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Caveats

This is an incomplete summary of some of the
topics that I found interesting.

I’m sure I’m missing important contributions!

Please correct me if I mischaracterize your
contribution!!

Forgive me if I stand on my soap box a bit....
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Why are we using 5σ

Are we really worried about making one Type-1
error in 1.7 million results??

No. We are worried about:
The look elsewhere effect. (Louis Lyons)
Calibration and systematic errors. (Richard Lockhart)

For WIMP 3σ is okay, but there is little LEE. (Henrique Araujo)
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Problems with 5σ

We don’t know the actual effect of Systematics and LEE.
“No distribution is valid to the 5σ tail!” (Cox via Lyons)
Sampling distributions are only asymptotic approximations.
Must calculate extreme-tail probabilities. (Michael
Woodroofe)

We have no idea what the actual level is.

5σ simply sweeps the problem under the rug.
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Question

We work for the null distribution of the LRT and
to accurately compute extreme tail probabilities.

Why not work to crack systematics and LEE?

We could sweep the null distribution and tail
probabilities under the rug and use 6 or 7σ.

It is better to face the real issues head on
(as Eliam and Ofer are with LEE).
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What should we do?

Handle the systematics and LEE directly.
Use Neyman-Person with a realistic α or Bayesian model
selection (Bob Cousins)
Lehmann suggests comparison of α and β and using prior
belief for H0. (Bob Cousins)
When a p-value of 10−8 is called back we need to figure
out what went wrong! (Richard Lockhart)
Identify systematic problems and improve procedures.

Goal: Honest frequency error rates or a
calibrated Bayesian procedure.
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The Problems with P-Values

With a Precise Null.
1 Replace data with “data as extreme or more extreme”.

Not particularly conservative. (Berger, Cousins)
2 Can vastly overstate the evidence for HA. (Jim Berger)
3 Cannot be calibrated vis-a-vis Pr(H0). (Berger via

Cousins)
4 Calibration depends on sample size, fitted model, and how

sharp H0 is.
5 Most importantly, they don’t answer the question of

scientific interest: “Have we discovered a Higgs Boson”
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The Road to Damascus
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The Road to Damascus

p-values are impossible to interpret!
Use Bayes Factors!!!
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Bayes Factors

Challenges
Priors really matter. They must be proper and informative.
(Berger, Cousins)

Advantages
They lay their assumptions out for all the world to see.
Nothing need be hidden or swept under the rug.
They are easy to interpret and answer the most relevant
scientific question.

Bayes Factors don’t have to be perfect, they just
have to be better than p-values!
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Prior Distributions with Bayes Factors

The scale of the prior will influence the Bayes Factor.
(Cousins, Berger)
We can obtain a range of Bayes Factors using a range of
priors/scales (Jim Berger)
“There are lots of priors out there, but you can’t use them
and not worry.... you can use them" (Jim Berger)
“Subjective” and “Scientific” priors (Jim Berger)
Reference priors (Harrison Prosper)
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General Issues with Detection

Neither Hypothesis may be true or rejectable. (Richard
Lockhart)
Model checking (and improvement!) is always in order
(e.g., p0 and p1).
There is no easy way out.

1 p-values are not frequentist and are cannot be calibrated
(Berger, Cousins)

2 Neyman-Pearson gives a frequentist detection decision but
says nothing about the strength of the detection.

3 Bayesian methods require influential prior distributions.
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Suggested Strategies

Use the LRT statistic integrated over the parameters under
the alternative and pick a prior under H0 to achieve the
desired level. (Richard Lockhart)
Don’t use CLS with non-Poisson models. (Bill Murray)
Use Binomial test or LRT in on/off setting. (Jim Linnemann)
General routines for “Bayesian-Frequentist hyprid” (Kyle
Cranmer).
Report likelihood ratio along with p-value. (Bob Cousins)
Report Interval Estimate and “Upper Limit” along with
(non) detection. (David van Dyk)
Bayes Factors / Conditional p-values (Jim Berger)
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Sampling Distribution

A number of simulation analytical studies explored the null
distribution of the LRT statistic

Elliott Bloom found that the standard asymptotics don’t
always materialize.
Glen Cowen described analytical results that start with the
null in the interior.
Eilam Gross showed that LRT evaluated at local modes
may exhibit predictable behavior.

What is going on?
Review the standard asymptotics...
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Wilks (Annals of Math. Statist., 1938)
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Chernoff (Annals of Math. Statist., 1954)

ON THE DISTRIBUTION OF THE LIKELIHOOD RATIO' 

BY HERMAN CHERNOFF 

Stanford University 

1. Summary and Introduction. A classical result due to Wilks [1] on the 

distribution of the likelihood ratio X is the following. Under suitable regularity 

conditions, if the hypothesis that a parameter 0 lies on an r-dimensional hyper- 

plane of k-dimensional space is true, the distribution of -2 log X is asymptot- 

ically that of x2 with k - r degrees of freedom. 

In many important problems it is desired to test hypotheses which are not 

quite of the above type. For example, one may wish to test whether 0 is on 

one side of a hyperplane, or to test whether 0 is in the positive quadrant of a 

two-dimensional space. The asymptotic distribution of -2 log X is examined 

when the value of the parameter is a boundary point of both the set of 0 corre- 

sponding to the hypothesis and the set of 0 corresponding to the alternative. 

First the case of a single observation from a multivariate normal distribu- 

tion, with mean 0 and known covariance matrix, is treated. The general case 

is then shown to reduce to this special case where the covariance matrix is re- 

placed by the inverse of the information matrix. In particular, if one tests 

whether 0 is on one side or the other of a smooth (k - l)-dimensional surface 

in k-dimensional space and 0 lies on the surface, the asymptotic distribution of 

X is that of a chance variable which is zero half the time and which behaves 

like x2 with one degree of freedom the other half of the time. 

2. Notation and background. We shall use some of the notation and results 

of Mann and Wald [2]. In particular, if {xn} is a sequence of k-dimensional 

chance variables and {ffj a sequence of positive numbers, we write 

(1) Xn = Op(fn) 

if for each e > 0, there is an Me such that P{I xn I > M6fn} < 1 - e. Similarly 

we write 

(2) xn = Ov(fn) 

if xn/fn -* 0 in probability, or equivalently, if, for each e > 0, there is a sequence 

Mne-*OsuchthatPIlxflI > Mefn } < 1 - e 

Mann and Wald have shown that the calculus used with the usual 0 and o 

notation applies to Op and o,. For example, if xn = Op(vn") and y" = op(1), 
then xn y= o,(Vn). We shall frequently drop the subscript n where there is 

no ambiguity. 

We write d(x) for the distribution of x and d oo(xn) = d(x) if the limiting 

Received 7/24/53. 
' This work was prepared with the partial support of the Office of Naval Research. 
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Chernoff (Annals of Math. Statist., 1954)

A not-technical summary:

ON THE DISTRIBUTION OF THE LIKELIHOOD RATIO' 

BY HERMAN CHERNOFF 

Stanford University 

1. Summary and Introduction. A classical result due to Wilks [1] on the 

distribution of the likelihood ratio X is the following. Under suitable regularity 

conditions, if the hypothesis that a parameter 0 lies on an r-dimensional hyper- 

plane of k-dimensional space is true, the distribution of -2 log X is asymptot- 

ically that of x2 with k - r degrees of freedom. 

In many important problems it is desired to test hypotheses which are not 

quite of the above type. For example, one may wish to test whether 0 is on 

one side of a hyperplane, or to test whether 0 is in the positive quadrant of a 

two-dimensional space. The asymptotic distribution of -2 log X is examined 

when the value of the parameter is a boundary point of both the set of 0 corre- 

sponding to the hypothesis and the set of 0 corresponding to the alternative. 

First the case of a single observation from a multivariate normal distribu- 

tion, with mean 0 and known covariance matrix, is treated. The general case 

is then shown to reduce to this special case where the covariance matrix is re- 

placed by the inverse of the information matrix. In particular, if one tests 

whether 0 is on one side or the other of a smooth (k - l)-dimensional surface 

in k-dimensional space and 0 lies on the surface, the asymptotic distribution of 

X is that of a chance variable which is zero half the time and which behaves 

like x2 with one degree of freedom the other half of the time. 

2. Notation and background. We shall use some of the notation and results 

of Mann and Wald [2]. In particular, if {xn} is a sequence of k-dimensional 

chance variables and {ffj a sequence of positive numbers, we write 

(1) Xn = Op(fn) 

if for each e > 0, there is an Me such that P{I xn I > M6fn} < 1 - e. Similarly 

we write 

(2) xn = Ov(fn) 

if xn/fn -* 0 in probability, or equivalently, if, for each e > 0, there is a sequence 

Mne-*OsuchthatPIlxflI > Mefn } < 1 - e 

Mann and Wald have shown that the calculus used with the usual 0 and o 

notation applies to Op and o,. For example, if xn = Op(vn") and y" = op(1), 
then xn y= o,(Vn). We shall frequently drop the subscript n where there is 

no ambiguity. 

We write d(x) for the distribution of x and d oo(xn) = d(x) if the limiting 
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Requires the MLE to converge to the truth under H0.
Thus, “nuisance” parameters must be identifiable under H0.
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Fan, Hung, and Wong (J. Amer. Statist. Assoc., 2000)

Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Geometric understanding of Likelihood ratio statistics
Jianqing Fan; Hui-Nien Hung; Wing-Hung Wong
Journal of the American Statistical Association; Sep 2000; 95, 451; ABI/INFORM Global
pg. 836
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An Example

Spectral Analysis in High-Energy Astrophysics
We fit a power-law continuum and test for an added
emission line of (a) known or (b) unknown location.

284 D. A. VAN DYK AND H. KANG

FIG. 2. Various EM-type algorithms for fitting the spectral

model. The figure illustrates the effect of the number of inner it-

erations in a nested EM algorithm on the required CPU time for

convergence with both the standard and fast (i.e., conditional aug-

mentation) algorithms. The optimal algorithm is the fast algorithm

with about 10 inner iterations and it requires only about a quarter

of the CPU time of the standard EM algorithm, which has one inner

iteration.

the absorbed photons, but rather we need absorption

only to be uniform across the support energies of the

emission line. In particular, suppose amin is the lowest
absorption rate, amin =minj {1− djg(θA,Ej)}, where
j varies over the support of emission line k. When
we compute Ÿ k

j , we act as if the absorption rate were

1 − djg(θA,Ej ) − amin. Thus, we add fewer counts
to each bin. In particular, if line k is a delta function,
we need not account for absorption at all when updat-

ing θL
k . This is the strategy used in the fast EM and fast

nested EM algorithms illustrated in Figure 2. The fast

EM algorithm offers additional computational savings

over nesting; see van Dyk andMeng (2000) for another

example involving the spectral model.

4. EXAMPLE

In this section we use our spectral model to study the

quasar mentioned in Section 3.2; see also Sourlas et al.

(2003) and van Dyk et al. (2001) for other examples of

the application of this model.

Quasars are the most distant distinct detectable ob-

jects in the universe. They are believed to be super-

massive black holes, whose masses exceed that of the

Sun by a million times. They are powered by the grav-

itational potential energy of gas and stars falling into

the central black hole, which results in emission across

the electromagnetic spectrum. Because they are so dis-

tant, they give us a glimpse into the very distant past;

the light that is now reaching the Earth left the quasar

when the universe was as little as 10% of its current

age, measured from the Big Bang. The study of quasars

therefore has important consequences for cosmological

theory.

In this example we focus on an emission line

in this energy spectrum of the high redshift quasar

PG1637+706. By measuring the location of the emis-
sion line in the spectrum and accounting for the expan-

sion of the universe, we can estimate the distance of

the quasar from the Earth. The wavelengths of electro-

magnetic waves originating from objects moving away

from us appear to be elongated and hence lowered in

energy when they reach us. By measuring the change

in energy, we can recover this recession velocity. In a

uniformly expanding universe, the recession velocity is

a direct measure of distance.

We fit a spectral model consisting of a power law

continuum, f (θC,Ej) = αCE
−βC

j , with the absorp-

tion model of Morrison and McCammon (1983) to

account for absorption due to the ISM and IGM,

and a power law continuum for background counts,

f (θB,Ej) = αBE
−βB

j . We consider three models for

the emission line.

MODEL 0. There is no emission line.

MODEL 1. There in an emission line with fixed

location in the spectrum, but unknown intensity.

MODEL 2. There is an emission line with un-

known location and intensity.

We use a Gaussian line profile for the emission line

with standard deviation fixed at 0.125 keV throughout.

Initially, there was only a suspicion that there might

be an emission line in the spectrum and we had no

prior information as to the likely location for the

line. To find candidate locations, we fit the model

via maximum likelihood using the EM algorithm with

51 different starting values evenly spaced between 1.0

and 6.0 keV. We begin with the EM algorithm, because

fitting the line location via the Gibbs sampler can

be dangerous. The posterior distribution has several

modes, corresponding to potential line locations, and

the Gibbs sampler is generally unable to jump between

these modes. Moreover, if the sampler is started far

from any of the modes and a flat prior distribution

is used for the line location, there may be no counts

attributed to the line when the missing data are drawn,
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An Example

Spectral Analysis in High-Energy Astrophysics
With known location all parameters are identified under H0
but H0 is on the boundary.
With unknown location all parameters are not identified
under H0 and H0 is on the boundary.
We also tested for a (c) two-parameter absorption feature.

(Protossov, et al., 2002, ApJ)
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Results

reference distribution of the LRT against these two alterna-
tive models. The nominal !2 distributions with 1 and 2
degrees of freedom are plotted on the histograms and clearly
do not suffice. The false positive rates are 2.6% and 1.5% in
the nominal 5% tests, respectively. In this case, we expect
the LRT to understate the evidence for an emission line.
Correcting the false positive rate should enable us to detect
weak lines that would be missed by blind application of the
LRT.

Simulation 2: testing for a simple absorption line.—
Although the LRT is conservative in both of the tests in sim-
ulation 1, this is not always the case. This can be seen in a
second simulation in which we consider a simplified absorp-
tion line. Although multiplicative model components such
as an absorption line do not correspond to testing for a com-
ponent in a finite mixture, the LRT still does not apply if the
null model is on the boundary of the parameter space; such
is the case with absorption lines. In this simulation we
ignore background contamination, instrument response,
and binning. We simulate 1000 data sets each with 100 pho-
tons from an exponential continuum, and fit the following
twomodels:

Model 1.—Exponential continuum.
Model 2.—Exponential continuum plus a two-parameter

absorption line, where the fitted absorption probability is
constant across the line that has a fixed width but a fitted
center.

Again, we computed the LRT statistic for each of the 1000
simulated data sets and plotted the results in the final panel
of Figure 1. Clearly, the LRT does not follow its nominal
reference distribution (!2 with 2 degrees of freedom) even
with this simplified absorption line model; the false positive
rate is 31.5% for the nominal 5% test. That is, use of the
nominal reference distribution would result in over 6 times
more false line detections than expected.

4. BAYESIAN MODEL CHECKING

Although some theoretical progress on the asymptotic
distribution of TLRT(x) when !0 is on the boundary of !
has been made (e.g., by Chernoff 1954 and specifically for
finite mixtures by Lindsay 1995), extending such results to a
realistic highly structured spectral model would require
sophisticated mathematical analysis (see Lindsay 1995 for a
simple exception when only ! is fitted in eq. [3]). In this sec-
tion we pursue a mathematically simpler method based on
Bayesian model checking known as posterior predictive
p-values (Meng 1994; Gelman, Meng, & Stern 1996). As we
shall see, this Bayesian solution is simpler and far more gen-
erally applicable than the asymptotic arguments required
for satisfactory behavior of the LRT.

Posterior predictive p-values are but one of many meth-
ods for model checking and selection that may be useful in
astrophysics. Our aim here is not to provide a complete cat-
alog of such methods but rather to provide practical details
of one method that we believe is especially promising and
little known in astrophysics. In x 4.3 we provide a brief com-
parison with several other Bayesian methods.

4.1. The Posterior Predictive p-Value

The central difficulty with the LRT and the F-test in this
setting is that their reference distributions are unknown
even asymptotically. Moreover, the distributions likely
depend on such things as the particular shape of the contin-
uum, the number of lines, and their profiles and strengths.
Thus, it is difficult to obtain any general results regarding
such reference distributions even via simulation. The
method of posterior predictive p-values uses information
about the spectrum being analyzed to calibrate the LRT sta-
tistic (or any other test statistic) for each particular measure-
ment. In the simulations described in x 3.2, we simulated
data sets ~xxðtÞ using a fixed value of (", #, $) and observed the
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(c)

31.5%

Fig. 1.—Null distribution of the LRT test statistic. The histograms illustrate the simulated null distribution of the LRT statistic in three scenarios and
should be compared with nominal !2 distributions, which are also plotted. As detailed in x 3.2, the histograms corresponds to (a) testing for a narrow emission
line with fixed location, (b) testing for a wide emission line with fitted location, and (c) testing for an absorption line. The vertical lines show the nominal cutoff
for a test with a 5% false positive rate; note that the actual false positive rates vary greatly at 2.6%, 1.5%, and 31.5%. The label on the y-axis stands for the prob-
ability density function.

No. 1, 2002 FALLIBLE F-TEST 549

Using Wilk’s Th can lead to conservative or anti- conservative results.
Chernoff’s Theorem applies in (a).
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Missing the global mode

The LRT requires computing the MLE under H0 and HA.
In a Monte Carlo simulation under H0, this can be
computationally challenging.
Even if the optimizer is imperfect, however, the result is still
a valid (but typically less powerful) test statistic.
It is only required that the same computation be preformed
on the real data as on the Monte Carlo sample.
In this case the standard asymptotics do not apply.
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LEE

For a frequentist analysis
There are several sorts of “elsewhere” and we need to
define them (Louis Lyons).
But how? And where exactly? What is the real effect?

Frequency properties depend on what you
would do with other data and what you might do

with other data in the future.

“The absurdity of these comparisons is what
makes me a Bayesian” (Steffen Lauritzen).
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An easier case

Looking for a bump... in several locations.
p-values and significance levels should be altered to
account for the fact that an added model component may
be anywhere in the range of the data or.... elsewhere.
(Louis Lyons).
Bob Cousins conjectures that the LEE goes as

√
n.

Eilam Gross described and Ofer Vitells applied a method
to adjust p-values to account for the LEE.
This can also be done by adjusting HA and re-calibrating.
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Example

Spectral Analysis in High Energy Astrophysics:
Quasar PG1637+706.

284 D. A. VAN DYK AND H. KANG

FIG. 2. Various EM-type algorithms for fitting the spectral

model. The figure illustrates the effect of the number of inner it-

erations in a nested EM algorithm on the required CPU time for

convergence with both the standard and fast (i.e., conditional aug-

mentation) algorithms. The optimal algorithm is the fast algorithm

with about 10 inner iterations and it requires only about a quarter

of the CPU time of the standard EM algorithm, which has one inner

iteration.

the absorbed photons, but rather we need absorption

only to be uniform across the support energies of the

emission line. In particular, suppose amin is the lowest
absorption rate, amin =minj {1− djg(θA,Ej)}, where
j varies over the support of emission line k. When
we compute Ÿ k

j , we act as if the absorption rate were

1 − djg(θA,Ej ) − amin. Thus, we add fewer counts
to each bin. In particular, if line k is a delta function,
we need not account for absorption at all when updat-

ing θL
k . This is the strategy used in the fast EM and fast

nested EM algorithms illustrated in Figure 2. The fast

EM algorithm offers additional computational savings

over nesting; see van Dyk andMeng (2000) for another

example involving the spectral model.

4. EXAMPLE

In this section we use our spectral model to study the

quasar mentioned in Section 3.2; see also Sourlas et al.

(2003) and van Dyk et al. (2001) for other examples of

the application of this model.

Quasars are the most distant distinct detectable ob-

jects in the universe. They are believed to be super-

massive black holes, whose masses exceed that of the

Sun by a million times. They are powered by the grav-

itational potential energy of gas and stars falling into

the central black hole, which results in emission across

the electromagnetic spectrum. Because they are so dis-

tant, they give us a glimpse into the very distant past;

the light that is now reaching the Earth left the quasar

when the universe was as little as 10% of its current

age, measured from the Big Bang. The study of quasars

therefore has important consequences for cosmological

theory.

In this example we focus on an emission line

in this energy spectrum of the high redshift quasar

PG1637+706. By measuring the location of the emis-
sion line in the spectrum and accounting for the expan-

sion of the universe, we can estimate the distance of

the quasar from the Earth. The wavelengths of electro-

magnetic waves originating from objects moving away

from us appear to be elongated and hence lowered in

energy when they reach us. By measuring the change

in energy, we can recover this recession velocity. In a

uniformly expanding universe, the recession velocity is

a direct measure of distance.

We fit a spectral model consisting of a power law

continuum, f (θC,Ej) = αCE
−βC

j , with the absorp-

tion model of Morrison and McCammon (1983) to

account for absorption due to the ISM and IGM,

and a power law continuum for background counts,

f (θB,Ej) = αBE
−βB

j . We consider three models for

the emission line.

MODEL 0. There is no emission line.

MODEL 1. There in an emission line with fixed

location in the spectrum, but unknown intensity.

MODEL 2. There is an emission line with un-

known location and intensity.

We use a Gaussian line profile for the emission line

with standard deviation fixed at 0.125 keV throughout.

Initially, there was only a suspicion that there might

be an emission line in the spectrum and we had no

prior information as to the likely location for the

line. To find candidate locations, we fit the model

via maximum likelihood using the EM algorithm with

51 different starting values evenly spaced between 1.0

and 6.0 keV. We begin with the EM algorithm, because

fitting the line location via the Gibbs sampler can

be dangerous. The posterior distribution has several

modes, corresponding to potential line locations, and

the Gibbs sampler is generally unable to jump between

these modes. Moreover, if the sampler is started far

from any of the modes and a flat prior distribution

is used for the line location, there may be no counts

attributed to the line when the missing data are drawn,

To fit Model 2 under H0 we use multiple starting values...
and use the same starts with the real data.
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FIG. 4. The posterior predictive check. The two histograms compare the observed likelihood ratio test statistics (vertical lines) with

1000 simulations from the posterior predictive distribution. The left plot is the comparison between Model 0 and Model 1, and the right

plot is the comparison between Model 0 and Model 2. Both model checks indicate strong evidence for including the emission line.

we need only sample θ from its posterior distribution,
sample a replicated data set yrep from the sampling dis-
tribution given the sampled value of θ and compute the
(likelihood ratio) test statistic using the replicated data.

The frequency under repeated sampling that this pro-

cedure results in a more extreme test statistic than is

actually observed is the posterior predictive p value.

If this is a very small number, we conclude that the

data would be unlikely to have been generated under

the posterior predictive distribution, and in terms of

the characteristics measured by the test statistic, the

model is not adequate for the data. [There are of course

numerous other techniques for model checking, e.g.,

Bayes factors and the Bayesian information criterion;

see Protassov et al. (2002) for a more detailed discus-

sion of our preference for posterior predictive p values
in this setting.]

To illustrate the use of posterior predictive p values,
we return to the example of Section 4 to quantify the

evidence for the emission line. We use the likelihood

ratio test as the test statistic,

T (yrep) = log
{
supθ∈"i

L(θ |yrep)
supθ∈"0

L(θ |yrep)

}
, i = 1,2,

where "0,"1 and "2 represent the parameter spaces

for Model 0, Model 1 and Model 2, respectively;

see Section 4. We use the EM algorithm to com-

pute T (yrep). In particular, after generation of

1000 data sets from the posterior predictive distribu-

tion under Model 0, we fit each of the three models

to each of the 1000 data sets via maximum likelihood.

When we fit Model 2, we used six evenly spaced start-

ing values for the line location over the range (1.0 keV,

4.0 keV); the maximum of the resulting six local

maximum likelihood values is taken to be the global

maximum likelihood. Although this procedure is not

guaranteed to return the global maximum, it is a

legitimate statistical procedure that results in a test

statistic, whose posterior predictive distribution we

investigate. Figure 4 shows the posterior predictive dis-

tribution of T (yrep) and posterior predictive p value

with both Model 1 and Model 2 as the numerator

model. Together the two posterior predictive p values

indicate that there is strong evidence for the presence

of the emission line in the spectrum. Given the prior be-

lief that the line is near 2.81 keV, it is legitimate to use

the first posterior predictive p value, which is essen-

tially zero. Without such prior information, one should

use the second value, which is about 0.01. It is evident

that the prior information increases the power of the

comparison.

6. PILEUP

6.1 The Nature of Pileup

We turn now to photon pileup, a form of data

degradation that is much more challenging than the

forms discussed in Section 2.2. Pileup occurs in X-ray

CCD’s when two or more photons arrive at the same

location on the detector during the same time frame.

Such coincident events are counted as a single higher

energy event or lost altogether if the total energy goes

above the on-board discriminators. Thus, for bright

sources pileup can seriously distort both the count rate

and the energy spectrum.
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All goodness-of-fit tests have an implicit alternative.
(Richard Lockhart)
Consider what alternatives matter and design your test
accordingly. (Richard Lockhart)
But how?
Chad Schafer presented an impressive all purpose method
for designing such tests.
This allows us to clearly identify the alternative we are
testing against.
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Procedures Appear to Underestimate Uncertainty

Statistical Challenge (Jon Pumplin and Robert Thorne)
Inconsistency between individual & combined experiments.
Individual experiments are more variable than expected.

Suggestions
Verify that individual experiments are really too variable.
Compare the variance of the fitted values with Monte Carlo.
There may be unaccounted for systematic differences.
Random effects model could separate the experimental
variability from the variance due to systematic differences.
The data are not really exchangable....
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Dealing with Systematics

"If you can’t account for systematics, no number of σ will
help" (Richard Lockhart)
But how can we account for systematics?
Example from High-Energy Astrophysics (Lee et al., 2010,
under revision for ApJ)
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Effective Area Curves and Calibration Sample
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Representation of Calibration Sample

We summarize the Calibration sample using Principle
Component Analysis.
Effective Area Curves can then be sampled as needed.
Compare 67% and full ranges of original and PCA sample:
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Methods

Calibration sample is a prior for the effective area curve.
Repeat standard analysis with random sample of curves.
Combine results using Multiple Imputation combining rules.
Alternatively, embed into Bayesian model &fit with MCMC.
Assume data are independent of curve to simplify
computation.
Sample effective area curves from prior, not given data.
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Results
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