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The Starting Point'

Given x = (x1,%2,...,T,) and y = (y1, Y2, - -

| [ +y))

S Yn)- -




Two Flavours '




partitions
tableaux
Schur functions, sy

jeu de taquin

Background I




/ Motivations ' \

Motivation 1:

For all x = (x1,22,...,%y) andy = (y1,Y2, . - -, Yn) we have
H (i +y;) = Z H fEkNEk(A)ykSE’“(A)(CUk + Z/k)NS’“(A)-
1<i<j<n AceA(n) k=1

where A(n) is the set of alternating sign matrices and NE, SFE,

and NS are various parameters associated to them. [Chapman
2001]

Motivation 2:




4 N\
Main Results '

First Main Result:

Qux/y) = sa(x) H1§i§j§n (zi +yj).

Second Main Result—A new proof of:

=1

. /

(i +Ti+y; +7;,) = Y spa(X) spa(y,y)  (2)

mn
=1 AC (nm)




Tokuyama’s Result I

H:I;i H (i +tzj) sa(x)

1<i<y<n

— Z thgt(ST>(1 i t)str(ST)—n Xwgt(ST).
STeSTH(n)

where str(ST) is the total number of disjoint connected
components of all the ribbon strips, hgt(ST) is the height of the
tableau, and wgt(ST) = (w1, wa, ..., w,), where wy, is the number
of times k appears in ST" for k =1,2,...,n.

. /




Related to ... '

A result of Brubaker, Bump, and Friedberg (2010) showing the
product of a Schur function times a deformed x; 4+ x; product is the

partition function of a six vertex model:

Z2(65) = | [(tjz + z)sa(z1, - - 20)

1<J




Part One




/ Partitions ' \

e A partition u = (u1, p2, .- ., tq) of length ¢(u) = q is said to be
a strict partition if all the parts of 4 are distinct; that is,
1 > pho > o0 > g > 0.

e A strict partition p defines a shifted Young diagram SF*
consisting of ¢ rows of boxes of lengths 1, pa, ..., tq
left-adjusted to a diagonal line.

10
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QST1
QST?2
QST3
QST4

-

Filling the tableau'

Let QST*(n) be the set of all primed semistandard shifted
tableaux QST obtained by numbering all the boxes of SF* with
entries taken from the set {1’,1,2",2,...,n/,n}, subject to the total
ordering 1’ <1< 2' <2< .-+ <n’ <n. The numbering must be
such that the entries are:

weakly increasing across each row from left to right;

weakly increasing down each column from top to bottom:;

with no two identical unprimed entries in any column;

with no two identical primed entries in any row;

/
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Example

QST =

N
0| o
;M| | ©
M| ol o] | ©
N | | | o
N N | o] 0
™| | o
—| | ™M
—| o
™
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4 N

The Symmetric Function'

The weight of the tableau Q57T is then defined to be
wgt(QST) =z xy? ...zl ytys? ... yir, where up and vy are the

number of times k£ and k' appear, respectively.

Qux/y) = ZQSTE QSTH(n) (x/y)ver@sT),

e When x =y, these reduce to the Schur Q-functions.

. /
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The Breakdown '

The key behind the theorem is a breakdown of QST tableaux into

two pieces: one of shape § = (n,n —1,...,1) and one of shape \ for

some partition A\ not necessarily of distinct parts, i.e. the usual

tableau associated with Schur functions.

111]11]2'(2|2(3|3|5 1(2/1114"|5" |6’
11213
21213’|3(4’|5"| 5|6’ 213"1215"|2
, / / 3/5(5
QST: 3(314’|4|5'|6 34337 AP
41555 415’6’
5
56" 6 55
6
6 6
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The 0 shaped tableauXI

Let 6 = (n,n—1,...,1) and let QD°(n) be the set of all primed
shifted tableaux, QQD, of shape 9, obtained by numbering the boxes
of SF° with entries taken from the set {1’,1,2',2,...,n’,n} in such
a way that

QD1 each unprimed entry k£ appears only in the kth row;

QD2 each primed entry k&’ appears only in the kth column;

. /
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The weight of the tableau QD is defined by

wgt(QD) = ' zs? .. xlrytys? .. yir, where ug and vy are the
numbers of times k and k', respectively, appear in QD for
k=1,2,...,n. For example, for n = 6 we have
1]2']1[4"|5'|6’
213'|2|5'| 2
OD = 34’33
45’6’
5|5
6

~
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The ()D Symmetric Function'

Quix/y)= Y  (x/y)C@P = T[] (@+y)

QDeQDd%(n) 1<i<j<n
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First Main Result'

Proposition 1 Let = XA+ 9 be a strict partition of length
() = n, with X a partition of length £(\) < n and
0= (n,n—1,...,1). In addition, let x = (x1,Z2,...,%y) and

y = (Y1,Y2,---,Yn). Then

Qux/y) = sa(x) H1§i§j§n (zi +yj).
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Corollaries I

Corollary 2 (Tokuyama 1988)

H:U,L- H (i + tx;) sa(x)

1<i<g<n

_ Z thgt(ST)(l 4+ t)str(ST)—n Xwgt(ST).
STeSTH(n)

Proof: Set y = tx.

-
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Main Idea of the Proof of Main Result'

There exists a weight preserving, bijective map

© from QST"(n) to (QD’(n),T*(n)).

11111121223 [3]|5 1121114"|5"|6’
11213
212(3[314"|5"| 5|6’ 21312152
3155
3/3(4'[4|5"|6 314’133
— 3 416
415|515 4(5"6’ -
5|6'|6 55
6
6 6
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Example of Proof I \

e The primed entries in the tableau migrate left and up to reside
completely in the (D portion of the tableau.

e The key move involves sliding each £’ in the north-west
direction by a sequence of interchanges with either its unprimed
northern or western neighbour until it reaches a position in the
kth column either in the topmost row, or immediately below
another k', or immediately below some unprimed entry 7 in the
ith row. This amounts to playing jeu de taquin, treating k' to
be strictly less than all the unprimed entries.

e The paths traced out by the primed entries k' of QST as they
move northwest as far as but no further than the kth column
are illustrated by means of boldface entries in the tableaux

shown below. /
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First moving the single 2’ gives:

0| o
M| | ©
M| 1ol o] | ©
N | | | o
N[ | | o] W
| | <
= N ™
| ™

A

0| o
M| | ©

M| ol In| W ©
N | | | o
N[ | | s W
| w| |
= N ™
| ™

A
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Next the only 3’ moves just one step west where it has, as required,

reached the 3rd column. It does not move north because the entry

1 immediately above already lies in its own row:

1|2/ 1(2(2]3 5)
2 3'13|4"|5’ 6’
314" 4|5
415"|5|5
56| 6
6

2'(1]1]2(2]3 5
213"|2(3(4"|5'|5|6’
3131445
415155
5(6"|6
6
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There are two 4’s. Under the definition of the action, the upper one

-

must be moved first and then the lower one:

0| o
M| v ©
M| 1ol o] | ©
N M| | | o
| | | | W
o | oo <
—| | M
Nl e

i

0| o
M| v ©
M| ol o] | ©
N | | | o
N[ N | o] o
= | m| <
—| | M
Nl e

™

0| o
M| | ©
M| ol In| W ©
N| | | | | ©
—| | M Tn| 0
| N |
—| | M
|
™

[ 5
0| o
M| | ©
M| ol In| w| ©
N| | | | | ©
—| N[ | o] 0
| | | <
—| | M
|
™




/T here are three 5’s to deal with in turn from top to bottom, but \
the last of these is already in the 3rd column and directly below a 3

in the 3rd row, and so does not move:

1121114112335 112/1114’(5’|1|2|3|5
213'12|2(3|5'| 5|6’ 213121213356’
34’|3|41(5"|6 34'13|4|5'|6 o
_— f—
415’155 41555
56”6 56’6
6 6
112/11(4’|5"|1]2]3]|5 1121114’|5’[1]2]3]|5
213'12|2(3|3|5|6’ 213121523 |5|6
314’|3|4|5|6 314’|13|3|4]|6
—
415|515 415|155
56”6 56" 6
6 6
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Then we deal with the two 6’s to give

N[ 0

N o ©

| M | o ©
ol N | | o
| | | W] w
| O |
—| | M
o

b

0| o
M| | ©
N| »| | | ©
| N ;M v T
W] | | W] w
| O w|
—| |l M
|

b

M| o

N 0| ©
—| | | | ©
o] | o o o
| ] @] ] w
| | |
—| | M
|

™

M| o

N 0| ©
—| | | | ©
o N o o T
| ] @] ] w
| | |
—| ™| ™M
|

™

26



-

This results in the juxtaposition of QD and T as claimed:

111]11(2'(2|2|3|3]|5 112/|114"|5" |6’
1]2

21213’|3(4"|5'|5 |6’ 213"1215|2
3|5

3(314’|41(5"|6 314’133

>

’ 416

41555 415’6’
5

56”6 55
6

6 6
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Part Two




/ Symplectic tableauXI \

e Let SpT™(n) be the set of sp(2n)-tableaux T obtained by
filling the boxes of F? with entries
from {I1<1<2<2<---<m<n} such that they

S1 weakly increase across each row from left to right;
S2  strictly increase down each column from top to bottom;

S3  k and k appear no lower than the kth row.
e Ex: Forn=4, A= (3,3,2,1)

3
3

1

Ll |
N NSURE B o]
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/ Symplectic characters and tableauXI \

o Let x=(x1,29,...,2,) and X = (T1,T2,...,Tp)
with X ::L'lzl for k=1,2,...,n
e Then
ch Vg on) = spA(X,X) = Z W&t (T)
TeSpT*(n)

where wgt(T), = #kcT —#kecT for k=1,2,...,n
e Ex: For n=4, A=(3,3,2,1)

3
3

—|

_ . 0-1_1-1_2-2_2-0 _ _—1,2
wgt(T) = x5 x5 “xy =z xj

Wl | DN
=~ | | DN

30
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Second Main Result'

Classical expression (Littlewood):

[TI] @itu= > s sy (5)

AC(n™)

Symplectic expression:

[II] Gitmity+m)= > D) spa.7) (6

AC(n™)

Various proofs by ... King; Hasegawa; Jimbo and Miwa; Terada;

Bump and Gamburd

N /
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Pairs of symplectic tableaux'

Let R(n,p) be the set of tableaux R = (T'ST) composed, for
some A C (p"), of T € SpT™(n) and S € SpT)‘Jr (p) reoriented
so as to constitute a rectangular tableaux of shape F®")

Ex: n=4, p=5, A=(3,3,2,1), X\ = (4,4,2,1,0)

11213 T11|2 11234 |2
~_12]3]3 5_5’11’4 h_|2]3 314 |1
3|4 a4 |4 314|471
4 5/ 41542 |T
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Observation '

Y spa(x,X) spat(y, )

ACp™

2

Z vagt(T) Z ngt(S)

ACp™ TeSpT> (n) SeSpT ' (n)

2.

ReR(n,p)

(xy)"et

33
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Ex: n=4, p=5, A=(3,3,2,1), AT =(4,4,2,1,0)

2/
4 11

— |

w | W
4=

(xy)Ve W =27 2% vy ys

Wl | Do
TN RJURE N o]
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New rectangular tableaux'

Let D(n,p) be the set of tableaux D obtained by filling the
boxes of F®") with entries from
T<1<2<-<m<n<l <l<?2 <. <p<p?

in such a way that:

D1 each unprimed entry k or k lies in the kth row
counted from top to bottom;

D2 each primed entry k' or k' lies in the kth column
counted from right to left.

. /
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Typically

—|

1/

5/

DO

o

1/

=~ [ | DN

€ D(4,5).
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p

H H (lez +T; + Yj + @]) = Z (Xy)wgt(D)
=14

i=1j=1 DeD(n,p)

-

J
o (X7Y):(x17x27"'7xn7y17y27"°7yp)
o wgt(D); = #k —#k for i=k with k=1,2,...,n
o wgt(D); = #k' — #k for i=n+kwith k=1,2,...,p

Ex:
1(1]1(2]1] -1
514" | 2 ?l 2 (X, y)wgt(D)
D = |- |- L =
34 312 |1 0 :xl_l 'CC421 U y4—1 s
414 14217 2
1 -1 0 0 1

\Note: Entry in the (7, j)th box is any one of {z’,gl,j’j/}
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Tableau Rules '

SpT*(n) tableaux:

S1  weakly increase across each row from left to right;
S2  strictly increase down each column from top to bottom:;

S3  k and k appear no lower than the kth row.
SpT™' (n) tableaux:

S1T  weakly increase up each column from bottom to top:;
S2T  strictly increase across each row from right to left;

S3T  k and k appear no further left than the kth column.

-
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For all n,p € N

2

ReR(n,p)

(xy)

Lemma '

wgt(R) _ Z

DeD(n,p)

39




Proof'

Construct a weight preserving bijection
between R(n,p) and D(n,p)

Use jeu de taquin to map each R € R(n,p) to
corresponding D € D(n,p)

Move each primed entry &’ or k’ north-west to its own
column, the kth, and then north while moving each unprimed

entry ¢ or i to its own row, the ith.

To right of kth column maintain S1-S3 and S17-S3T

/
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/ Legitimate moves for k' I \

For k' in position (7,7) with ¢ > 1 and j < k

.
K if a <b
b a | b
S S
a | k' "
ifa>b
K| a

For k' in position (1, ) with j < k:

. :

El < K| a

41



Legitimate moves for £’ I

For k' in position (7, k) with ¢ > 1:

& it b <1
k' b

42



/ Legitimate moves for E/I

For k in position (4, j) with ¢ > 1 and j < k:

)

—
k ita<b

a | b

b
=

a | & :
ita>>b

Ay

For k& in position (1,j) with j < k:

\ o | K| T % a /
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Legitimate moves for E/I

For k in position (i, k) with i > 1:

& it b <1
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Weight preserving transformations'

For k" in position (¢, k) so that £’ is in kth column, but blocks k

from moving to kth column:

FIE| < i

~

For ¢ in position (i, k) so that 4 is in ith row, but blocks 4 from

moving to ith row:

<
I

-

~

45



Map from R € R(n,p) to D € D(n,p)

Procedure

Identify largest primed entries. Move topmost such entry, k' or E/,
North-West by a sequence of interchanges with nearest neighbours
until it reaches kth column and then North as far as possible in this
column, while moving unprimed entries, ¢ or 7, South to the ith row

and changing any vertical pair ii to & k.

. /
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1/
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2/

1/
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2/

1/
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DO

2/

5/

1/
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DO

2/

5/

1/

ol
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DO

2/

5/

1/

ol
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DO

2/

5/

1/

ol
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4/

2/

5/

1/

ol
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2/

5/

1/

ol
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4/

NO|

2/

5/

4/

1/

ol
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2/

5/

4/

1/

ol
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2/

5/

4/

1/

ol
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2/

5/

4/

1/

ol
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4/

2/

5/

4/

o
I
DO
I

1/

ol

~

~

)
I
S
I
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2/

5/

4/

o
I
DO
I

1/

ol

~

~

)
I
S
I
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5/

4/

o
I
DO
I

1/

ol

~

~

)
I
S
I
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5/

4/

o
I
DO
I

1/

ol
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)
I
S
I
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5/

4/

o
I
DO
I

1/

ol

o
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DO
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1/

ol

o

65




2/

5/

o
I
DO
I

1/

ol

o
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1/

ol

o
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DO

5/

ol

1/

ol
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DO

5/

ol

1/

ol
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DO

5/

ol

1/

ol
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111]1]2)2
541212 |1
3143271
4141427
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DO

5/

1/

ol
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1/

5/

DO

ol
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5/

DO

ol
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Bijection I

by:
112|342
a_ | 2]3 ]34V
3144 |d |1
4|5 |7 |7 |T

\0 Hence our identity is proved

e The map is weight preserving

Thus we have a map from R € R(n,p) to D € D(n,p) illustrated

111|121
51412122
3141321
41414197

e LEvery step is reversible - the map is bijective

~
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Based on Two Papers ... I

e A.M.Hamel and R.C.King, Bijective proofs of shifted tableau
and alternating sign matrix identities, J. Algebraic
Combinatorics, 25 (2007), 417-458.

e A.M. Hamel and R.C. King, Bijective proof of a symplectic
dual pair identity, 2010, preprint.
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