

Spherical Whittaker functions on Metaplectic $G L(r)$

Omer Offen
joint with Gautam Chinta
Banff, June 2010

Setting

Let F be a non-archimedean local field,

Setting

Let F be a non-archimedean local field,
\mathcal{O}_{F} the ring of integers of F.

Setting

Let F be a non-archimedean local field,
\mathcal{O}_{F} the ring of integers of F.
(e.g. $F=\mathbb{Q}_{p}, \mathcal{O}_{F}=\mathbb{Z}_{p}$ or $F=\mathbb{F}_{q}((t)), \mathcal{O}_{F}=\mathbb{F}_{q}[[t]]$.)

Setting

Let F be a non-archimedean local field,
\mathcal{O}_{F} the ring of integers of F.
(e.g. $F=\mathbb{Q}_{p}, \mathcal{O}_{F}=\mathbb{Z}_{p}$ or $F=\mathbb{F}_{q}((t)), \mathcal{O}_{F}=\mathbb{F}_{q}[[t]]$.)

Let $G=G L_{r}(F)$ and $K=G L_{r}\left(\mathcal{O}_{F}\right)$.

Setting

Let F be a non-archimedean local field,
\mathcal{O}_{F} the ring of integers of F.
(e.g. $F=\mathbb{Q}_{p}, \mathcal{O}_{F}=\mathbb{Z}_{p}$ or $F=\mathbb{F}_{q}((t)), \mathcal{O}_{F}=\mathbb{F}_{q}[[t]]$.)

Let $G=G L_{r}(F)$ and $K=G L_{r}\left(\mathcal{O}_{F}\right)$.

The spherical Hecke algebra $\mathcal{H}_{K}(G):=C_{c}^{\infty}(K \backslash G / K)$
(commutative algebra w.r.t convolution)

The spherical Hecke algebra $\mathcal{H}_{K}(G):=C_{c}^{\infty}(K \backslash G / K)$
(commutative algebra w.r.t convolution)
Characters of $\mathcal{H}_{K}(G)$ are parameterized by $\left(\mathbb{C}^{*}\right)^{r} / S_{r}$

The spherical Hecke algebra $\mathcal{H}_{K}(G):=C_{c}^{\infty}(K \backslash G / K)$
(commutative algebra w.r.t convolution)
Characters of $\mathcal{H}_{K}(G)$ are parameterized by $\left(\mathbb{C}^{*}\right)^{r} / S_{r}$ for $y \in\left(\mathbb{C}^{*}\right)^{r}$ we denote by $f \mapsto \hat{f}(y)$ the associated character.

The spherical Hecke algebra $\mathcal{H}_{K}(G):=C_{c}^{\infty}(K \backslash G / K)$
(commutative algebra w.r.t convolution)
Characters of $\mathcal{H}_{K}(G)$ are parameterized by $\left(\mathbb{C}^{*}\right)^{r} / S_{r}$ for $y \in\left(\mathbb{C}^{*}\right)^{r}$ we denote by $f \mapsto \hat{f}(y)$ the associated character. $\mathcal{H}_{K}(G)$ acts on $C^{\infty}(G)$ by convolution

$$
f * \phi(g)=\int_{G} f(x) \phi(g x) d x, f \in \mathcal{H}_{K}(G), \phi \in C^{\infty}(G), g \in G
$$

The spherical Hecke algebra $\mathcal{H}_{K}(G):=C_{c}^{\infty}(K \backslash G / K)$
(commutative algebra w.r.t convolution)
Characters of $\mathcal{H}_{K}(G)$ are parameterized by $\left(\mathbb{C}^{*}\right)^{r} / S_{r}$ for $y \in\left(\mathbb{C}^{*}\right)^{r}$ we denote by $f \mapsto \hat{f}(y)$ the associated character. $\mathcal{H}_{K}(G)$ acts on $C^{\infty}(G)$ by convolution

$$
f * \phi(g)=\int_{G} f(x) \phi(g x) d x, f \in \mathcal{H}_{K}(G), \phi \in C^{\infty}(G), g \in G
$$

ψ_{0}-a character of F with conductor \mathcal{O}_{F}.
ψ_{0}-a character of F with conductor \mathcal{O}_{F}.
U-the subgroup of upper triangular unipotent matrices in G
ψ_{0}-a character of F with conductor \mathcal{O}_{F}.
U-the subgroup of upper triangular unipotent matrices in G and ψ the generic character on U defined by

$$
\psi(u)=\psi_{0}\left(u_{1,2}+\cdots+u_{r-1, r}\right), u \in U
$$

ψ_{0}-a character of F with conductor \mathcal{O}_{F}.
U-the subgroup of upper triangular unipotent matrices in G and ψ the generic character on U defined by

$$
\psi(u)=\psi_{0}\left(u_{1,2}+\cdots+u_{r-1, r}\right), u \in U
$$

A spherical Whittaker function on G is an element $W \in C^{\infty}(U, \psi \backslash G / K)$, which is a $\mathcal{H}_{K}(G)$-eigenfunction.

A spherical Whittaker function on G is an element $W \in C^{\infty}(U, \psi \backslash G / K)$, which is a $\mathcal{H}_{K}(G)$-eigenfunction. In other words:

1. for $u \in U, g \in G, k \in K$,

$$
W(u g k)=\psi(u) W(g)
$$

A spherical Whittaker function on G is an element $W \in C^{\infty}(U, \psi \backslash G / K)$, which is a $\mathcal{H}_{K}(G)$-eigenfunction.

In other words:

1. for $u \in U, g \in G, k \in K$,

$$
W(u g k)=\psi(u) W(g)
$$

2. $\exists y \in\left(\mathbb{C}^{*}\right)^{r}$ such that

A spherical Whittaker function on G is an element $W \in C^{\infty}(U, \psi \backslash G / K)$, which is a $\mathcal{H}_{K}(G)$-eigenfunction.

In other words:

1. for $u \in U, g \in G, k \in K$,

$$
W(u g k)=\psi(u) W(g)
$$

2. $\exists y \in\left(\mathbb{C}^{*}\right)^{r}$ such that

$$
\int_{G} f(x) W(g x) d x=\hat{f}(y) W(g), \quad f \in \mathcal{H}_{K}(G), g \in G
$$

Spherical Whittaker functions can be constructed using the representation theory of G.

Spherical Whittaker functions can be constructed using the representation theory of G.

Let (π, V) be an irreducible representation of G.

Spherical Whittaker functions can be constructed using the representation theory of G.

Let (π, V) be an irreducible representation of G. Let

$$
V^{K}=\{v \in V: \pi(k) v=v, k \in K\}
$$

be the space of spherical vectors of π

Spherical Whittaker functions can be constructed using the representation theory of G.

Let (π, V) be an irreducible representation of G. Let

$$
V^{K}=\{v \in V: \pi(k) v=v, k \in K\}
$$

be the space of spherical vectors of π and let

$$
\left(V^{*}\right)^{U, \psi}=\left\{\ell \in V^{*}: \ell(\pi(u) v)=\psi(u) v, u \in U\right\}
$$

be the space of Whittaker functionals on π.

Spherical Whittaker functions can be constructed using the representation theory of G.

Let (π, V) be an irreducible representation of G. Let

$$
V^{K}=\{v \in V: \pi(k) v=v, k \in K\}
$$

be the space of spherical vectors of π and let

$$
\left(V^{*}\right)^{U, \psi}=\left\{\ell \in V^{*}: \ell(\pi(u) v)=\psi(u) v, u \in U\right\}
$$

be the space of Whittaker functionals on π.
For $v \in V^{K}$ and $\ell \in\left(V^{*}\right)^{U, \psi}$

Spherical Whittaker functions can be constructed using the representation theory of G.

Let (π, V) be an irreducible representation of G. Let

$$
V^{K}=\{v \in V: \pi(k) v=v, k \in K\}
$$

be the space of spherical vectors of π and let

$$
\left(V^{*}\right)^{U, \psi}=\left\{\ell \in V^{*}: \ell(\pi(u) v)=\psi(u) v, u \in U\right\}
$$

be the space of Whittaker functionals on π.
For $v \in V^{K}$ and $\ell \in\left(V^{*}\right)^{U, \psi}$

$$
W(g):=\ell(\pi(g) v)
$$

is a spherical Whittaker function.

Multiplicity one of Whittaker functionals

Multiplicity one of Whittaker functionals

For every irreducible representation (π, V) of G we have

$$
\operatorname{dim}\left(V^{*}\right)^{U, \psi} \leq 1
$$

Multiplicity one of Whittaker functionals

For every irreducible representation (π, V) of G we have

$$
\operatorname{dim}\left(V^{*}\right)^{U, \psi} \leq 1
$$

Representations such that $\left(V^{*}\right)^{U, \psi} \neq 0$ are called generic.

Multiplicity one of Whittaker functionals

For every irreducible representation (π, V) of G we have

$$
\operatorname{dim}\left(V^{*}\right)^{U, \psi} \leq 1
$$

Representations such that $\left(V^{*}\right)^{U, \psi} \neq 0$ are called generic.

Multiplicity one of spherical vectors

Multiplicity one of spherical vectors

For every irreducible representation (π, V) of G we have

$$
\operatorname{dim} V^{K} \leq 1
$$

Multiplicity one of spherical vectors

For every irreducible representation (π, V) of G we have

$$
\operatorname{dim} V^{K} \leq 1
$$

Representations such that $V^{K} \neq 0$ are called spherical.

Multiplicity one of spherical vectors

For every irreducible representation (π, V) of G we have

$$
\operatorname{dim} V^{K} \leq 1
$$

Representations such that $V^{K} \neq 0$ are called spherical.
They are parameterized by $\left(\mathbb{C}^{*}\right)^{r} / S_{r}$
(or by semi-simple conjugacy classes in $G L_{r}(\mathbb{C})$).

Multiplicity one of spherical vectors

For every irreducible representation (π, V) of G we have

$$
\operatorname{dim} V^{K} \leq 1
$$

Representations such that $V^{K} \neq 0$ are called spherical.
They are parameterized by $\left(\mathbb{C}^{*}\right)^{r} / S_{r}$
(or by semi-simple conjugacy classes in $G L_{r}(\mathbb{C})$).

The spherical principal series

The spherical principal series

Let A be the subgroup of diagonal matrices in G and let $B=A U$.

The spherical principal series

Let A be the subgroup of diagonal matrices in G and let $B=A U$.
For $y \in\left(\mathbb{C}^{*}\right)^{r}$ let χ_{y} be the spherical character of B defined by

$$
\chi_{y}\left(\operatorname{diag}\left(a_{1}, \ldots, a_{r}\right) u\right)=\prod_{i=1}^{r} y_{i}^{\operatorname{val}_{F}\left(a_{i}\right)}
$$

The spherical principal series

Let A be the subgroup of diagonal matrices in G and let $B=A U$.
For $y \in\left(\mathbb{C}^{*}\right)^{r}$ let χ_{y} be the spherical character of B defined by

$$
\begin{gathered}
\chi_{y}\left(\operatorname{diag}\left(a_{1}, \ldots, a_{r}\right) u\right)=\prod_{i=1}^{r} y_{i}^{\operatorname{val}_{F}\left(a_{i}\right)} . \\
I(y)=\left\{\varphi: G \rightarrow \mathbb{C} \left\lvert\, \varphi(b g)=\left(\delta_{B}^{\frac{1}{2}} \chi_{y}\right)(b) \varphi(g)\right.\right\}
\end{gathered}
$$

is the associated spherical principal series representation.

The spherical principal series

Let A be the subgroup of diagonal matrices in G and let $B=A U$.
For $y \in\left(\mathbb{C}^{*}\right)^{r}$ let χ_{y} be the spherical character of B defined by

$$
\begin{gathered}
\chi_{y}\left(\operatorname{diag}\left(a_{1}, \ldots, a_{r}\right) u\right)=\prod_{i=1}^{r} y_{i}^{\operatorname{val}_{F}\left(a_{i}\right)} . \\
I(y)=\left\{\varphi: G \rightarrow \mathbb{C} \left\lvert\, \varphi(b g)=\left(\delta_{B}^{\frac{1}{2}} \chi_{y}\right)(b) \varphi(g)\right.\right\}
\end{gathered}
$$

is the associated spherical principal series representation. Then $\operatorname{dim} I(y)^{K}=1$ (i.e. $I(y)$ is indeed spherical)

The spherical principal series

Let A be the subgroup of diagonal matrices in G and let $B=A U$.
For $y \in\left(\mathbb{C}^{*}\right)^{r}$ let χ_{y} be the spherical character of B defined by

$$
\begin{gathered}
\chi_{y}\left(\operatorname{diag}\left(a_{1}, \ldots, a_{r}\right) u\right)=\prod_{i=1}^{r} y_{i}^{\operatorname{val}_{F}\left(a_{i}\right)} . \\
I(y)=\left\{\varphi: G \rightarrow \mathbb{C} \left\lvert\, \varphi(b g)=\left(\delta_{B}^{\frac{1}{2}} \chi_{y}\right)(b) \varphi(g)\right.\right\}
\end{gathered}
$$

is the associated spherical principal series representation. Then $\operatorname{dim} I(y)^{K}=1$ (i.e. $I(y)$ is indeed spherical) and $\exists!\varphi_{K} \in I(y)^{K}$ such that $\varphi_{K}(e)=1$.

The spherical principal series

Let A be the subgroup of diagonal matrices in G and let $B=A U$.
For $y \in\left(\mathbb{C}^{*}\right)^{r}$ let χ_{y} be the spherical character of B defined by

$$
\begin{gathered}
\chi_{y}\left(\operatorname{diag}\left(a_{1}, \ldots, a_{r}\right) u\right)=\prod_{i=1}^{r} y_{i}^{\operatorname{val}_{F}\left(a_{i}\right)} . \\
I(y)=\left\{\varphi: G \rightarrow \mathbb{C} \left\lvert\, \varphi(b g)=\left(\delta_{B}^{\frac{1}{2}} \chi_{y}\right)(b) \varphi(g)\right.\right\}
\end{gathered}
$$

is the associated spherical principal series representation. Then $\operatorname{dim} I(y)^{K}=1$ (i.e. $I(y)$ is indeed spherical) and $\exists!\varphi_{K} \in I(y)^{K}$ such that $\varphi_{K}(e)=1$.

Every irreducible spherical representation of G is the unique spherical irreducible sub-quotient of $I(y)$ for some $y \in\left(\mathbb{C}^{*}\right)^{r}$.

The spherical principal series

Let A be the subgroup of diagonal matrices in G and let $B=A U$.
For $y \in\left(\mathbb{C}^{*}\right)^{r}$ let χ_{y} be the spherical character of B defined by

$$
\begin{gathered}
\chi_{y}\left(\operatorname{diag}\left(a_{1}, \ldots, a_{r}\right) u\right)=\prod_{i=1}^{r} y_{i}^{\operatorname{val}_{F}\left(a_{i}\right)} . \\
I(y)=\left\{\varphi: G \rightarrow \mathbb{C} \left\lvert\, \varphi(b g)=\left(\delta_{B}^{\frac{1}{2}} \chi_{y}\right)(b) \varphi(g)\right.\right\}
\end{gathered}
$$

is the associated spherical principal series representation. Then $\operatorname{dim} I(y)^{K}=1$ (i.e. $I(y)$ is indeed spherical) and $\exists!\varphi_{K} \in I(y)^{K}$ such that $\varphi_{K}(e)=1$.

Every irreducible spherical representation of G is the unique spherical irreducible sub-quotient of $I(y)$ for some $y \in\left(\mathbb{C}^{*}\right)^{r}$.

The Whittaker functional on the spherical principal series

Let w_{0} be the long Weyl element of G

$$
w_{0}=\left(\begin{array}{lll}
& & 1 \\
& . & \\
1 & &
\end{array}\right)
$$

The Whittaker functional on the spherical principal series

Let w_{0} be the long Weyl element of G

$$
w_{0}=\left(\begin{array}{lll}
& & 1 \\
& . & \\
1 & &
\end{array}\right)
$$

For $\varphi \in I(y)$ the Jacquet integral

$$
\Omega(\varphi: y)=\int_{U} \varphi\left(w_{0} u\right) \bar{\psi}(u) d u
$$

converges when $\operatorname{Re} y_{1} \gg \operatorname{Re} y_{2} \gg \cdots \gg \operatorname{Re} y_{r}$

The Whittaker functional on the spherical principal series

Let w_{0} be the long Weyl element of G

$$
w_{0}=\left(\begin{array}{lll}
& & 1 \\
& . & \\
1 & &
\end{array}\right)
$$

For $\varphi \in I(y)$ the Jacquet integral

$$
\Omega(\varphi: y)=\int_{U} \varphi\left(w_{0} u\right) \bar{\psi}(u) d u
$$

converges when $\operatorname{Re} y_{1} \gg \operatorname{Re} y_{2} \gg \cdots \gg \operatorname{Re} y_{r}$ and admits a holomorphic continuation to $\left(\mathbb{C}^{*}\right)^{r}$.

The Whittaker functional on the spherical principal series

Let w_{0} be the long Weyl element of G

$$
w_{0}=\left(\begin{array}{lll}
& & 1 \\
& . & \\
1 & &
\end{array}\right)
$$

For $\varphi \in I(y)$ the Jacquet integral

$$
\Omega(\varphi: y)=\int_{U} \varphi\left(w_{0} u\right) \bar{\psi}(u) d u
$$

converges when $\operatorname{Re} y_{1} \gg \operatorname{Re} y_{2} \gg \cdots \gg \operatorname{Re} y_{r}$ and admits a holomorphic continuation to $\left(\mathbb{C}^{*}\right)^{r}$.
$\Omega(y)$ is a non-zero Whittaker functional on $I(y)$

The Whittaker functional on the spherical principal series

Let w_{0} be the long Weyl element of G

$$
w_{0}=\left(\begin{array}{lll}
& & 1 \\
& . & \\
1 & &
\end{array}\right)
$$

For $\varphi \in I(y)$ the Jacquet integral

$$
\Omega(\varphi: y)=\int_{U} \varphi\left(w_{0} u\right) \bar{\psi}(u) d u
$$

converges when $\operatorname{Re} y_{1} \gg \operatorname{Re} y_{2} \gg \cdots \gg \operatorname{Re} y_{r}$ and admits a holomorphic continuation to $\left(\mathbb{C}^{*}\right)^{r}$.
$\Omega(y)$ is a non-zero Whittaker functional on $I(y)$
(in particular, $I(y)$ is generic).

The Whittaker functional on the spherical principal series

Let w_{0} be the long Weyl element of G

$$
w_{0}=\left(\begin{array}{lll}
& & 1 \\
& . & \\
1 & &
\end{array}\right)
$$

For $\varphi \in I(y)$ the Jacquet integral

$$
\Omega(\varphi: y)=\int_{U} \varphi\left(w_{0} u\right) \bar{\psi}(u) d u
$$

converges when $\operatorname{Re} y_{1} \gg \operatorname{Re} y_{2} \gg \cdots \gg \operatorname{Re} y_{r}$ and admits a holomorphic continuation to $\left(\mathbb{C}^{*}\right)^{r}$.
$\Omega(y)$ is a non-zero Whittaker functional on $I(y)$
(in particular, $I(y)$ is generic).

The spherical Whittaker functions

The spherical Whittaker functions

Using the recipe $W(g)=\ell(\pi(g) v)$ we construct a spherical Whittaker function $W(y)$ on G with Hecke eigenvalue $f \mapsto \hat{f}(y)$

The spherical Whittaker functions

Using the recipe $W(g)=\ell(\pi(g) v)$ we construct a spherical Whittaker function $W(y)$ on G with Hecke eigenvalue $f \mapsto \hat{f}(y)$ by

$$
W(g: y)=\Omega\left(I(g, y) \varphi_{K}: y\right)
$$

The spherical Whittaker functions

Using the recipe $W(g)=\ell(\pi(g) v)$ we construct a spherical Whittaker function $W(y)$ on G with Hecke eigenvalue $f \mapsto \hat{f}(y)$ by

$$
W(g: y)=\Omega\left(I(g, y) \varphi_{K}: y\right)
$$

Let $\varpi \in F$ be a uniformizer, $q=|\varpi|_{F}^{-1}=$ size of residual field.

Let $\varpi \in F$ be a uniformizer, $q=|\varpi|_{F}^{-1}=$ size of residual field.
For $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \mathbb{Z}^{r}$ let

$$
\varpi^{\lambda}=\operatorname{diag}\left(\varpi^{\lambda_{1}}, \ldots, \varpi^{\lambda_{r}}\right)
$$

Let $\varpi \in F$ be a uniformizer, $q=|\varpi|_{F}^{-1}=$ size of residual field.
For $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \mathbb{Z}^{r}$ let

$$
\varpi^{\lambda}=\operatorname{diag}\left(\varpi^{\lambda_{1}}, \ldots, \varpi^{\lambda_{r}}\right)
$$

By the Iwasawa decomposition

$$
G=\cup_{\lambda \in \mathbb{Z}^{r}} U \varpi^{\lambda} K .
$$

Let $\varpi \in F$ be a uniformizer, $q=|\varpi|_{F}^{-1}=$ size of residual field.
For $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \mathbb{Z}^{r}$ let

$$
\varpi^{\lambda}=\operatorname{diag}\left(\varpi^{\lambda_{1}}, \ldots, \varpi^{\lambda_{r}}\right)
$$

By the Iwasawa decomposition

$$
G=\cup_{\lambda \in \mathbb{Z}^{r}} U \varpi^{\lambda} K .
$$

Therefore $W(y)$ is determined by its values $W\left(\varpi^{\lambda}: y\right)$.

Let $\varpi \in F$ be a uniformizer, $q=|\varpi|_{F}^{-1}=$ size of residual field.
For $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \mathbb{Z}^{r}$ let

$$
\varpi^{\lambda}=\operatorname{diag}\left(\varpi^{\lambda_{1}}, \ldots, \varpi^{\lambda_{r}}\right)
$$

By the Iwasawa decomposition

$$
G=\cup_{\lambda \in \mathbb{Z}^{r}} U \varpi^{\lambda} K .
$$

Therefore $W(y)$ is determined by its values $W\left(\varpi^{\lambda}: y\right)$.
Furthermore

$$
W\left(\varpi^{\lambda}: y\right)=0 \text { unless } \lambda_{1} \geq \cdots \geq \lambda_{r}
$$

Let $\varpi \in F$ be a uniformizer, $q=|\varpi|_{F}^{-1}=$ size of residual field.
For $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \mathbb{Z}^{r}$ let

$$
\varpi^{\lambda}=\operatorname{diag}\left(\varpi^{\lambda_{1}}, \ldots, \varpi^{\lambda_{r}}\right)
$$

By the Iwasawa decomposition

$$
G=\cup_{\lambda \in \mathbb{Z}^{r}} U \varpi^{\lambda} K .
$$

Therefore $W(y)$ is determined by its values $W\left(\varpi^{\lambda}: y\right)$.
Furthermore

$$
W\left(\varpi^{\lambda}: y\right)=0 \text { unless } \lambda_{1} \geq \cdots \geq \lambda_{r}
$$

The Casselman-Shalika formula (1980)

The Casselman-Shalika formula (1980)

$$
\text { Let } \lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \mathbb{Z}^{r} \text { be such that } \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r}
$$

The Casselman-Shalika formula (1980)

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \mathbb{Z}^{r}$ be such that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r}$ then

$$
W\left(\varpi^{\lambda}: y\right)=q^{-\rho \cdot \lambda}\left[\prod_{1 \leq i<j \leq r}\left(1-q^{-1} y_{i} y_{j}^{-1}\right)\right] s_{\lambda}(y)
$$

The Casselman-Shalika formula (1980)

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \mathbb{Z}^{r}$ be such that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r}$ then

$$
W\left(\varpi^{\lambda}: y\right)=q^{-\rho \cdot \lambda}\left[\prod_{1 \leq i<j \leq r}\left(1-q^{-1} y_{i} y_{j}^{-1}\right)\right] s_{\lambda}(y)
$$

where s_{λ} is the Schur symmetric polynomial

The Casselman-Shalika formula (1980)

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \mathbb{Z}^{r}$ be such that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r}$ then

$$
W\left(\varpi^{\lambda}: y\right)=q^{-\rho \cdot \lambda}\left[\prod_{1 \leq i<j \leq r}\left(1-q^{-1} y_{i} y_{j}^{-1}\right)\right] s_{\lambda}(y)
$$

where s_{λ} is the Schur symmetric polynomial

$$
s_{\lambda}(y)=\frac{\operatorname{det}\left(\begin{array}{cccc}
y_{1}^{\lambda_{1}} & y_{2}^{\lambda_{1}} & \cdots & y_{r}^{\lambda_{1}} \\
\vdots & \vdots & & \vdots \\
y_{1}^{\lambda_{r}} & y_{2}^{\lambda_{r}} & \cdots & y_{r}^{\lambda_{r}}
\end{array}\right)}{\prod_{i<j}\left(y_{i}-y_{j}\right)}
$$

The Casselman-Shalika formula (1980)

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \mathbb{Z}^{r}$ be such that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r}$ then

$$
W\left(\varpi^{\lambda}: y\right)=q^{-\rho \cdot \lambda}\left[\prod_{1 \leq i<j \leq r}\left(1-q^{-1} y_{i} y_{j}^{-1}\right)\right] s_{\lambda}(y)
$$

where s_{λ} is the Schur symmetric polynomial

$$
s_{\lambda}(y)=\frac{\operatorname{det}\left(\begin{array}{cccc}
y_{1}^{\lambda_{1}} & y_{2}^{\lambda_{1}} & \cdots & y_{r}^{\lambda_{1}} \\
\vdots & \vdots & & \vdots \\
y_{1}^{\lambda_{r}} & y_{2}^{\lambda_{r}} & \cdots & y_{r}^{\lambda_{r}}
\end{array}\right)}{\prod_{i<j}\left(y_{i}-y_{j}\right)}=\xi_{\lambda}(y)
$$

The Casselman-Shalika formula (1980)

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \mathbb{Z}^{r}$ be such that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r}$ then

$$
W\left(\varpi^{\lambda}: y\right)=q^{-\rho \cdot \lambda}\left[\prod_{1 \leq i<j \leq r}\left(1-q^{-1} y_{i} y_{j}^{-1}\right)\right] s_{\lambda}(y)
$$

where s_{λ} is the Schur symmetric polynomial

$$
s_{\lambda}(y)=\frac{\operatorname{det}\left(\begin{array}{cccc}
y_{1}^{\lambda_{1}} & y_{2}^{\lambda_{1}} & \cdots & y_{r}^{\lambda_{1}} \\
\vdots & \vdots & & \vdots \\
y_{1}^{\lambda_{r}} & y_{2}^{\lambda_{r}} & \cdots & y_{r}^{\lambda_{r}}
\end{array}\right)}{\prod_{i<j}\left(y_{i}-y_{j}\right)}=\xi_{\lambda}(y)
$$

and

$$
\rho=\left(\frac{r-1}{2}, \frac{r-3}{2}, \ldots, \frac{1-r}{2}\right) .
$$

The Casselman-Shalika formula (1980)

Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \mathbb{Z}^{r}$ be such that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r}$ then

$$
W\left(\varpi^{\lambda}: y\right)=q^{-\rho \cdot \lambda}\left[\prod_{1 \leq i<j \leq r}\left(1-q^{-1} y_{i} y_{j}^{-1}\right)\right] s_{\lambda}(y)
$$

where s_{λ} is the Schur symmetric polynomial

$$
s_{\lambda}(y)=\frac{\operatorname{det}\left(\begin{array}{cccc}
y_{1}^{\lambda_{1}} & y_{2}^{\lambda_{1}} & \cdots & y_{r}^{\lambda_{1}} \\
\vdots & \vdots & & \vdots \\
y_{1}^{\lambda_{r}} & y_{2}^{\lambda_{r}} & \cdots & y_{r}^{\lambda_{r}}
\end{array}\right)}{\prod_{i<j}\left(y_{i}-y_{j}\right)}=\xi_{\lambda}(y)
$$

and

$$
\rho=\left(\frac{r-1}{2}, \frac{r-3}{2}, \ldots, \frac{1-r}{2}\right) .
$$

Earlier, Shintani (1976) obtained the formula for $\frac{W\left(\varpi^{\lambda}: y\right)}{W(e: y)}$:

Goals

Goals

1. Obtain a formula for spherical Whittaker functions for the n-fold metaplectic cover of G.

Goals

1. Obtain a formula for spherical Whittaker functions for the n-fold metaplectic cover of G.
2. Identify metaplectic spherical Whittaker functions as p-parts of the Fourier coefficients of Eisenstein series on the metaplectic group.

Goals

1. Obtain a formula for spherical Whittaker functions for the n-fold metaplectic cover of G.
2. Identify metaplectic spherical Whittaker functions as p-parts of the Fourier coefficients of Eisenstein series on the metaplectic group.

Main obstacle: There is NO multiplicity one of Whittaker functionals.

Goals

1. Obtain a formula for spherical Whittaker functions for the n-fold metaplectic cover of G.
2. Identify metaplectic spherical Whittaker functions as p-parts of the Fourier coefficients of Eisenstein series on the metaplectic group.

Main obstacle: There is NO multiplicity one of Whittaker functionals.

Yumiko Hironaka applied the Casselman-Shalika method to compute spherical functions in a case where multiplicity one fails.
(on a p-adic space of Hermitian matrices).

The metaplectic n-fold covering of G

The metaplectic n-fold covering of G

Let μ_{n} be the group of nth roots of unity in F.

The metaplectic n-fold covering of G

Let μ_{n} be the group of nth roots of unity in F.
Assume from now on that $\left|\mu_{n}\right|=n$ and that $|n|_{F}=1$.

The metaplectic n-fold covering of G

Let μ_{n} be the group of nth roots of unity in F.
Assume from now on that $\left|\mu_{n}\right|=n$ and that $|n|_{F}=1$.
Fix $c \in \mathbb{Z} / n \mathbb{Z}$.

The metaplectic n-fold covering of G

Let μ_{n} be the group of nth roots of unity in F.
Assume from now on that $\left|\mu_{n}\right|=n$ and that $|n|_{F}=1$.
Fix $c \in \mathbb{Z} / n \mathbb{Z}$. Kazhdan-Patterson associated the c-twisted n-fold metaplectic covering \tilde{G} of G. It is a central extension

$$
1 \rightarrow \mu_{n} \rightarrow \tilde{G} \rightarrow G \rightarrow 1
$$

The metaplectic n-fold covering of G

Let μ_{n} be the group of nth roots of unity in F.
Assume from now on that $\left|\mu_{n}\right|=n$ and that $|n|_{F}=1$.
Fix $c \in \mathbb{Z} / n \mathbb{Z}$. Kazhdan-Patterson associated the c-twisted n-fold metaplectic covering \tilde{G} of G. It is a central extension

$$
1 \rightarrow \mu_{n} \rightarrow \tilde{G} \rightarrow G \rightarrow 1
$$

The groups U, K split in \tilde{G} and we may consider them as subgroups of \tilde{G}.

The metaplectic n-fold covering of G

Let μ_{n} be the group of nth roots of unity in F.
Assume from now on that $\left|\mu_{n}\right|=n$ and that $|n|_{F}=1$.
Fix $c \in \mathbb{Z} / n \mathbb{Z}$. Kazhdan-Patterson associated the c-twisted n-fold metaplectic covering \tilde{G} of G. It is a central extension

$$
1 \rightarrow \mu_{n} \rightarrow \tilde{G} \rightarrow G \rightarrow 1
$$

The groups U, K split in \tilde{G} and we may consider them as subgroups of \tilde{G}. (we may choose a splitting of K that agrees on $U \cap K$ with the canonical splitting of U.)

A function f on \tilde{G} with values in a complex vector space is called genuine if

$$
f(\zeta g)=\zeta f(g), \zeta \in \mu_{n}, g \in \tilde{G} .
$$

A function f on \tilde{G} with values in a complex vector space is called genuine if

$$
f(\zeta g)=\zeta f(g), \zeta \in \mu_{n}, g \in \tilde{G}
$$

We will consider genuine spherical Whittaker functions, i.e. elements of $C(U, \psi \backslash \tilde{G} / K)_{\text {genuine }}$ that are common eigenfunctions of the genuine spherical Hecke algebra $\mathcal{H}_{K}(\tilde{G})_{\text {genuine }}$.

A function f on \tilde{G} with values in a complex vector space is called genuine if

$$
f(\zeta g)=\zeta f(g), \zeta \in \mu_{n}, g \in \tilde{G}
$$

We will consider genuine spherical Whittaker functions, i.e. elements of $C(U, \psi \backslash \tilde{G} / K)_{\text {genuine }}$ that are common eigenfunctions of the genuine spherical Hecke algebra $\mathcal{H}_{K}(\tilde{G})_{\text {genuine }}$.

The spherical principal series of \tilde{G} (Kazhdan-Patterson)

The spherical principal series of \tilde{G} (Kazhdan-Patterson)

Let \tilde{X} denote the pre-image in \tilde{G} of a subset X in G.

The spherical principal series of \tilde{G} (Kazhdan-Patterson)

Let \tilde{X} denote the pre-image in \tilde{G} of a subset X in G.
Then, \tilde{A} is not abelian!

The spherical principal series of \tilde{G} (Kazhdan-Patterson)

Let \tilde{X} denote the pre-image in \tilde{G} of a subset X in G.
Then, \tilde{A} is not abelian! Let A_{*} be the subgroup of A such that \tilde{A}_{*} is the "standard" maximal abelian subgroup of \tilde{A}.

The spherical principal series of \tilde{G} (Kazhdan-Patterson)

Let \tilde{X} denote the pre-image in \tilde{G} of a subset X in G.
Then, \tilde{A} is not abelian! Let A_{*} be the subgroup of A such that \tilde{A}_{*} is the "standard" maximal abelian subgroup of \tilde{A}. Let
$\mathcal{L}=\left\{\mathfrak{f}=\left(\mathfrak{f}_{1}, \ldots, \mathfrak{f}_{r}\right) \in(m \mathbb{Z})^{r}: \mathfrak{f}_{i}-\mathfrak{f}_{i+1} \equiv 0 \quad \bmod n, i=1, \ldots, r-1\right\}$
where $m=\frac{n}{\operatorname{gcd}(n, 2 r c+r-1)}$.

The spherical principal series of \tilde{G} (Kazhdan-Patterson)

Let \tilde{X} denote the pre-image in \tilde{G} of a subset X in G.
Then, \tilde{A} is not abelian! Let A_{*} be the subgroup of A such that \tilde{A}_{*} is the "standard" maximal abelian subgroup of \tilde{A}. Let
$\mathcal{L}=\left\{\mathfrak{f}=\left(\mathfrak{f}_{1}, \ldots, \mathfrak{f}_{r}\right) \in(m \mathbb{Z})^{r}: \mathfrak{f}_{i}-\mathfrak{f}_{i+1} \equiv 0 \quad \bmod n, i=1, \ldots, r-1\right\}$
where $m=\frac{n}{\operatorname{gcd}(n, 2 r c+r-1)}$. Then $\varpi^{\mathfrak{f}} \in A_{*}$ iff $\mathfrak{f} \in \mathcal{L}$.

The spherical principal series of \tilde{G} (Kazhdan-Patterson)

Let \tilde{X} denote the pre-image in \tilde{G} of a subset X in G.
Then, \tilde{A} is not abelian! Let A_{*} be the subgroup of A such that \tilde{A}_{*} is the "standard" maximal abelian subgroup of \tilde{A}. Let
$\mathcal{L}=\left\{\mathfrak{f}=\left(\mathfrak{f}_{1}, \ldots, \mathfrak{f}_{r}\right) \in(m \mathbb{Z})^{r}: \mathfrak{f}_{i}-\mathfrak{f}_{i+1} \equiv 0 \quad \bmod n, i=1, \ldots, r-1\right\}$
where $m=\frac{n}{\operatorname{gcd}(n, 2 r c+r-1)}$. Then $\varpi^{\mathfrak{f}} \in A_{*}$ iff $\mathfrak{f} \in \mathcal{L}$. In fact $A_{*}=(A \cap K) \varpi^{\mathcal{L}}$. Also

$$
\left|\tilde{A} / \tilde{A}_{*}\right|=\left|\mathbb{Z}^{r} / \mathcal{L}\right|=n^{r-1} m
$$

The spherical principal series of \tilde{G} (Kazhdan-Patterson)

Let \tilde{X} denote the pre-image in \tilde{G} of a subset X in G.
Then, \tilde{A} is not abelian! Let A_{*} be the subgroup of A such that \tilde{A}_{*} is the "standard" maximal abelian subgroup of \tilde{A}. Let
$\mathcal{L}=\left\{\mathfrak{f}=\left(\mathfrak{f}_{1}, \ldots, \mathfrak{f}_{r}\right) \in(m \mathbb{Z})^{r}: \mathfrak{f}_{i}-\mathfrak{f}_{i+1} \equiv 0 \quad \bmod n, i=1, \ldots, r-1\right\}$
where $m=\frac{n}{\operatorname{gcd}(n, 2 r c+r-1)}$. Then $\varpi^{\mathfrak{f}} \in A_{*}$ iff $\mathfrak{f} \in \mathcal{L}$. In fact $A_{*}=(A \cap K) \varpi^{\mathcal{L}}$. Also

$$
\left|\tilde{A} / \tilde{A}_{*}\right|=\left|\mathbb{Z}^{r} / \mathcal{L}\right|=n^{r-1} m
$$

Let $B_{*}=A_{*} U$.

The spherical principal series of \tilde{G} (Kazhdan-Patterson)

Let \tilde{X} denote the pre-image in \tilde{G} of a subset X in G.
Then, \tilde{A} is not abelian! Let A_{*} be the subgroup of A such that \tilde{A}_{*} is the "standard" maximal abelian subgroup of \tilde{A}. Let
$\mathcal{L}=\left\{\mathfrak{f}=\left(\mathfrak{f}_{1}, \ldots, \mathfrak{f}_{r}\right) \in(m \mathbb{Z})^{r}: \mathfrak{f}_{i}-\mathfrak{f}_{i+1} \equiv 0 \quad \bmod n, i=1, \ldots, r-1\right\}$
where $m=\frac{n}{\operatorname{gcd}(n, 2 r c+r-1)}$. Then $\varpi^{\mathfrak{f}} \in A_{*}$ iff $\mathfrak{f} \in \mathcal{L}$. In fact $A_{*}=(A \cap K) \varpi^{\mathcal{L}}$. Also

$$
\left|\tilde{A} / \tilde{A}_{*}\right|=\left|\mathbb{Z}^{r} / \mathcal{L}\right|=n^{r-1} m
$$

Let $B_{*}=A_{*} U$. For $y \in\left(\mathbb{C}^{*}\right)^{r}$ we can associate a genuine spherical character χ_{y} of \tilde{B}_{*}

The spherical principal series of \tilde{G} (Kazhdan-Patterson)

 Let \tilde{X} denote the pre-image in \tilde{G} of a subset X in G.Then, \tilde{A} is not abelian! Let A_{*} be the subgroup of A such that \tilde{A}_{*} is the "standard" maximal abelian subgroup of \tilde{A}. Let
$\mathcal{L}=\left\{\mathfrak{f}=\left(\mathfrak{f}_{1}, \ldots, \mathfrak{f}_{r}\right) \in(m \mathbb{Z})^{r}: \mathfrak{f}_{i}-\mathfrak{f}_{i+1} \equiv 0 \quad \bmod n, i=1, \ldots, r-1\right\}$
where $m=\frac{n}{\operatorname{gcd}(n, 2 r c+r-1)}$. Then $\varpi^{\mathfrak{f}} \in A_{*}$ iff $\mathfrak{f} \in \mathcal{L}$. In fact $A_{*}=(A \cap K) \varpi^{\mathcal{L}}$. Also

$$
\left|\tilde{A} / \tilde{A}_{*}\right|=\left|\mathbb{Z}^{r} / \mathcal{L}\right|=n^{r-1} m
$$

Let $B_{*}=A_{*} U$. For $y \in\left(\mathbb{C}^{*}\right)^{r}$ we can associate a genuine spherical character χ_{y} of \tilde{B}_{*} and define the genuine spherical principal series representation $I(y)=\operatorname{Ind} \tilde{\tilde{B}}_{*}^{\tilde{G}}\left(\chi_{y}\right)$.

We again have multiplicity one of spherical vectors:

$$
\operatorname{dim} I(y)^{K}=1
$$

We again have multiplicity one of spherical vectors:

$$
\operatorname{dim} I(y)^{K}=1
$$

and we denote by φ_{K} the normalized spherical vector.

We again have multiplicity one of spherical vectors:

$$
\operatorname{dim} I(y)^{K}=1
$$

and we denote by φ_{K} the normalized spherical vector.
For every $a \in \tilde{A}$ we can define a Jacquet integral on $I(y)$ by

$$
\Omega_{a}(\varphi: y)=\int_{U} \varphi\left(a w_{0} u\right) \bar{\psi}(u) d u
$$

We again have multiplicity one of spherical vectors:

$$
\operatorname{dim} I(y)^{K}=1
$$

and we denote by φ_{K} the normalized spherical vector.
For every $a \in \tilde{A}$ we can define a Jacquet integral on $I(y)$ by

$$
\Omega_{a}(\varphi: y)=\int_{U} \varphi\left(a w_{0} u\right) \bar{\psi}(u) d u
$$

For $a_{*} \in \tilde{A}_{*}$ the Whittaker functionals $\Omega_{a_{*} a}(y)$ and Ω_{a} are proportional.

We again have multiplicity one of spherical vectors:

$$
\operatorname{dim} I(y)^{K}=1
$$

and we denote by φ_{K} the normalized spherical vector.
For every $a \in \tilde{A}$ we can define a Jacquet integral on $I(y)$ by

$$
\Omega_{a}(\varphi: y)=\int_{U} \varphi\left(a w_{0} u\right) \bar{\psi}(u) d u
$$

For $a_{*} \in \tilde{A}_{*}$ the Whittaker functionals $\Omega_{a_{*} a}(y)$ and Ω_{a} are proportional.

For y in general position $\left\{\Omega_{a}(y): a \in \tilde{A} / \tilde{A}_{*}\right\}$ is a basis of the space $I(y)^{U, \psi}$.

The functional equations

The functional equations

For $w \in S_{r}$ let $T_{w}: I(y) \rightarrow I(w y)$ be the intertwining operator defined by the meromorphic continuation of the integral

$$
T_{w} \varphi(x)=\int_{U_{w}} \varphi\left(w^{-1} u x\right) d u
$$

The functional equations

For $w \in S_{r}$ let $T_{w}: I(y) \rightarrow I(w y)$ be the intertwining operator defined by the meromorphic continuation of the integral

$$
T_{w} \varphi(x)=\int_{U_{w}} \varphi\left(w^{-1} u x\right) d u
$$

There are coefficients $\tau_{a, b}$ such that

$$
\Omega_{a}(w y) \circ T_{w}=
$$

The functional equations

For $w \in S_{r}$ let $T_{w}: I(y) \rightarrow I(w y)$ be the intertwining operator defined by the meromorphic continuation of the integral

$$
T_{w} \varphi(x)=\int_{U_{w}} \varphi\left(w^{-1} u x\right) d u
$$

There are coefficients $\tau_{a, b}$ such that

$$
\Omega_{a}(w y) \circ T_{w}=\sum_{b \in \tilde{A} / \tilde{A}_{*}} \tau_{a, b}(w, y) \Omega_{b}(y)
$$

The functional equations

For $w \in S_{r}$ let $T_{w}: I(y) \rightarrow I(w y)$ be the intertwining operator defined by the meromorphic continuation of the integral

$$
T_{w} \varphi(x)=\int_{U_{w}} \varphi\left(w^{-1} u x\right) d u
$$

There are coefficients $\tau_{a, b}$ such that

$$
\Omega_{a}(w y) \circ T_{w}=\sum_{b \in \tilde{A} / \tilde{A}_{*}} \tau_{a, b}(w, y) \Omega_{b}(y)
$$

The coefficients were computed explicitly by K-P.

Reduction to the coefficients $\tau_{\varpi^{f}, \varpi^{\prime}}\left(w_{i}, y\right)$

Reduction to the coefficients $\tau_{\varpi^{f}, \varpi^{\prime}}\left(w_{i}, y\right)$

The coefficients satisfy the co-cycle condition

$$
\tau_{a, b}(w v, y)=\frac{c_{w v}(y)}{c_{w}(v y) c_{v}(y)} \sum_{c \in \tilde{A} / \tilde{A}_{*}} \tau_{a, c}(w, v y) \tau_{c, b}(v, y)
$$

for $v, w \in S_{r}$

Reduction to the coefficients $\tau_{\varpi^{f}, \varpi^{\prime}}\left(w_{i}, y\right)$

The coefficients satisfy the co-cycle condition

$$
\tau_{a, b}(w v, y)=\frac{c_{w v}(y)}{c_{w}(v y) c_{v}(y)} \sum_{c \in \tilde{A} / \tilde{A}_{*}} \tau_{a, c}(w, v y) \tau_{c, b}(v, y)
$$

for $v, w \in S_{r}$ where

$$
c_{w}(y)=\prod_{\substack{i<j \\ w(i)>w(j)}} \frac{1-q^{-1}\left(y_{i} y_{j}^{-1}\right)^{n}}{1-\left(y_{i} y_{j}^{-1}\right)^{n}}
$$

Reduction to the coefficients $\tau_{\varpi^{f}, \varpi^{\prime}}\left(w_{i}, y\right)$

The coefficients satisfy the co-cycle condition

$$
\tau_{a, b}(w v, y)=\frac{c_{w v}(y)}{c_{w}(v y) c_{v}(y)} \sum_{c \in \tilde{A} / \tilde{A}_{*}} \tau_{a, c}(w, v y) \tau_{c, b}(v, y)
$$

for $v, w \in S_{r}$ where

$$
c_{w}(y)=\prod_{\substack{i<j \\ w(i)>w(j)}} \frac{1-q^{-1}\left(y_{i} y_{j}^{-1}\right)^{n}}{1-\left(y_{i} y_{j}^{-1}\right)^{n}}
$$

They are also equivariant in a and b,

$$
\tau_{a_{*} a, b_{*} b}(w, y)=\delta_{\tilde{B}}^{1 / 2}\left(a_{*} b_{*}^{-1}\right) \chi_{w y}\left(a_{*}\right) \chi_{y}\left(b_{*}\right)^{-1} \tau_{a, b}(w, y)
$$

for $a_{*}, b_{*} \in \tilde{A}_{*}$.

Proposition (Kazhdan-Patterson)

Proposition (Kazhdan-Patterson)

Let $w_{i} \in S_{r}$ be the i th simple reflection and let $\mathfrak{f}, \mathfrak{f}^{\prime} \in \mathbb{Z}^{r}$. Then

$$
\tau_{\varpi \mathfrak{f}, \varpi^{f^{\prime}}}\left(w_{i}, y\right)=\tau_{\varpi \mathfrak{f}, \varpi \mathfrak{f}^{\prime}}^{1}\left(w_{i}, y\right)+\tau_{\varpi \mathfrak{f}, \varpi^{\prime}}^{2}\left(w_{i}, y\right)
$$

Proposition (Kazhdan-Patterson)

Let $w_{i} \in S_{r}$ be the i th simple reflection and let $\mathfrak{f}, \mathfrak{f}^{\prime} \in \mathbb{Z}^{r}$. Then

$$
\begin{gathered}
\tau_{\varpi f}, \varpi^{f^{\prime}} \\
\left(w_{i}, y\right)=\tau_{\varpi f, \varpi f^{\prime}}^{1}\left(w_{i}, y\right)+\tau_{\varpi \mathfrak{f}, \varpi^{\prime}}^{2}\left(w_{i}, y\right), \\
\tau_{\varpi f, \varpi^{\prime}}^{1}\left(w_{i}, y\right)= \begin{cases}\left(1-q^{-1}\right) \frac{\left(y_{i+1} / y_{i}\right)^{n}\left\lfloor\frac{f_{i}-f_{i+1}}{n}\right\rfloor}{1-\left(y_{i} / y_{i+1}\right)^{n}} & \mathfrak{f}-f^{\prime} \in \mathcal{L} \\
0 & f-f^{\prime} \notin \mathcal{L}\end{cases}
\end{gathered}
$$

Proposition (Kazhdan-Patterson)

Let $w_{i} \in S_{r}$ be the i th simple reflection and let $\mathfrak{f}, \mathfrak{f}^{\prime} \in \mathbb{Z}^{r}$. Then

$$
\begin{aligned}
& \tau_{\varpi^{f}, w^{\prime}}\left(w_{i}, y\right)=\tau_{\varpi f, w^{\prime}}^{1}\left(w_{i}, y\right)+\tau_{\varpi f, w^{\prime}}^{2}\left(w_{i}, y\right), \\
& \tau_{w^{f}, w^{\prime}}^{1}\left(w_{i}, y\right)= \begin{cases}\left(1-q^{-1}\right)^{\frac{\left(y_{i+1} / y_{i}\right)^{n}}{} \frac{f_{i}-f_{i+1}}{n}-\left(y_{i} / y_{i+1}\right)^{n}} & f-f^{\prime} \in \mathcal{L} \\
0 & f-f^{\prime} \notin \mathcal{L}\end{cases} \\
& \tau_{\varpi f, \varpi^{\prime}}^{2}\left(w_{i}, y\right)= \begin{cases}(\varpi, \varpi)_{n}^{f_{n}^{f i+1}} q^{f_{i+1}-f_{i}-2} \mathfrak{g}\left(f_{i}-f_{i+1}+1\right) & f-w_{i}\left[f^{\prime}\right] \in \mathcal{L} \\
0 & f-w_{i}\left[f^{\prime}\right] \notin \mathcal{L}\end{cases}
\end{aligned}
$$

Proposition (Kazhdan-Patterson)

Let $w_{i} \in S_{r}$ be the i th simple reflection and let $\mathfrak{f}, \mathfrak{f}^{\prime} \in \mathbb{Z}^{r}$. Then

$$
\begin{aligned}
& \tau_{w^{f}, w^{\prime}}\left(w_{i}, y\right)=\tau_{\varpi f, w^{\prime}}^{1}\left(w_{i}, y\right)+\tau_{w_{f}, w^{\prime}}^{2}\left(w_{i}, y\right), \\
& \tau_{w^{f}, w^{\prime}}^{1}\left(w_{i}, y\right)= \begin{cases}\left(1-q^{-1}\right)^{\left.\frac{\left(y_{i+1} / y_{i}\right)^{n}}{} \frac{f_{i}-f_{i+1}}{n}\right\rfloor} \begin{array}{l}
1-\left(y_{i} / y_{i+1}\right)^{n} \\
0
\end{array} & f-f^{\prime} \in \mathcal{L} \\
f^{\prime} \notin \mathcal{L}\end{cases} \\
& \tau_{\varpi f, w^{\prime}}^{2}\left(w_{i}, y\right)= \begin{cases}(\varpi, \varpi)_{n}^{f_{i} f_{i+1}} q^{f_{i+1}-f_{i}-2} \mathfrak{g}\left(f_{i}-f_{i+1}+1\right) & \mathfrak{f}-w_{i}\left[f^{\prime}\right] \in \mathcal{L} \\
0 & f-w_{i}\left[f^{\prime}\right] \notin \mathcal{L}\end{cases} \\
& \text { where } w_{i}[f]=\left(f_{1}, \ldots, f_{i-1}, f_{i+1}-1, f_{i}+1, f_{i+2}, \ldots, f_{r}\right) \text {, }
\end{aligned}
$$

Proposition (Kazhdan-Patterson)

Let $w_{i} \in S_{r}$ be the i th simple reflection and let $\mathfrak{f}, \mathfrak{f}^{\prime} \in \mathbb{Z}^{r}$. Then

$$
\begin{gathered}
\tau_{\varpi \mathfrak{f}, \varpi^{\prime}}\left(w_{i}, y\right)=\tau_{\varpi \mathfrak{f}, \varpi^{\prime}}^{1}\left(w_{i}, y\right)+\tau_{\varpi \mathfrak{f}, \varpi^{\prime}}^{2}\left(w_{i}, y\right), \\
\tau_{\varpi \mathfrak{f}, \varpi^{\prime}}^{1}\left(w_{i}, y\right)= \begin{cases}\left(1-q^{-1}\right) \frac{\left(y_{i+1} / y_{i}\right)^{n}\left\lfloor\frac{\mathfrak{f}_{i}-f_{i+1}}{n}\right\rfloor}{1-\left(y_{i} / y_{i+1}\right)^{n}} & \mathfrak{f}-\mathfrak{f}^{\prime} \in \mathcal{L} \\
0 & \mathfrak{f}-\mathfrak{f}^{\prime} \notin \mathcal{L}\end{cases} \\
\tau_{\varpi \mathfrak{f}, \varpi^{\prime}}^{2}\left(w_{i}, y\right)= \begin{cases}(\varpi, \varpi)_{n}^{f_{i} f_{i+1}} q^{\mathfrak{f}_{i+1}-\mathfrak{f}_{i}-2} \mathfrak{g}\left(\mathfrak{f}_{i}-\mathfrak{f}_{i+1}+1\right) & \mathfrak{f}-w_{i}\left[\mathfrak{f}^{\prime}\right] \in \mathcal{L} \\
0 & \mathfrak{f}-w_{i}\left[f^{\prime}\right] \notin \mathcal{L}\end{cases} \\
\text { where } w_{i}[\mathfrak{f}]=\left(\mathfrak{f}_{1}, \ldots, \mathfrak{f}_{i-1}, \mathfrak{f}_{i+1}-1, \mathfrak{f}_{i}+1, \mathfrak{f}_{i+2}, \ldots, \mathfrak{f}_{r}\right),(\cdot, \cdot)_{n} \text { is the }
\end{gathered} \begin{aligned}
& n \text {th order Hilbert symbol on } F,
\end{aligned}
$$

Proposition (Kazhdan-Patterson)

Let $w_{i} \in S_{r}$ be the i th simple reflection and let $\mathfrak{f}, \mathfrak{f}^{\prime} \in \mathbb{Z}^{r}$. Then

$$
\begin{aligned}
& \tau_{w^{f}, w^{\prime}}\left(w_{i}, y\right)=\tau_{\varpi f, w^{\prime}}^{1}\left(w_{i}, y\right)+\tau_{w_{f}, w^{\prime}}^{2}\left(w_{i}, y\right),
\end{aligned}
$$

$$
\begin{aligned}
& \tau_{\varpi^{f}, \varpi^{\prime}}^{2}\left(w_{i}, y\right)= \begin{cases}(\varpi, \varpi)_{n}^{f_{i}^{f i+1}} q^{f_{i+1}-f_{i}-2} \mathfrak{g}\left(f_{i}-f_{i+1}+1\right) & \mathfrak{f}-w_{i}\left[f^{\prime}\right] \in \mathcal{L} \\
0 & \mathfrak{f}-w_{i}\left[f^{\prime}\right] \notin \mathcal{L}\end{cases}
\end{aligned}
$$

where $w_{i}[f]=\left(f_{1}, \ldots, f_{i-1}, f_{i+1}-1, f_{i}+1, \mathfrak{f}_{i+2}, \ldots, f_{r}\right),(\cdot, \cdot)_{n}$ is the nth order Hilbert symbol on F, and $\mathfrak{g}(m)$ is the Gauss sum given by

$$
\mathfrak{g}(m)=\sum_{u \in \mathcal{O}_{F}^{\times} / 1+\mathfrak{p}_{F}}\left(u, \varpi^{m}\right)_{n} \psi\left(\varpi^{-1} u\right)
$$

Spherical Whittaker functions on \tilde{G}

Spherical Whittaker functions on \tilde{G}

A basis of Whittaker functions with a fixed Hecke eigenvalue parameterized by $y \in \mathbb{C}^{r}$ is given by $\left\{W_{a}(y): a \in \tilde{A} / \tilde{A}_{*}\right\}$ where

$$
W_{a}(g: y)=\Omega_{a}\left(I(g, y) \varphi_{K}: y\right)
$$

Spherical Whittaker functions on \tilde{G}

A basis of Whittaker functions with a fixed Hecke eigenvalue parameterized by $y \in \mathbb{C}^{r}$ is given by $\left\{W_{a}(y): a \in \tilde{A} / \tilde{A}_{*}\right\}$ where

$$
W_{a}(g: y)=\Omega_{a}\left(I(g, y) \varphi_{K}: y\right)
$$

By the Iwasawa decomposition $\tilde{G}=U \tilde{A} K$ it is enough to evaluate the spherical Whittaker functions on \tilde{A}.

Spherical Whittaker functions on \tilde{G}

A basis of Whittaker functions with a fixed Hecke eigenvalue parameterized by $y \in \mathbb{C}^{r}$ is given by $\left\{W_{a}(y): a \in \tilde{A} / \tilde{A}_{*}\right\}$ where

$$
W_{a}(g: y)=\Omega_{a}\left(I(g, y) \varphi_{K}: y\right)
$$

By the Iwasawa decomposition $\tilde{G}=U \tilde{A} K$ it is enough to evaluate the spherical Whittaker functions on \tilde{A}. Also $W_{a}(b: y)=0$ unless $b \in \widetilde{A^{-}}$.

Spherical Whittaker functions on \tilde{G}

A basis of Whittaker functions with a fixed Hecke eigenvalue parameterized by $y \in \mathbb{C}^{r}$ is given by $\left\{W_{a}(y): a \in \tilde{A} / \tilde{A}_{*}\right\}$ where

$$
W_{a}(g: y)=\Omega_{a}\left(I(g, y) \varphi_{K}: y\right)
$$

By the Iwasawa decomposition $\tilde{G}=U \tilde{A} K$ it is enough to evaluate the spherical Whittaker functions on \tilde{A}. Also $W_{a}(b: y)=0$ unless $b \in \widetilde{A^{-}}$.

Theorem (Chinta-O)

For $a \in \tilde{A}, b \in \widetilde{A^{-}}$let $b^{\sharp}=w_{0} b^{-1} w_{0}^{-1}$. We have

$$
W_{a}(b: y)=\delta_{\tilde{B}}(b) \sum_{w \in S_{r}} \frac{c_{w_{0}}\left(w^{-1} y\right)}{c_{w}\left(w^{-1} y\right)} \tau_{a, b^{\sharp}}\left(w, w^{-1} y\right) .
$$

Preparation for comparison

Preparation for comparison

Assume from now on that $\left|\mu_{2 n}(F)\right|=2 n$.

Preparation for comparison

Assume from now on that $\left|\mu_{2 n}(F)\right|=2 n$. Let \mathcal{A} be the localization of the algebra $\mathbb{C}\left[y_{1}^{ \pm 1}, \ldots, y_{r}^{ \pm 1}\right]$ by the set

$$
\left\{1-q^{\epsilon}\left(y_{i} / y_{j}\right)^{n}: \epsilon=-1,0,1,1 \leq i<j \leq r\right\}
$$

Preparation for comparison

Assume from now on that $\left|\mu_{2 n}(F)\right|=2 n$. Let \mathcal{A} be the localization of the algebra $\mathbb{C}\left[y_{1}^{ \pm 1}, \ldots, y_{r}^{ \pm 1}\right]$ by the set

$$
\left\{1-q^{\epsilon}\left(y_{i} / y_{j}\right)^{n}: \epsilon=-1,0,1,1 \leq i<j \leq r\right\}
$$

For $\mathfrak{f} \in \mathbb{Z}^{r}$ let $m_{\mathfrak{f}}(y)=y^{\mathfrak{f}}=y_{1}^{f_{1}} \cdots y_{r}^{\mathfrak{f} r}$.

Preparation for comparison

Assume from now on that $\left|\mu_{2 n}(F)\right|=2 n$. Let \mathcal{A} be the localization of the algebra $\mathbb{C}\left[y_{1}^{ \pm 1}, \ldots, y_{r}^{ \pm 1}\right]$ by the set

$$
\left\{1-q^{\epsilon}\left(y_{i} / y_{j}\right)^{n}: \epsilon=-1,0,1,1 \leq i<j \leq r\right\}
$$

For $\mathfrak{f} \in \mathbb{Z}^{r}$ let $m_{\mathfrak{f}}(y)=y^{\mathfrak{f}}=y_{1}^{\mathfrak{f}_{1}} \cdots y_{r}^{\mathfrak{f}_{r}}$. Recall that $\mathfrak{f} \in \mathcal{L}$ iff $\varpi^{\mathfrak{f}} \in A_{*}$. Let \mathcal{A}_{*} be the subalgebra of \mathcal{A} generated by the monomials $m_{\mathfrak{f}}, \mathfrak{f} \in \mathcal{L}$.

Preparation for comparison

Assume from now on that $\left|\mu_{2 n}(F)\right|=2 n$. Let \mathcal{A} be the localization of the algebra $\mathbb{C}\left[y_{1}^{ \pm 1}, \ldots, y_{r}^{ \pm 1}\right]$ by the set

$$
\left\{1-q^{\epsilon}\left(y_{i} / y_{j}\right)^{n}: \epsilon=-1,0,1,1 \leq i<j \leq r\right\}
$$

For $\mathfrak{f} \in \mathbb{Z}^{r}$ let $m_{\mathfrak{f}}(y)=y^{\mathfrak{f}}=y_{1}^{\mathfrak{f}_{1}} \cdots y_{r}^{\mathfrak{f}_{r}}$. Recall that $\mathfrak{f} \in \mathcal{L}$ iff $\varpi^{\mathfrak{f}} \in A_{*}$. Let \mathcal{A}_{*} be the subalgebra of \mathcal{A} generated by the monomials $m_{\mathfrak{f}}, \mathfrak{f} \in \mathcal{L}$. We have a decomposition $\mathcal{A}=\oplus_{\lambda \in \mathbb{Z}^{r} / \mathcal{L}} \mathcal{A}_{*} m_{-\lambda}$.

Preparation for comparison

Assume from now on that $\left|\mu_{2 n}(F)\right|=2 n$. Let \mathcal{A} be the localization of the algebra $\mathbb{C}\left[y_{1}^{ \pm 1}, \ldots, y_{r}^{ \pm 1}\right]$ by the set

$$
\left\{1-q^{\epsilon}\left(y_{i} / y_{j}\right)^{n}: \epsilon=-1,0,1,1 \leq i<j \leq r\right\}
$$

For $\mathfrak{f} \in \mathbb{Z}^{r}$ let $m_{\mathfrak{f}}(y)=y^{\mathfrak{f}}=y_{1}^{\mathfrak{f}_{1}} \cdots y_{r}^{\mathfrak{f}_{r}}$. Recall that $\mathfrak{f} \in \mathcal{L}$ iff $\varpi^{\mathfrak{f}} \in A_{*}$. Let \mathcal{A}_{*} be the subalgebra of \mathcal{A} generated by the monomials $m_{\mathfrak{f}}, \mathfrak{f} \in \mathcal{L}$. We have a decomposition $\mathcal{A}=\oplus_{\lambda \in \mathbb{Z}^{r} / \mathcal{L}} \mathcal{A}_{*} m_{-\lambda}$.
Let P_{λ} denote the λ-component of $P \in \mathcal{A}$.

Preparation for comparison

Assume from now on that $\left|\mu_{2 n}(F)\right|=2 n$. Let \mathcal{A} be the localization of the algebra $\mathbb{C}\left[y_{1}^{ \pm 1}, \ldots, y_{r}^{ \pm 1}\right]$ by the set

$$
\left\{1-q^{\epsilon}\left(y_{i} / y_{j}\right)^{n}: \epsilon=-1,0,1,1 \leq i<j \leq r\right\}
$$

For $\mathfrak{f} \in \mathbb{Z}^{r}$ let $m_{\mathfrak{f}}(y)=y^{\mathfrak{f}}=y_{1}^{\mathfrak{f}_{1}} \cdots y_{r}^{\mathfrak{f}_{r}}$. Recall that $\mathfrak{f} \in \mathcal{L}$ iff $\varpi^{\mathfrak{f}} \in A_{*}$. Let \mathcal{A}_{*} be the subalgebra of \mathcal{A} generated by the monomials $m_{\mathfrak{f}}, \mathfrak{f} \in \mathcal{L}$. We have a decomposition $\mathcal{A}=\oplus_{\lambda \in \mathbb{Z}^{r} / \mathcal{L}} \mathcal{A}_{*} m_{-\lambda}$.
Let P_{λ} denote the λ-component of $P \in \mathcal{A}$.

For $P \in \mathcal{A}, w \in W$ let

$$
\left(\left.P\right|_{\mathrm{KP}} w\right)(y)=\sum_{\lambda, \mu \in \mathbb{Z}^{r} / \mathcal{L}} \tilde{\tau}_{\varpi-\lambda, \varpi^{-\mu}}(w, y) P_{\mu}(w y) .
$$

For $P \in \mathcal{A}, w \in W$ let

$$
\left(\left.P\right|_{\mathrm{KP}} w\right)(y)=\sum_{\lambda, \mu \in \mathbb{Z}^{r} / \mathcal{L}} \tilde{\tau}_{\varpi-\lambda, \varpi-\mu}(w, y) P_{\mu}(w y) .
$$

where

$$
\tilde{\tau}_{\varpi^{-\lambda}, \varpi^{-\mu}}(w, y)=q^{\rho \cdot(\mu-\lambda)} m_{\lambda}(w y) m_{-\mu}(y) \tau_{\varpi^{-\lambda}, \varpi^{-\mu}}(w, y) .
$$

For $P \in \mathcal{A}, w \in W$ let

$$
\left(\left.P\right|_{\mathrm{KP}} w\right)(y)=\sum_{\lambda, \mu \in \mathbb{Z}^{r} / \mathcal{L}} \tilde{\tau}_{\varpi-\lambda, \varpi-\mu}(w, y) P_{\mu}(w y) .
$$

where

$$
\tilde{\tau}_{\varpi^{-\lambda}, \varpi^{-\mu}}(w, y)=q^{\rho \cdot(\mu-\lambda)} m_{\lambda}(w y) m_{-\mu}(y) \tau_{\varpi^{-\lambda}, \varpi^{-\mu}}(w, y) .
$$

$\left.\right|_{\text {KP }}$ is an action of S_{r} on \mathcal{A}.

For $P \in \mathcal{A}, w \in W$ let

$$
\left(\left.P\right|_{\mathrm{KP}} w\right)(y)=\sum_{\lambda, \mu \in \mathbb{Z}^{r} / \mathcal{L}} \tilde{\tau}_{\varpi-\lambda, \varpi-\mu}(w, y) P_{\mu}(w y) .
$$

where

$$
\tilde{\tau}_{\varpi^{-\lambda}, \varpi^{-\mu}}(w, y)=q^{\rho \cdot(\mu-\lambda)} m_{\lambda}(w y) m_{-\mu}(y) \tau_{\varpi^{-\lambda}, \varpi^{-\mu}}(w, y) .
$$

$\left.\right|_{\text {KP }}$ is an action of S_{r} on \mathcal{A}. Let

$$
W^{\circ}(g: y)=\sum_{\lambda \in \mathbb{Z}^{r} / \mathcal{L}} q^{-\rho \cdot \lambda} y^{\lambda} W_{\varpi^{-\lambda}}(g: y)
$$

For $P \in \mathcal{A}, w \in W$ let

$$
\left(\left.P\right|_{\mathrm{KP}} w\right)(y)=\sum_{\lambda, \mu \in \mathbb{Z}^{r} / \mathcal{L}} \tilde{\tau}_{\varpi-\lambda, \varpi-\mu}(w, y) P_{\mu}(w y) .
$$

where

$$
\tilde{\tau}_{\varpi^{-\lambda}, \varpi^{-\mu}}(w, y)=q^{\rho \cdot(\mu-\lambda)} m_{\lambda}(w y) m_{-\mu}(y) \tau_{\varpi^{-\lambda}, \varpi^{-\mu}}(w, y) .
$$

$\left.\right|_{\text {KP }}$ is an action of S_{r} on \mathcal{A}. Let

$$
W^{\circ}(g: y)=\sum_{\lambda \in \mathbb{Z}^{r} / \mathcal{L}} q^{-\rho \cdot \lambda} y^{\lambda} W_{\varpi^{-\lambda}}(g: y)
$$

If $\lambda_{1} \leq \cdots \leq \lambda_{r}$ then

$$
W^{\circ}\left(w_{0}^{-1} \varpi^{\lambda} w_{0} ; y\right)=q^{\rho \cdot \lambda} \sum_{w \in W} c_{w_{0}}(w y)\left(\left.m_{\lambda}\right|_{K P} w\right)(y) .
$$

For $P \in \mathcal{A}, w \in W$ let

$$
\left(\left.P\right|_{\mathrm{KP}} w\right)(y)=\sum_{\lambda, \mu \in \mathbb{Z}^{r} / \mathcal{L}} \tilde{\tau}_{\varpi-\lambda, \varpi-\mu}(w, y) P_{\mu}(w y) .
$$

where

$$
\tilde{\tau}_{\varpi^{-\lambda}, \varpi^{-\mu}}(w, y)=q^{\rho \cdot(\mu-\lambda)} m_{\lambda}(w y) m_{-\mu}(y) \tau_{\varpi^{-\lambda}, \varpi^{-\mu}}(w, y) .
$$

$\left.\right|_{\text {KP }}$ is an action of S_{r} on \mathcal{A}. Let

$$
W^{\circ}(g: y)=\sum_{\lambda \in \mathbb{Z}^{r} / \mathcal{L}} q^{-\rho \cdot \lambda} y^{\lambda} W_{\varpi^{-\lambda}}(g: y)
$$

If $\lambda_{1} \leq \cdots \leq \lambda_{r}$ then

$$
W^{\circ}\left(w_{0}^{-1} \varpi^{\lambda} w_{0} ; y\right)=q^{\rho \cdot \lambda} \sum_{w \in W} c_{w_{0}}(w y)\left(\left.m_{\lambda}\right|_{K P} w\right)(y) .
$$

The Chinta-Gunnells action-a reinterpretation

The Chinta-Gunnells action-a reinterpretation

For every $\ell \in \mathbb{Z}^{r-1}$ Chinta and Gunnells defined an action $\left.\right|_{\ell, \mathrm{CG}}$ on
a (localized) algebra of polynomials in $r-1$ variables x_{1}, \ldots, x_{r-1}.

The Chinta-Gunnells action-a reinterpretation

For every $\ell \in \mathbb{Z}^{r-1}$ Chinta and Gunnells defined an action $\left.\right|_{\ell, \mathrm{CG}}$ on a (localized) algebra of polynomials in $r-1$ variables x_{1}, \ldots, x_{r-1}. Using the change of variables $x_{i}=\frac{y_{i}}{9 y_{i+1}}$ this family of actions can be unified to a single action, that we denote by |cg on \mathcal{A}.

The Chinta-Gunnells action-a reinterpretation

For every $\ell \in \mathbb{Z}^{r-1}$ Chinta and Gunnells defined an action $\left.\right|_{\ell, \mathrm{CG}}$ on a (localized) algebra of polynomials in $r-1$ variables x_{1}, \ldots, x_{r-1}. Using the change of variables $x_{i}=\frac{y_{i}}{q y_{i+1}}$ this family of actions can be unified to a single action, that we denote by |cG on \mathcal{A}. In terms of this action, the p-part of the WMDS of type A_{r-1} constructed by Chinta-Gunnells and associated to a parameter
$\ell=\left(I_{2}, \ldots, I_{r}\right) \in \mathbb{Z}^{r-1}$ is

The Chinta-Gunnells action-a reinterpretation

For every $\ell \in \mathbb{Z}^{r-1}$ Chinta and Gunnells defined an action $\left.\right|_{\ell, \mathrm{CG}}$ on a (localized) algebra of polynomials in $r-1$ variables x_{1}, \ldots, x_{r-1}. Using the change of variables $x_{i}=\frac{y_{i}}{q y_{i+1}}$ this family of actions can be unified to a single action, that we denote by |cG on \mathcal{A}. In terms of this action, the p-part of the WMDS of type A_{r-1} constructed by Chinta-Gunnells and associated to a parameter $\ell=\left(I_{2}, \ldots, I_{r}\right) \in \mathbb{Z}^{r-1}$ is

$$
N(y, \lambda)=y^{-\lambda} c_{w_{0}}(y) \sum_{w \in S_{r}} j(w, y)\left(m_{\lambda} \mid \text { CG } w\right)(y)
$$

where $\lambda=\left(0, I_{2}, I_{2}+I_{3}, \ldots, I_{2}+\cdots+I_{r}\right), j(w, y)=\frac{e(y)}{e(w y)}$ and $e(y)=\prod_{i<j}\left(1-\left(y_{i} / y_{j}\right)^{n}\right)$.

The comparison of the two actions

The comparison of the two actions

For $P \in \mathcal{A}$ and $w \in S_{r}$ we have

$$
j(w, y)\left(\left.P\right|_{\mathrm{CG}} w\right)(y)=\frac{c_{w_{0}}(w y)}{c_{w_{0}}(y)}\left(\left.P\right|_{\mathrm{KP}} w\right)(y)
$$

The comparison of the two actions

For $P \in \mathcal{A}$ and $w \in S_{r}$ we have

$$
j(w, y)\left(\left.P\right|_{\mathrm{CG}} w\right)(y)=\frac{c_{w_{0}}(w y)}{c_{w_{0}}(y)}\left(\left.P\right|_{\mathrm{KP}} w\right)(y) .
$$

Theorem (Chinta-O)
For $\lambda_{1} \leq \cdots \leq \lambda_{r}$ we have

$$
W^{\circ}\left(w_{0}^{-1} \varpi^{\lambda} w_{0}: y\right)=q^{\rho \cdot \lambda} y^{\lambda} N(y, \lambda) .
$$

Concluding remarks !?

Concluding remarks !?

The WMDS of type A_{r-1} constructed by Brubaker, Bump and Friedberg is the Whittaker-Fourier coefficient of an Eisenstein series on \tilde{G}.

Concluding remarks !?

The WMDS of type A_{r-1} constructed by Brubaker, Bump and Friedberg is the Whittaker-Fourier coefficient of an Eisenstein series on \tilde{G}.

The p-part of this WMDS was related to a Spherical Whittaker function by McNamara.

Concluding remarks !?

The WMDS of type A_{r-1} constructed by Brubaker, Bump and Friedberg is the Whittaker-Fourier coefficient of an Eisenstein series on \tilde{G}.

The p-part of this WMDS was related to a Spherical Whittaker function by McNamara.

The two independent computations of the spherical whittaker functions serve as a bridge between the constructions of $B B F$ and of $C G$.

The Casselman-Shalika method with multiplicities

The Casselman-Shalika method with multiplicities

Want to compute $W_{a}(b: y)=\Omega_{a}\left(I(g, y) \varphi_{K}: y\right)$.

The Casselman-Shalika method with multiplicities

Want to compute $W_{a}(b: y)=\Omega_{a}\left(I(g, y) \varphi_{K}: y\right)$.
Step 1: Expand φ_{K} along a 'well chosen' basis of $I(y)^{\mathcal{I}}$

The Casselman-Shalika method with multiplicities

Want to compute $W_{a}(b: y)=\Omega_{a}\left(I(g, y) \varphi_{K}: y\right)$.
Step 1: Expand φ_{K} along a 'well chosen' basis of $I(y)^{\mathcal{I}}$ where \mathcal{I} is the Iwahori subgroup.

The Casselman-Shalika method with multiplicities

Want to compute $W_{a}(b: y)=\Omega_{a}\left(I(g, y) \varphi_{K}: y\right)$.
Step 1: Expand φ_{K} along a 'well chosen' basis of $I(y)^{\mathcal{I}}$ where \mathcal{I} is the Iwahori subgroup.

Step 2: Compute a single term in the corresponding expansion of $W_{a}(y)$.

The Casselman-Shalika method with multiplicities

Want to compute $W_{a}(b: y)=\Omega_{a}\left(I(g, y) \varphi_{K}: y\right)$.
Step 1: Expand φ_{K} along a 'well chosen' basis of $I(y)^{\mathcal{I}}$ where \mathcal{I} is the Iwahori subgroup.

Step 2: Compute a single term in the corresponding expansion of $W_{a}(y)$.

Step 3: Apply the KP functional equations to obtain the other terms.

Step 1: The Casselman basis

Step 1: The Casselman basis

Let $\varphi_{y} \in I(y)^{\mathcal{I}}$ be the unique element with support $\tilde{B}_{*} w_{0} \mathcal{I}$ normalized by $\varphi_{y}\left(w_{0}\right)=1$.

Step 1: The Casselman basis

Let $\varphi_{y} \in I(y)^{\mathcal{I}}$ be the unique element with support $\tilde{B}_{*} w_{0} \mathcal{I}$ normalized by $\varphi_{y}\left(w_{0}\right)=1$.

Lemma

1. The set $\left\{T_{w} \varphi_{w^{-1} y}: w \in W\right\}$ is a basis of $I(y)^{\mathcal{I}}$ (for y in general position).

Step 1: The Casselman basis

Let $\varphi_{y} \in I(y)^{\mathcal{I}}$ be the unique element with support $\tilde{B}_{*} w_{0} \mathcal{I}$ normalized by $\varphi_{y}\left(w_{0}\right)=1$.

Lemma

1. The set $\left\{T_{w} \varphi_{w^{-1} y}: w \in W\right\}$ is a basis of $I(y)^{\mathcal{I}}$ (for y in general position).
2. $\varphi_{K}=\sum_{w \in S_{r}} \frac{c_{w_{0}}\left(w^{-1} y\right)}{c_{w}\left(w^{-1} y\right)} T_{w} \varphi_{w^{-1} y}$.

Step 1: The Casselman basis

Let $\varphi_{y} \in I(y)^{\mathcal{I}}$ be the unique element with support $\tilde{B}_{*} w_{0} \mathcal{I}$ normalized by $\varphi_{y}\left(w_{0}\right)=1$.

Lemma

1. The set $\left\{T_{w} \varphi_{w^{-1} y}: w \in W\right\}$ is a basis of $I(y)^{\mathcal{I}}$ (for y in general position).
2. $\varphi_{K}=\sum_{w \in S_{r}} \frac{c_{w_{0}}\left(w^{-1} y\right)}{c_{w}\left(w^{-1} y\right)} T_{w} \varphi_{w^{-1} y}$.

Corollary

$$
W_{a}(b: y)=\sum_{w \in S_{r}} \frac{c_{w_{0}}\left(w^{-1} y\right)}{c_{w}\left(w^{-1} y\right)} \Omega_{a}\left(I(b, y) T_{w} \varphi_{w^{-1} y}\right)
$$

Step 2: computation of the term for $w=e$

Step 2: computation of the term for $w=e$

Recall that $b^{\sharp}=w_{0} b^{-1} w_{0}$.

Step 2: computation of the term for $w=e$

Recall that $b^{\sharp}=w_{0} b^{-1} w_{0}$.
Lemma

$$
\Omega_{a}\left(I(b, y) \varphi_{y}\right)=
$$

Step 2: computation of the term for $w=e$

Recall that $b^{\sharp}=w_{0} b^{-1} w_{0}$.
Lemma

$$
\Omega_{a}\left(I(b, y) \varphi_{y}\right)= \begin{cases}\delta_{\tilde{B}}(b)\left(\delta_{\tilde{B}}^{1 / 2} \chi_{y}\right)\left(a\left(b^{\sharp}\right)^{-1}\right) & b \in \tilde{A}^{-} \text {and } \tilde{A}_{*} a=\tilde{A}_{*} b^{\sharp} \\ 0 & \text { otherwise }\end{cases}
$$

Step 3: Application of the functional equation

Step 3: Application of the functional equation

Recall that in Step 1 we obtained:

$$
W_{a}(b: y)=\sum_{w \in S_{r}} \frac{c_{w_{0}}\left(w^{-1} y\right)}{c_{w}\left(w^{-1} y\right)} \Omega_{a}(y) \circ T_{w}\left(I\left(b, w^{-1} y\right) \varphi_{w^{-1} y}\right)
$$

Step 3: Application of the functional equation

Recall that in Step 1 we obtained:

$$
W_{a}(b: y)=\sum_{w \in S_{r}} \frac{c_{w_{0}}\left(w^{-1} y\right)}{c_{w}\left(w^{-1} y\right)} \Omega_{a}(y) \circ T_{w}\left(I\left(b, w^{-1} y\right) \varphi_{w^{-1} y}\right)
$$

By the functional equations of KP this equals

$$
\sum_{w \in S_{r}} \frac{c_{w_{0}}\left(w^{-1} y\right)}{c_{w}\left(w^{-1} y\right)} \sum_{c \in \tilde{A} / \tilde{A}_{*}} \tau_{a, c}\left(w, w^{-1} y\right) \Omega_{c}\left(I\left(b, w^{-1} y\right) \varphi_{w^{-1} y}: w^{-1} y\right)
$$

Step 3: Application of the functional equation

Recall that in Step 1 we obtained:

$$
W_{a}(b: y)=\sum_{w \in S_{r}} \frac{c_{w_{0}}\left(w^{-1} y\right)}{c_{w}\left(w^{-1} y\right)} \Omega_{a}(y) \circ T_{w}\left(I\left(b, w^{-1} y\right) \varphi_{w^{-1} y}\right)
$$

By the functional equations of KP this equals

$$
\sum_{w \in S_{r}} \frac{c_{w_{0}}\left(w^{-1} y\right)}{c_{w}\left(w^{-1} y\right)} \sum_{c \in \tilde{A} / \tilde{A}_{*}} \tau_{a, c}\left(w, w^{-1} y\right) \Omega_{c}\left(I\left(b, w^{-1} y\right) \varphi_{w^{-1} y}: w^{-1} y\right)
$$

Now each summand over c is of the form computed in Step 2.

Step 3: Application of the functional equation

Recall that in Step 1 we obtained:

$$
W_{a}(b: y)=\sum_{w \in S_{r}} \frac{c_{w_{0}}\left(w^{-1} y\right)}{c_{w}\left(w^{-1} y\right)} \Omega_{a}(y) \circ T_{w}\left(I\left(b, w^{-1} y\right) \varphi_{w^{-1} y}\right)
$$

By the functional equations of KP this equals

$$
\sum_{w \in S_{r}} \frac{c_{w_{0}}\left(w^{-1} y\right)}{c_{w}\left(w^{-1} y\right)} \sum_{c \in \tilde{A} / \tilde{A}_{*}} \tau_{a, c}\left(w, w^{-1} y\right) \Omega_{c}\left(I\left(b, w^{-1} y\right) \varphi_{w^{-1} y}: w^{-1} y\right)
$$

Now each summand over c is of the form computed in Step 2. By Step 2 , only $c \in b^{\sharp} \tilde{A}_{*}$ contributes and finally we get our Theorem

$$
W_{a}(b: y)=\sum_{w \in S_{r}} \frac{c_{w_{0}}\left(w^{-1} y\right)}{c_{w}\left(w^{-1} y\right)} \tau_{a, b^{\sharp}}\left(w, w^{-1} y\right) .
$$

