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9 P-values, Hypothesis Tests, and Bayes Factors
© Null Distribution of the LRT Statistic

e Look Elsewhere Effect

e Goodness of Fit Tests

e Parton Distribution Functions

e Systematics and Calibration
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Caveats

This is an incomplete summary of some of the
topics that | found interesting.

I’'m sure I’'m missing important contributions!

Please correct me if | mischaracterize your
contribution!!

Forgive me if | stand on my soap box a bit....
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Why are we using 5¢

Are we really worried about making one Type-1
error in 1.7 million results??

No. We are worried about:
@ The look elsewhere effect. (Louis Lyons)
@ Calibration and systematic errors. (Richard Lockhart)
For WIMP 3¢ is okay, but there is little LEE. (Henrique Araujo)
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Problems with 5¢

@ We don’t know the actual effect of Systematics and LEE.
@ “No distribution is valid to the 5¢ tail!” (Cox via Lyons)
@ Sampling distributions are only asymptotic approximations.

@ Must calculate extreme-tail probabilities. (Michael
Woodroofe)

We have NO idea what the actual level is.

50 simply sweeps the problem under the rug.
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Question

We work for the null distribution of the LRT and
to accurately compute extreme tail probabilities.

Why not work to crack systematics and LEE?

We could sweep the null distribution and tail
probabilities under the rug and use 6 or 7o.

It is better to face the real issues head on
(as Eliam and Ofer are with LEE).
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What should we do?

@ Handle the systematics and LEE directly.

@ Use Neyman-Person with a realistic o or Bayesian model
selection (Bob Cousins)

@ Lehmann suggests comparison of « and § and using prior
belief for Hy. (Bob Cousins)

@ When a p-value of 1078 is called back we need to figure
out what went wrong! (Richard Lockhart)

@ |dentify systematic problems and improve procedures.

Goal: Honest frequency error rates or a
calibrated Bayesian procedure.
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P-values, Hypothesis Tests, and Bayes Factors
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9 P-values, Hypothesis Tests, and Bayes Factors
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P-values, Hypothesis Tests, and Bayes Factors

The Problems with P-Values

With a Precise Null.

@ Replace data with “data as extreme or more extreme”.
Not particularly conservative. (Berger, Cousins)

@ Can vastly overstate the evidence for Hy. (Jim Berger)

© Cannot be calibrated vis-a-vis Pr(Hp). (Berger via
Cousins)

© Calibration depends on sample size, fitted model, and how
sharp Hj is.

© Most importantly, they don’t answer the question of
scientific interest: “Have we discovered a Higgs Boson”
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Why 55?

P-values, Hypothesis Tests, and Bayes Factors
Null Distribution of the LRT Statistic

Look Elsewhere Effect

Goodness of Fit Tests

Parton Distribution Functions

Systematics and Calibration

The Road to Damascus

PR,
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Why 55?

P-values, Hypothesis Tests, and Bayes Factors
Null Distribution of the LRT Statistic

Look Elsewhere Effect

Goodness of Fit Tests

Parton Distribution Functions

Systematics and Calibration

The Road to Damascus

p-values are impossible to interpret!
Use Bayes Factors!!!

- PR,
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P-values, Hypothesis Tests, and Bayes Factors

Bayes Factors

Challenges

@ Priors really matter. They must be proper and informative.
(Berger, Cousins)

Advantages
@ They lay their assumptions out for all the world to see.
@ Nothing need be hidden or swept under the rug.

@ They are easy to interpret and answer the most relevant
scientific question.

Bayes Factors don'’t have to be perfect, they just
have to be better than p-values!
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P-values, Hypothesis Tests, and Bayes Factors

Prior Distributions with Bayes Factors

@ The scale of the prior will influence the Bayes Factor.
(Cousins, Berger)

@ We can obtain a range of Bayes Factors using a range of
priors/scales (Jim Berger)

@ “There are lots of priors out there, but you can’t use them
and not worry.... you can use them" (Jim Berger)

@ “Subjective” and “Scientific” priors (Jim Berger)
@ Reference priors (Harrison Prosper)
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P-values, Hypothesis Tests, and Bayes Factors

General Issues with Detection

@ Neither Hypothesis may be true or rejectable. (Richard
Lockhart)
@ Model checking (and improvement!) is always in order
(e.g., po and py).
@ There is no easy way out.
@ p-values are not frequentist and are cannot be calibrated
(Berger, Cousins)
@ Neyman-Pearson gives a frequentist detection decision but

says nothing about the strength of the detection.
© Bayesian methods require influential prior distributions.
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P-values, Hypothesis Tests, and Bayes Factors

Suggested Strategies

@ Use the LRT statistic integrated over the parameters under
the alternative and pick a prior under Hy to achieve the
desired level. (Richard Lockhart)

@ Don’t use CLg with non-Poisson models. (Bill Murray)
@ Use Binomial test or LRT in on/off setting. (Jim Linnemann)

@ General routines for “Bayesian-Frequentist hyprid” (Kyle
Cranmer).

@ Report likelihood ratio along with p-value. (Bob Cousins)

@ Report Interval Estimate and “Upper Limit” along with
(non) detection. (David van Dyk)

@ Bayes Factors / Conditional p-values (Jim Berger)

David A. van Dyk Statistical Summary of BIRS 2010



Null Distribution of the LRT Statistic
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© Null Distribution of the LRT Statistic
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Null Distribution of the LRT Statistic

Sampling Distribution

A number of simulation analytical studies explored the null
distribution of the LRT statistic

@ Elliott Bloom found that the standard asymptotics don’t
always materialize.

@ Glen Cowen described analytical results that start with the
null in the interior.

@ Eilam Gross showed that LRT evaluated at local modes
may exhibit predictable behavior.

What is going on?
Review the standard asymptotics...

David A. van Dyk Statistical Summary of BIRS 2010



Null Distribution of the LRT Statistic

Wilks (Annals of Math. Statist., 1938)

THE LARGE-SAMPLE DISTRIBUTION OF THE LIKELIHOOD RATIO
FOR TESTING COMPOSITE HYPOTHESES'

By 8. S. WiLks

By applying the principle of maximum likelihood, J. Neyman and E. S.
Pearson® have suggested a method for obtaining functions of observations for
testing what are called composite statistical hypotheses, or simply composite
hypotheses. The procedure is essentially as follows: A population K is assumed
in which a variate z (z may be a vector with each component representing a
variate) has a distribution function f(z, 6;, 6z, - - - 64), which depends on the
parameters 6;, 0, --- 6,. A simple hypothesis is one in which the 6’s have
specified values. A set @ of admissible hypotheses is considered which consists
of a set of simple hypotheses. Geometrically, @ may be represented as a
region in the h-dimensional space of the 6’s. A set w of simple hypotheses is
specified by taking all simple hypotheses of the set @ for which 6; = 6, ¢ =
m41,m-4 2 ... h

A e L I o1 1. » A 1

vid A. k Statistical Summary of BIRS



Null Distribution of the LRT Statistic

Wilks (Annals of Math. Statist., 1938)

We can summarize in the

Theorem: If a population with a variate z 1s distributed according to the probabil-
ity function f(z, 61, 6y - - - 6), such that optimum estimates 8; of the 6; exist which
are distr l

]

in large ples according to (3), then when the hypothesis H is
true that 0; = 0,1t = m + 1, m + 2, . - . h, the distribution of — 2 log \, where \
18 given by (2) is, except for terms of order 1/+/n, distributed like x* with h — m
degrees of freedom.

PRINCETON UNIVERSITY,
PriNcETON, N. J.
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Null Distribution of the LRT Statistic

Wilks (Annals of Math. Statist., 1938)

which optimum estimates of the 6’s exist. That is, we shall assume the existence
of functions 8,(z1, - -+ z,)(maximum likelihood estimates of the 6;) such that’
their distribution is

Ic-'ili -1 % cijzit]

® fam 1+ e)dzs - daa

2
where z; = (§; — 0)v/n, ¢j = —E (aaol%f), E denoting mathematical expecta-
i 00;

tion, and ¢ is of order 1/4/n and ||c;j|| is positive definite. Denoting (3) by

Statistical Summary of BIRS 2010



Null Distribution of the LRT Statistic

Chernoff (Annals of Math. Statist., 1954)

ON THE DISTRIBUTION OF THE LIKELIHOOD RATIO'
By HErRMAN CHERNOFF

Stanford University

1. Summary and Introduction. A classical result due to Wilks [1] on the
distribution of the likelihood ratio A is the following. Under suitable regularity
conditions, if the hypothesis that a parameter 6 lies on an r-dimensional hyper-
plane of k-dimensional space is true, the distribution of —2 log \ is asymptot-
ically that of x* with & — r degrees of freedom.

In many important problems it is desired to test hypotheses which are not
quite of the above type. For example, one may wish to test whether 6 is on
one side of a hyperplane, or to test whether 6 is in the positive quadrant of a
two-dimensional space. The asymptotic distribution of —2 log\ is examined
when the value of the parameter is a boundary point of both the set of 8 corre-
sponding to the hypothesis and the set of 6 corresponding to the alternative.
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Null Distribution of the LRT Statistic

Chernoff (Annals of Math. Statist., 1954)

A not-technical summary:

placed by the inverse of the information matrix. In particular, if one tests
whether 6 is on one side or the other of a smooth (k — 1)-dimensional surface
in k-dimensional space and 6 lies on the surface, the asymptotic distribution of
\ is that of a chance variable which is zero half the time and which behaves
like x* with one degree of freedom the other half of the time.

@ Requires the MLE to converge to the truth under Hj.
@ Thus, “nuisance” parameters must be identifiable under Hy.
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Null Distribution of the LRT Statistic

Fan, Hung, and Wong (J. Amer. Statist. Assoc., 2000)

Geometric Understanding of Likelihood
Ratio Statistics

Jianging FAN, Hui-Nien HUNG, and Wing-Hung WONG

Tt is well known that twice a log-likelihood ratio statistic follows asymptotically a chi-square distribution. The result is usually
understood and proved via Taylor’s expansions of likelihood functions and by assuming asymptotic normality of maximum like-
lihood estimators (MLEs). We obtain more general results by using a different approach: the Wilks type of results hold as long as
likelihood contour sets are fan-shaped. The classical Wilks theorem corresponds to the situations in which the likelihood contour
sets are ellipsoidal. This provides a geometric understanding and a useful extension of the likelihood ratio theary. As a result, even
if the MLES are not asymptotically normal, the likelihood ratio statistics can still be asymptotically chi-square distributed. Our
technical arguments are simple and easily understood

1. INTRODUCTION see Examples 1 and 2 in Section 3. An additional benefit is
that our technical arguments are simple and can be under-
stood without much probability background.

Wa hanin with tha cimnlact naca in whick tha anll ko

One of the most celebrated folk theorems in statistics
is that twice the logarithm of a maximum likelihood ratio
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Null Distribution of the LRT Statistic

An Example

Spectral Analysis in High-Energy Astrophysics

@ We fit a power-law continuum and test for an added
emission line of (a) known or (b) unknown location.

MODEL 0. There is no emission line.

MODEL 1. There in an emission line with fixed
location in the spectrum, but unknown intensity.

MODEL 2. There is an emission line with un-
known location and intensity.
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Null Distribution of the LRT Statistic

An Example

Spectral Analysis in High-Energy Astrophysics

@ With known location all parameters are identified under Hy
but Hy is on the boundary.

@ With unknown location all parameters are not identified
under Hy and Hg is on the boundary.

@ We also tested for a (c) two-parameter absorption feature.
(Protossov, et al., 2002, ApJ)

David A. van Dyk Statistical Summary of BIRS 2010



Null Distribution of the LRT Statistic
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Using Wilk’s Th can lead to conservative or anti- conservative results.
Chernoff’s Theorem applies in (a).
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Null Distribution of the LRT Statistic

Missing the global mode

@ The LRT requires computing the MLE under Hy and Hap.

@ In a Monte Carlo simulation under Hj, this can be
computationally challenging.

@ Even if the optimizer is imperfect, however, the result is still
a valid (but typically less powerful) test statistic.

@ ltis only required that the same computation be preformed
on the real data as on the Monte Carlo sample.

@ In this case the standard asymptotics do not apply.
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Look Elsewhere Effect
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e Look Elsewhere Effect
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Look Elsewhere Effect

For a frequentist analysis

@ There are several sorts of “elsewhere” and we need to
define them (Louis Lyons).

@ But how? And where exactly? What is the real effect?

Frequency properties depend on what you
would do with other data and what you might do
with other data in the future.

“The absurdity of these comparisons is what
makes me a Bayesian” (Steffen Lauritzen).
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Look Elsewhere Effect

An easier case

Looking for a bump... in several locations.

@ p-values and significance levels should be altered to
account for the fact that an added model component may
be anywhere in the range of the data or.... elsewhere.
(Louis Lyons).

@ Bob Cousins conjectures that the LEE goes as v/n.

@ Eilam Gross described and Ofer Vitells applied a method
to adjust p-values to account for the LEE.

@ This can also be done by adjusting H4 and re-calibrating.
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Look Elsewhere Effect

Spectral Analysis in High Energy Astrophysics:
Quasar PG1637+706.

MODEL 0. There is no emission line.

MODEL 1. There in an emission line with fixed
location in the spectrum, but unknown intensity.

MODEL 2. There is an emission line with un-
known location and intensity.

To fit Model 2 under Hy we use multiple starting values...
and use the same starts with the real data.
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Look Elsewhere Effect

288 D. A. VAN DYK AND H. KANG
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FIG. 4. The posterior predictive check. The two histograms compare the observed likelihood ratio test statistics (vertical lines) with
1000 simulations from the posterior predictive distribution. The left plot is the comparison between Model 0 and Model 1, and the right
plot is the comparison between Model 0 and Model 2. Both model checks indicate strong evidence for including the emission line.
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Goodness of Fit Tests
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@ Goodness of Fit Tests
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Goodness of Fit Tests

@ All goodness-of-fit tests have an implicit alternative.
(Richard Lockhart)

@ Consider what alternatives matter and design your test
accordingly. (Richard Lockhart)

@ But how?

@ Chad Schafer presented an impressive all purpose method
for designing such tests.

@ This allows us to clearly identify the alternative we are
testing against.
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Parton Distribution Functions
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e Parton Distribution Functions
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Parton Distribution Functions

Procedures Appear to Underestimate Uncertainty

Statistical Challenge (Jon Pumplin and Robert Thorne)
@ Inconsistency between individual & combined experiments.
@ Individual experiments are more variable than expected.
Suggestions
@ Verify that individual experiments are really too variable.
@ Compare the variance of the fitted values with Monte Carlo.
@ There may be unaccounted for systematic differences.

@ Random effects model could separate the experimental
variability from the variance due to systematic differences.

@ The data are not really exchangable....

David A. van Dyk Statistical Summary of BIRS 2010



Parton Distribution Functions
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Systematics and Calibration
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e Systematics and Calibration
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Systematics and Calibration

Dealing with Systematics

@ "If you can’t account for systematics, no number of o will
help" (Richard Lockhart)

@ But how can we account for systematics?

@ Example from High-Energy Astrophysics (Lee et al., 2010,
under revision for ApJ)
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Systematics and Calibration

Effective Area Curves and Calibration Sample

o
=3
@
=}
=3
©
€
=}
SX=]
A
<
=}
o
«
S}
L
[=} o )
w0 ’
< - NN
£ i, DU IC RS A~
) - = | JUdfioe m ’ ~-% o
L =4 e S
ol LA -2 S
< ERRY Ll (T i TSRS SoEs e
Wyl RGO Il AR ) gy i
: 3 P
o ~ 1
~
9 SO 1~ =




Systematics and Calibration

Representation of Calibration Sample

@ We summarize the Calibration sample using Principle

Component Analysis.
@ Effective Area Curves can then be sampled as needed.

@ Compare 67% and full ranges of original and PCA sample:

-100 -50
S

0.3
E (keV)
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Systematics and Calibration

@ Calibration sample is a prior for the effective area curve.

@ Repeat standard analysis with random sample of curves.

@ Combine results using Multiple Imputation combining rules.
@ Alternatively, embed into Bayesian model &fit with MCMC.

@ Assume data are independent of curve to simplify
computation.

@ Sample effective area curves from prior, not given data.
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Systematics and Calibration
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