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Motivation

Cowan (2009), “Testing nature to the limit: the Large Hadron Collider,”

Significance, page 158:

“What the physicist would of course like to have is a test with

maximal power with respect to a broad class of alternative

hypotheses.

For a given signal model, for example, one would like to

choose the acceptance and rejection regions based on the

likelihood ratio
fs(x)

fb(x)
.
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Motivation

Cowan (2009), continued:

“In principle the signal and background theories should allow

us to work out the required functions fs(x) and fb(x), but in

practice the calculations are too difficult and we do not have

explicit formulas for these.

What we have instead . . . are complicated Monte Carlo

programs: that is, we can sample x to produce simulated

signal and background events.”
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Motivation

Facing similar challenges in cosmology

How to estimate cosmological parameters when

faced with complex model relating parameters to

observable data?

Increasing use of simulation models
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Motivation

Seek procedures (tests, confidence regions) that

have “power against with maximal power with

respect to a broad class of alternative hypotheses”

that are physically feasible

The power tradeoff
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Outline

⇒Formalism:

Test Functions, Acceptance Probability Functions

⇒Decision Theoretic Construction

⇒From Theory to Practice

⇒Related Problem in Cosmology

⇒PDFs and the Banff Challenge
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Formalism

Elements η ∈ Θ are parameter vectors that specify

the distribution of the data:

In cosmology cases, η = (H0,Ωm,ΩΛ, . . .)

In case of estimating PDF, η = (a1, a2, . . . , a25)

In the case of Banff Challenge, η = ???
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Formalism

Test Function: d(η, x) for η ∈ Θ and event data x

d(η, x) =





1, if η accepted when x is observed

0, if η rejected when x is observed

Of course,

d(η, x) =





1, if η included in confidence region

0, if η excluded from confidence region
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Formalism

Acceptance Probability Function:

For θ, η ∈ Θ,

γd(θ, η) = Probability test d accepts η when θ is truth

= Pθ(d(η,X) = 1)
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Formalism

Frequentists require choosing d such that

γd(θ, θ) ≥ 1 − α

for all θ ∈ Θ.

Bayesian credible regions satisfy
∫

Θ

γd(θ, θ) π(dθ) = 1 − α

for chosen prior π.
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Decision Theoretic Construction

Neither of the above defines a unique choice for d.

Clearly, would prefer d that forces γd(θ, θ) large

while keeping γd(θ, η) small when θ 6= η.

Propose decision theoretic considerations for

choosing d.
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Decision Theoretic Construction

Specify a nonnegative penalty function:

φ(θ, η) = penalty for accepting η when θ is truth

Then define the loss function:

Ld(θ, x) =

∫

Θ

φ(θ, η) d(η, x) dη

Note that Ld(θ, x) is the accumulated penalties

when d is used and data x is observed.
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Decision Theoretic Construction

If choose φ(θ, η) = 1, then

Ld(θ, x) =

∫

Θ

d(η, x) dη

= Volume of confidence region,

a natural measure of precision.
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Decision Theoretic Construction

If choose φ(θ, η) = g(η), then

Ld(θ, x) =

∫

Θ

d(η, x) g(η) dη

= ν-measure of confidence region,

where g = dν/dη.
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Decision Theoretic Construction

For the PDF case, could choose

φ(θ, η) =
6∑

i=1

‖fi(θ) − fi(η)‖,

where fi(θ) is the ith parton distribution function

under parameters θ.

16



Decision Theoretic Construction

For the Banff challenge, could choose φ(θ, η) as a

function of whether or not the parameter vectors

agree on their classification of background/signal:

If θ and η are both “background,” then make φ(θ, η) small

If θ and η are both “signal,” then make φ(θ, η) small

If θ is “signal” and η is “background,” then make φ(θ, η) large

If θ is “background” and η is “signal,” then make φ(θ, η) larger
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Decision Theoretic Construction

Next define the risk function:

Rd(θ) = Expected loss when θ is truth

= Eθ[Ld(θ,X)]

=

∫ ∫
φ(θ, η) d(η, x) fθ(x) dη dx

=

∫
γd(θ, η) φ(θ, η) dη

= Weighted average of acceptance

probabilities
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Decision Theoretic Construction

Bayes risk for prior π:

Bd(π) ≡

∫

Θ

Rd(θ) π(dθ)

Neyman-Pearson Lemma: To minimize Bd(π),

d(η, x) = 1 if

∫
Θ fθ(x)φ(θ, η) π(dθ)

fη(x)
≤ Kη

Denote this Bayes procedure dπ
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Decision Theoretic Construction

Alternatively, one could seek d that is minimax, i.e.

it minimizes

max
θ∈Θ

Rd(θ)

Either of these possibilities sets up a difficult

computational problem.

Keep in mind that we want to deal with the case

where fθ is only approximated.
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From Theory to Practice

Instead, only limit Rd over densities of the form

f(x) =

p∑

i=1

ρifi(x)

where f1, f2, . . . , fp are user-specified basis densities.

The nonnegative mixing coefficients ρi satisfy

p∑

i=1

ρi = 1.
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From Theory to Practice

Schafer and Stark (2009):

Monte Carlo algorithm for approximating d(η, x)

that minimizes the maximum value of Rd(θ) under

the assumption that

f(x) =

p∑

i=1

ρifi(x).

Considers the case φ(θ, η) = 1, but theory extends
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From Theory to Practice

Minimax Expected Size (MES) procedure

Pratt (1961):

Rd(θ) =

∫

Θ

γd(θ, η) dη

=

∫

Θ

Pθ(η in confidence set) dη

= Expected volume of confidence set
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Type Ia Supernovae Analysis

Type Ia Supernovae are exploding stars, and

standard candles

Observe redshift (z) and apparent magnitude (m)

Theory predicts relationship between redshift and

distance modulus as a function of cosmological

parameters
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Type Ia Supernovae Analysis

Credit: NASA, ESA, R. Sankrit and W. Blair (Johns Hopkins University)
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Type Ia Supernovae Analysis
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From Riess, et al. (2007), 182 Type Ia Supernovae
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Type Ia Supernovae Analysis

Simple, flat cosmology, two parameter model:

µ(z | θ) = 5 log10

(
c(1 + z)

H0

∫ z

0

du√
Ωm(1 + u)3 + (1 − Ωm)

)

+ 25

Observed pairs (zi, Yi) are realizations of

Yi = µ(zi | θ) + σiǫi,

where the ǫi are i.i.d. standard normal.
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Type Ia Supernovae Analysis

To establish link with previous notation:

θ = (H0,Ωm), the two cosmological parameters.

Θ is the range of the cosmological parameters

considered physically possible. We assume

60 ≤ H0 ≤ 90 and 500 ≤ ΩmH2
0 ≤ 2500
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Type Ia Supernovae Analysis

x is the collection of all 182 pairs (zi, Yi)

fθ(x) is the multivariate normal distribution with

mean and covariance given by the “complex”

model

The objective is to construct a 95% confidence

region for (H0,Ωm) that minimizes γd(θ, η) to the

extent possible
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Type Ia Supernovae Analysis

0.0 0.5 1.0 1.5

36
38

40
42

44

Redshift

D
is

ta
nc

e 
M

od
ul

us

Curve is case where H0 = 72.76 and Ωm = 0.341 (the MLE)
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Type Ia Supernovae Analysis
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Type Ia Supernovae Analysis
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Type Ia Supernovae Analysis
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Type Ia Supernovae Analysis
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Type Ia Supernovae Analysis
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Type Ia Supernovae Analysis

Practical Concern:

How to choose the the basis densities fi?

In this case, use a set of densities fθ for p values of θ

Ideally, the distributions are evenly “spread out”
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Type Ia Supernovae Analysis

The Hellinger Distance between distributions:

H(f, g) =

√
1

2

∫ (√
f(x) −

√
g(x)

)2

dx

Note that 0 ≤ H(f, g) ≤ 1
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Type Ia Supernovae Data
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Type Ia Supernovae Analysis
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Ideally, the fi would be representative of all the possible truths
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Banff Challenge

Could marginalize over the nuisance parameters

βsignal, βbackground, ǫsignal, ǫbackground,L

I interpreted x to be the individual event data.

Define ξ as the parameter

ξ =





1, if from signal

0, if from background
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Banff Challenge

Assume that

fb(x) =
3∑

i=1

αifbackground,i(x)

and

fs(x) =
3∑

i=1

τifsignal,i(x)

as a way of compensating for uncertainty in these

densities.
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Banff Challenge
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Banff Challenge
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Banff Challenge

Now have six effective parameters

When ξ = 0,
∑3

i=1 αi = 1 and τi = 0

When ξ = 1,
∑3

i=1 τi = 1 and αi = 0

Basis densities can be the fbackground,i(x) and fsignal,i(x)

47



Banff Challenge

The penalty function only penalizes accpeting cases

when ξ = 0 when, in fact, ξ = 1, and vice-versa.

48



Banff Challenge

Can test both the case where. . .

. . . ξ = 0, and get the p-value p0

. . . ξ = 1, and get the p-value p1
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PDFs

Could work well, if willing to assume

35∑

j=1

Nj∑

i=1

(
datai − theoryi

errori

)2

is the log-likelihood of a normal.

Handles the complexity of the relationship between

parameters and PDFs well.
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Conclusion

Formalism for considering frequentist confidence

procedures

How to work with complex models?

Practical issues

Ideas for the PDFs and Banff Challenge
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Approximating the LFA

Schafer and Stark (2009):

The least favorable alternative is approximated via

Monte Carlo simulations

Sample from parameter space Θ, sample from data

space under each of these theories

Set up a “matrix game” in which statistician

chooses d, and nature chooses π
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Approximating the LFA

Goal: Estimate B(π, dπ) for fixed π

Estimate Type II Error probabilities: Pθ[dπ(η,X) = 1]

If X ∼ fη, then

E

[(
fθ(X)

fη(X)

)
dπ(η,X)

]
= Pθ[dπ(η,X) = 1]

and

E

[(∫

Θ

fθ(X)

fη(X)
π(dθ)

)
dπ(η,X)

]
=

∫

Θ

Pθ[dπ(η,X) = 1] π(dθ)
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Approximating the LFA

If X ∼ fη, then

E

[(∫

Θ

fθ(X)

fη(X)
π(dθ)

)
dπ(η,X)

]
=

∫

Θ

Pθ[dπ(η,X) = 1] π(dθ)

but
∫

Θ

fθ(X)

fη(X)
π(dθ)

is distributed as desired test statistic under the null

Use Monte Carlo to estimate dπ(η, ·)
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Approximating the LFA

If X ∼ fη, then

E

[(∫

Θ

fθ(X)

fη(X)
π(dθ)

)
dπ(η,X)

]
=

∫

Θ

Pθ[dπ(η,X) = 1] π(dθ)

but
∫

Θ

[∫

Θ

Pθ[dπ(η,X) = 1] π(dθ)

]
ν(dη) = B(π, dπ)

Another level of MC: randomly choose η to estimate

outer integral – This defines B̂(π)
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Approximating the LFA

B̂(π) =
∑

k

dk
′
A(ηk)π

“Nature” chooses π and “Statistician” chooses dk

The (i, j) entry of A(ηk) is

fθj
(xi)

fηk
(xi)
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Approximating the LFA

(
π1 π2 · · · πp

)





d(η, X1)

d(η, X2)

...

d(η, Xn)









LR[θ1/η, X1] LR[θ2/η, X1] · · · LR[θp/η, X1]

LR[θ1/η, X2] LR[θ2/η, X2] · · · LR[θp/η, X2]

...
...

. . .
...

LR[θ1/η, Xn] LR[θ2/η, Xn] · · · LR[θp/η, Xn]





LR[θ/η, x] ≡
fθ(x)φ(θ, η)

fη(x)
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Matrix Games

Matrix game characterized by payoff matrix A

Player one chooses row i, player two column j

Player one pays player two A(i, j)

Example: Matching Pennies

H T

A ≡

(
1 −1

−1 1

)
H

T

Optimal strategy is mixed: randomly choose heads or tails.
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Matrix Games

Takes the form

B̂(π) =
∑

k

dk
′
A(ηk)π

“Nature” chooses π and “Statistician” chooses dk

Brown-Robinson algorithm handles statistician’s

complicated strategy space.
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