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Symmetric function techniques and Young diagrammatic method can
be used for manipulation of characters of classical groups (over C). For
example, we are able to provide an algorithm for computing tensor prod-
uct multiplicities and to show the stability for them. The theory has been
developed by D. Littlewood, R. King, K. Koike, I. Terada, · · · .

The aim of this talk is to give such a framework for spinor representa-
tions of PinN .



Schur functions
and

Representation of GLn



Symmetric functions

Let Λ be the ring of symmetric functions in X = (x1, x2, · · · ) :

Λ = lim←−
n
Z[x1, · · · , xn]Sn,

where the project limit is taken in the category of graded rings.
Let hk and ek be the kth complete and elementary symmetric functions

respectively :

hk =
∑

i1≤i2≤···≤ik
xi1xi2 · · ·xik,

ek =
∑

i1<i2<···<ik
xi1xi2 · · ·xik.

Then we have

Λ = Z[h1, h2, · · · ] = Z[e1, e2, · · · ].



Schur functions

For a partition λ, we define a Schur function sλ by

sλ = det
(
hλi−i+j

)
1≤i,j≤r,

where r ≥ l(λ) and hk = 0 for k < 0.

The Schur function is also defined as the limit of

sλ(x1, · · · , xn) =
det
(
x
λj+n−j
i

)
1≤i,j≤n

det
(
x
n−j
i

)
1≤i,j≤n

.



Properties of Schur functions

• {sλ}λ forms a basis of Λ.

• Dual Jacobi–Trudi identity :

sλ = det
(
etλi−i+j

)
1≤i,j≤r,

where tλ is the conjugate partition of λ and r ≥ l(λ).

• Cauchy identity :
∑

λ

sλ(X)sλ(Y ) =
∏

i,j

1

1− xiyj
.

• Duality : Let ω be the involution of Λ defined by ω(hk) = ek (k ≥ 0).
Then we have

ω(sλ) = stλ.



Representations of GLn

Let Rep(GLn) be the representation ring of GLn, i.e., Rep(GLn) is
a free Z-module with basis consisting of irreducible characters of GLn,
and it has a ring structure with respect to tensor products.

The irreducible polynomial representations of GLn are parametrized
by partitions of length ≤ n. For such a partition λ, the corresponding
irreducible character Sλ is given by

Sλ = det
(
Hλi−i+j

)
1≤i,j≤r,

where r ≥ l(λ) and

Hk = character of the kth symmetric power Sk(Cn)

of the vector representation of GLn.



Specialization

Let ρn : Λ→ Rep(GLn) be the ring homomorphism given by

ρn(hk) = Hk (k ≥ 0)

Then

ρn(ek) = Ek = character of the kth exterior power
∧k(Cn).

By the dual Jacobi–Trudi identity, we have

ρn(sλ) = det
(
Etλi−i+j

)

Hence it follows from Ek = 0 (k > n) that

ρn(sλ) =

{
Sλ if l(λ) ≤ n,

0 if l(λ) > n.



Tensor product

Let LRλµ,ν be the Littlewood–Richardson coefficient :

sµsν =
∑

λ

LRλµ,ν sλ in Λ

where λ runs over all partitions. Then by applying ρn, we have

SµSν =
∑

l(λ)≤n
LRλµ,ν Sλ in Rep(GLn),

where λ runs over all partitions with length ≤ n.
Hence the decomposition of the tensor product of two irreducible poly-

nomial representations corresponding to µ and ν is independent of n
when l(µ) ≤ n and l(ν) ≤ n.



Orthogonal Universal Characters
and

Representations of ON

(Littlewood, King, Koike–Terada)



Representations of ON

The irreducible representations of ON are parametrized by partitions
λ such that tλ1 + tλ2 ≤ N . We call such a partition an N -orthogonal
partition. For an N -orthogonal partition λ, the corresponding irreducible
character S[λ] is given by

S[λ]= det
(
Hλi−i+j −Hλi−i−j

)
1≤i,j≤r

= det




Hλ1
−Hλ1−2 Hλ1+1 −Hλ1−3 Hλ1+2 −Hλ1−4 · · ·

Hλ2−1 −Hλ2−3 Hλ2
−Hλ2−4 Hλ2+1 −Hλ2−5 · · ·

Hλ3−2 −Hλ3−4 Hλ3−1 −Hλ3−5 Hλ3
−Hλ3−6 · · ·

... ... ... . . .




where r ≥ l(λ) and Hk is the character of the k-th symmetric tensor
Sk(CN ) of the vector representation of ON .



Orthogonal universal characters

For any partition λ, we define a symmetric function s[λ] (called an

orthogonal universal character) by

s[λ] = det
(
hλi−i+j − hλi−i−j

)
1≤i,j≤r.

Let πN : Λ→ Rep(ON ) be the ring homomorphism defined by

πN (hk) = Hk (k ≥ 0).

Then we have

πN (s[λ]) = S[λ] if tλ1 + tλ2 ≤ N.

Question : For a partition λ satisfying tλ1 + tλ2 > N ,

πN (s[λ]) = ?



Properties of orthogonal universal characters

• Cauchy–type identity :

∑

λ

s[λ](X)sλ(U) =

∏
i≤j(1− uiuj)∏
i,j(1− xiuj)

.

• Schur function expansion :

s[λ] =
∑
µ

(∑
κ

(−1)|κ|/2 LRλµ,κ

)
sµ,

where κ runs over all partitions of the form κ = (α1 + 1, α2 +
1, · · · |α1, α2, · · · ) in the Frobenius notation.

• {s[λ]}λ forms a basis of Λ.



Properties of orthogonal universal characters (cont.)

• Duality : Under the involution ω on Λ, we have

ω(s[λ]) = s〈tλ〉,
where s〈µ〉 is the symplectic universal character given by

s〈µ〉 =
1

2
det
(
hµi−i+j + hµi−i−j+2

)

• Dual Jacobi–Trudi type identity :

s[λ] =
1

2
det
(
etλi−i+j + etλi−i−j+2

)
.



Specialization

By the dual Jacobi–Trudi type identity, we have

πN (s[λ]) =
1

2
det
(
Etλi−i+j + Etλi−i−j+2

)
,

where

Ek = character of the kth exterior powere
∧k(CN ).

This can be rewritten as

πN (s[λ]) = det t
(−→
E α1,

−→
E α2, · · · ,

−→
E αr

)
,

where
α = (tλ1,

tλ2 − 1, · · · , tλr − (r − 1)), r = l(tλ),

and
−→
E k is the row vector given by

−→
E k = (Ek, Ek+1 + Ek−1, Ek+2 + Ek−2, · · · , Ek+(r−1) + Ek−(r−1)).



Using this determinant expression and the relations
−→
E k = 0 for k ≥ N + r,

EN
−→
E k =

−→
EN−k,

we can compute πN (s[λ]) if tλ1 + tλ2 > N .

(1) If αi ≥ N + r for some i, then we have

πN (s[λ]) = 0.

(2) If αi + αj = N for some i and j, then we have

πN (s[λ]) = 0.

(3) Otherwise we can find a permutation σ ∈ Sr and an N -orthogonal
partition µ such that

πN (s[λ]) = sgn(σ)S[µ].

Here σ and µ are given as follows.



Let p be the index satisfying

α1 > · · · > αp >
N

2
≥ αp+1 > · · · > αr.

And define a sequence β by putting

β =





(N − α1, · · · , N − αp, αp+1, · · · , αr) if p is even,
(N − α1, · · · , N − αp+1, αp+2, · · · , αr)

if p is odd and αp + αp+1 ≥ N + 1,
(N − α1, · · · , N − αp−1, αp, · · · , αr)

if p is odd and αp + αp+1 ≤ N − 1.

And let γ be the sequence from β obtained by rearranging in decreasing
order, and σ be a permutation such that γ = σ(β). Then the N -
orthogonal partition µ is determined by the condition

γ = (tµ1,
tµ2 − 1, · · · , tµr − (r − 1)).



Tensor product

In the ring Λ of symmetric functions, we can show that

s[µ]s[ν] =
∑

λ


∑

τ,ξ,η

LR
µ
τ,ξ LRντ,η LRλξ,η


 s[λ],

where λ and τ , ξ, η run over all partitions.
If µ and ν are N -orthogonal partitions, then we have

S[µ]S[ν] =
∑

λ


∑

τ,ξ,η

LR
µ
τ,ξ LRντ,η LRλξ,η


 πN (s[λ]),

Together with the algorithm computing πN (s[λ]), we obtain the actual

decomposition of S[µ]S[ν] in the representation ring Rep(ON ).



Stability of tensor product decomposition
Note that

LRαβ,γ = 0

unless

tβ1 + tβ2 + tγ1 + tγ2 ≥ tα1 + tα2 ≥ max(tβ1 + tβ2,
tγ1 + tγ2).

Hence we see that, if tµ1 + tµ2 + tν1 + tν2 ≤ N , then

S[µ]S[ν] =
∑

λ


∑

τ,ξ,η

LR
µ
τ,ξ LRντ,η LRλξ,η


S[λ],

where λ runs over all N -orthogonal partitions, i.e., the decomposition is
stable in N .



Spinor Universal Characters
and

Spinor Representations of PinN



Representations of PinN
Let PinN be the pin group :

1 −→ {±1} −→ PinN −→ ON −→ 1.

So any representation of ON can be viewed as a representation of PinN .
For an N -orthogonal partition λ, we denote by the same symbol S[λ]
the character of the irreducible representation obtained by lifting the
irreducible representation of ON corresponding to λ. Similarly, let Hk
and Ek denote the characters of PinN corresponding to the symmetric
and exterior powers of the vector representation of ON .

Note that EN is a one-dimensional character and

SpinN = KerEN .



We say that an irreducible representation of PinN is

• a tensor representation if it factors through ON ,

• a spinor representation otherwise.

We put

Rep(PinN ) = the representation ring of PinN ,

Rep+(PinN ) = span of the tensor irreducible characters,

Rep−(PinN ) = span of the spinor irreducible characters.

Then we have

Rep(PinN ) = Rep+(PinN )⊕ Rep−(PinN ),

and
Rep+(PinN ) ∼= Rep(ON ).



Spin representation

Let ∆ be the character of the spin representation of PinN , whose
dimension is 2bN/2c.

If N is odd, then
EN ·∆ 6= ∆,

and

∆|SpinN
= irred. character with h. w.

(
1

2
,
1

2
, · · · , 1

2

)
.

If N is even, then
EN ·∆ = ∆,

and

∆|SpinN
= irred. character with h. w.

(
1

2
,
1

2
, · · · , 1

2
,
1

2

)

+ irred. character with h. w.

(
1

2
,
1

2
, · · · , 1

2
,−1

2

)
.



Irreducible spinor characters

Theorem 1 For a partition λ of length ≤ N/2, we define a class
function S[λ+1/2] on PinN by

S[λ+1/2] = ∆ · det
(
Hλi−i+j − ENHλi−i−j+1

)
1≤i,j≤r,

where r ≥ l(λ). Then S[λ+1/2] is an irreducible character of PinN .

Remark If N is odd, then Rep−(PinN ) has a basis

S[λ+1/2], EN · S[λ+1/2] (l(λ) ≤ N/2).

If N is even, then Rep−(PinN ) has a basis

S[λ+1/2] (l(λ) ≤ N/2).



Idea of Proof of Theorem 1 : It is enough to show that

• S[λ+1/2] is a virtual character, i.e., an integral linear combination of
characters,

• If 〈 , 〉 is the canonial symmetric bilinear form on the space of
class functions of PinN , then

〈S[λ+1/2], S[λ+1/2]〉 = 1,

• The value of S[λ+1/2] at the identity element of PinN is positive.



Spinor universal characters

We work in the ring Λ̃ of symmetric functions with coefficients in the
ring Z[ε]/(ε2 − 1) :

Λ̃ = Λ⊗Z Z[ε]/(ε2 − 1),

For any partition λ, we define a symmetric function s′
[λ]

(called a spinor

universal character) by putting

s′[λ] = det
(
hλi−i+j − εhλi−i−j+1

)
1≤i,j≤r.

Let π̃N : Λ̃→ Rep(PinN ) be the ring homomorphism given by

π̃N (hk) = Hk (k ≥ 0) and π̃N (ε) = EN .

Then we have, for a partition λ of length ≤ N/2,

S[λ+1/2] = ∆ · π̃N (s′[λ]).



Properties of spinor universal characters s′
[λ]

• Cauchy–type identity :

∑

λ

s′[λ](X)sλ(U) =

∏
i(1− εui)

∏
i<j(1− uiuj)∏

i,j(1− xiuj)
.

• Schur function expansion :

s′[λ] =
∑
µ


∑

ν=tν

(−1)(|ν|+l(ν))/2ε|ν| LRλµ,ν


 sµ,

where the inner summation is taken over all self-conjugate partitions
ν.

• {s′
[λ]
, εs′

[λ]
}λ form a Z-basis of Λ̃.



Properties of spinor universal characters s′
[λ]

(cont.)

• Duality :
ω(s′[λ]) = s′[tλ].

• Dual Jacobi–Trudi type identity

s′[λ] = det
(
etλi−i+j − εetλi−i−j+1

)
.



Specialization

By the dual Jacobi–Trudi type identity, we have

π̃N (s′[λ]) = det
(
Etλi−i+j − ENEtλi−i−j+1

)
1≤i,j≤r,

where r = l(tλ).
We put

E′k = Ek − ENEk−1,

and define a row vector
−→
E ′k by

−→
E ′k =

(
E′k, E

′
k+1 + E′k−1, · · · , E′k+(r−1) + E′k−(r−1)

)
.

Then the above determinant can be rewritten as

π̃N (s′[λ]) = det t
(−→
E ′α1

,
−→
E ′α2

, · · · ,−→E ′αr
)

where
α = (tλ1,

tλ2 − 1, · · · , tλr − (r − 1)).



We can use this determinant expression and the relations
−→
E ′k = 0 for k ≥ N + r,
−→
E ′k +

−→
E ′N+1−k = 0

to compute π̃N (s′
[λ]

) for a partition λ with length > N/2.

(1) If αi ≥ N + r for some i, then we have

π̃N (s′[λ]) = 0.

(2) If αi + αj = N + 1 for some i and j, then we have

π̃N (s′[λ]) = 0.

(3) Otherwise we can find an index p, a permutation σ and a partition
µ of length ≤ N/2 such that

∆ · π̃N (s′[λ]) = (−1)p sgn(σ)S[µ+1/2].



Here p, σ and µ are given as follows. Let p be an index such that

α1 > · · · > αp >
N + 1

2
≥ αp+1 > · · · > αr,

and define a new sequence β by

β = (N + 1− α1, · · · , N + 1− αp, αp+1, · · · , αr).
Let γ be the sequence obtained from β by rearranging components in
decreasing order, and σ be a permutation such that γ = σ(β). Finally
a partition µ is given by

γ = (tµ1,
tµ2, · · · , tµr)



Example Let λ = (4, 3, 3, 3, 2, 2, 1, 1) and N = 8. Then tλ =
(8, 6, 4, 1) and

α = (8, 6− 1, 4− 2, 1− 3) = (8, 5, 2,−2).

There are two components larger than (N + 1)/2 = 9/2, so p = 2 and

β = (9− 8, 9− 5, 2,−2) = (1, 4, 2,−2).

Hence

γ = (4, 2, 1,−2), σ =

(
1 2 3 4
3 1 2 4

)

and

tµ = (4, 2 + 1, 1 + 2,−2 + 3) = (4, 3, 3, 1), µ = (4, 3, 3, 1).

Hence we have

∆ · π̃8(s′[4,3,3,3,2,2,1,1]) = (−1)2 · (−1)2 · S[(4,3,3,1)+1/2].



Tensor product of a spinor repr. and a tensor repr.

In order to compute the product

S[µ+1/2] · S[ν] = ∆ · π̃N (s′[µ]s[ν]) in Rep(PinN ),

it is enough to compute

s′[µ] · s[ν] in Λ̃.

Theorem 2 In the ring Λ̃, we have

s′[µ] · s[ν] =
∑

λ




∑

ξ,η,τ
ν/σ : v-strip

LRλξ,η LR
µ
τ,ξ LRστ,η ε

|ν|−|σ|


 s′[λ],

where ξ, η, τ run over all partitions and σ runs over all partitions such
that ν/σ is a vertical strip.



By applying the specialization π̃N , we obtain

S[µ+1/2]·S[ν] =
∑

λ


 ∑

ξ,η,τ,σ

LRλξ,η LR
µ
τ,ξ LRστ,ηE

|ν|−|σ|
N


∆·π̃N (s′[λ]),

where λ runs over all partitions.

If l(µ) + l(ν) ≤ N/2, then we have

S[µ+1/2] · S[ν] =
∑

λ


 ∑

ξ,η,τ,σ

LRλξ,η LR
µ
τ,ξ LRστ,ηE

|ν|−|σ|
N


S[λ+1/2],

where λ runs over all partitions of length ≤ N/2. In this case, the
decomposition depends only on µ and ν (and the parity of N).



Proof of Theorem 2 Consider the generating function with respect
to Schur functions.∑
µ,ν

s′[µ](X)s[ν](X)sµ(U)sν(V )

=

∏
i(1− εui)

∏
i<j(1− uiuj)∏

i,j(1− xiuj)
·
∏
i≤j(1− vivj)∏
i,j(1− xivj)

=
∏

i

(1 + εvi) ·
1∏

i,j(1− uivj)

·
∏
i(1− εui)

∏
i(1− εvi)

∏
i<j(1− uiuj)

∏
i,j(1− uivj)

∏
i<j(1− vivj)∏

i,j(1− xiuj)
∏
i,j(1− xivj)

=


∑

k≥0

εkek(V )


 ·

(∑
τ

sτ (U)sτ (V )

)
·

∑

λ

s′[λ](X)sλ(U ∪ V )


 .



Now we express

ek(V ) · sτ (U)sτ (V ) · sλ(U ∪ V )

as a linear combinatioin of the product of Schur functions in U and V .
Finally we get∑
µ,ν

s′[µ](X)s[ν](X)sµ(U)sν(V )

=
∑
µ,ν

∑

λ


 ∑

ξ,η,τ,σ

ε|ν|−|σ| LRλξ,η LR
µ
τ,ξ LRστ,η


 s′[λ](X)sµ(U)sν(V ),

where ν runs over all partitions such that ν/σ is a vertical strip. By
comparing the coefficient of sµ(U)sν(V ), we obtain the desired identity.



Tensor product of two spinor repr.

We consider the product

S[µ+1/2] · S[ν+1/2] = ∆2 · π̃N (s′[µ]s
′
[ν]) in Rep(PinN ).

It is known that

∆2 =





1

2

N∑

r=0

ErNEr if N is odd,

N∑

r=0

ErNEr if N is even.

Hence the tensor product of two spinor representations can be computed
by using the following two formulae.



Theorem 3 In the ring Λ̃, we have

s′[µ] · s′[ν] =
∑

λ


∑

ξ,η,τ

LRλξ,η LR
µ
τ,ξ LRντ,η


 s′[λ].

Also we have ∑

k≥0

εkek · s′[µ] =
∑

λ

ε|λ|−|µ|s[λ],

where λ runs over all partitions such that λ/µ is a vertical strip.


