quick to solve
Warm-start subproblems

For small p, typically 5 iterations



Simple vs. accelerated continuation: LASSO example

error

1"y ——Regular continuation (fixed L)
——Accelerated continuation (fixed p)

10

15
outer iteration

Figure: ||z — «*||/||zo — «*|| vs. outer iteration count



Effect of perturbation

Nice surprise:

Linear programs (ex. Dantzig, Basis Pursuit) have exact penalty

Theorem (Exact penalty)
@ Arbitrary LP with objective (c,x) and with opt. solution
o Perturbed LP with objective (c,x) + Su|z — :L‘0||22, Q>0

There is pg > 0 s.t. for 0 < p < pg, any solution to perturbed
problem is a solution to LP

@ Special case (BP): Yin ('10)
@ More general result: Friedlander and Tseng ('07)

@ Combine with continuation = finite termination
Known since Bertsekas '75, Polyak and Tretjakov '74



lllustration
Exact penalty for Dantzig Selector

Error
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Parameters

Lipschitz Gradient

F(w) < @)+ {y— 2, V@) + 5 o I3

Strong Convexity

) 2 @) +{y 2, V@) + Lz Il

If V2f exists, equivalent to
myl < V2f < LI

Goal: user needs no knowledge of my and L
e For L, trick: backtracking line search

@ For my, trick: restart



Restart

Problem: accelerated schemes don’t automatically take advantage
of strong convexity.

i.e. my unknown == no linear convergence

error

---GRA, backtracking
—AT, backtracking
07 AT, restart every 5
—AT, restart every 10
—AT, restart every 50
1077 — AT, restart every 1004
—N83, using m
o 50‘0 1000 . 15‘0_0 2(;00 25‘00 3000
iterations




Restart
Convergence of accelerated method:

L 2
Fla) = 17 < 25l = ol
If f is strongly convex with parameter my,

2L 1

et 1 CARE

||96k —-x

With restart, xg is x of a previous sequence. Do this j times.

2L
i = 2| < <,/mfk> = ol

This is linear convergence with rate p = (, /anE> .

2L
mpy

See PARNES paper (Gu, Lim, Wu 2009), Nesterov 2007.
Goes back to Powell (1977) for non-linear CG.

kopt =€



Restart: sensitivity

Sensitivity of restart, no backtracking
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Restart: improvements

“No Regress” feature

Error fu— f*
T T
~ - - -GRA
S~ —— AT, no restart
.. ——— AT, restart 10
N — AT, restart 50
AN AT, restart 100
107 | NS —— AT, no regress ||
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Basic convergence results

. . H . 2
minmin f(z) + Sz Y|

oY)

Inner. Dual function gy — g* at rate O(u~!/k?)
Outer. ¢j — ¢* at rate O(u/J?) if inner iterate solved exactly.

Trade-off between p large and p small.

Goal: analyze allowing inexact solves.
O. Giiler, 1992: Accelerated (and robust) proximal point.
Let 2}, = argmin f(z) + p/2z — Y% If
C
[T | P 715

then outer iteration still converges in O(u/J?).
How to get this?



Bounding the error
Let 2}, = argmin f(z) + p/2|z — Y;||2. Want:

C
[zr — 2|2 < 715

Note: primal is strongly convex, so bound fj or x.
How to go from dual to primal? No duality gap.

Combettes, Diing, Vi 2010: to bound primal, either bound
Ak = A, or [[Vgsm(Ak) = Vgsm(AY)]l

Implications

@ Easy results: convergence (and rate) if dual is unconstrained
(e.g. BP) and solve via gradient descent. previously known: Cai, Osher,

Shen 2008 for linear Bregman (zo = 0, gradient descent), no rate.

@ Also known: convergence (no rate) if dual is solved via
proximal gradient descent, since dual variable converges
(Beck, Teboulle 2010).



Bounding the error

General case: unknown.

Issue is that gradient mapping converges, but Vgs, need not.

Ideas?

Other future work: given bounds, optimize choice of .



Software release

o Paper

@ User guide
e Software (MATLAB)

e solvers

e many simple examples

o a few real-world
examples

e continuation wrappers

e compatible with SPOT

o Parameters: any p > 0

TFOCS Templates for First-Order Conic Solvers

About TFOCS

n about the software can be found in the paper linked at left, as

er guide.

http://tfocs.stanford.edu

©2010, Caltech.


http://tfocs.stanford.edu

Example in TFOCS

Basis Pursuit Denoising B P., analysis

min |[Wz||; subject to ||Az —b|2 <e
x

prox = { prox_12( epsilon ), proj_linf };
linear = { A, -b; W, 0 };
X = tfocs_SCD( [], linear, prox, mu, x0 };

Easy to add constraints, e.g. > 0

prox = { prox_12( epsilon ), proj_linf, proj_Rplus };
linear = { A, -b; W, 0; 1, 0 };

Of course, this is also builtin. ..
x = solver_sBPDN_W(A,W,b,epsilon,mu)

No Lipschitz constant or step size needed!



