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Some Terminology 
 evidence-based priors 
  proper priors that incorporate pertinent information 

 formal priors 
  priors derived using formal rules 

 statistical model 
1.  probability distribution of data 
2.  the sampling space 
3.  the stopping rule 
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The Platonic Bayesian 
uses evidence-based priors for every parameter for every 

problem…and is happy not to have a life.  

The Non-Platonic Bayesian 
acknowledging the impossibility of eliciting every detail of 

every prior for every problem chooses either: 
1.  to “Abandon all hope, ye who enter here.” 
2.  or uses formal priors as needed and checks that results 

are reasonable.  
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Formal Priors 
High energy physicists (who are pragmatic to a fault) use the 

simple formal rule:  
 “when in doubt, make it flat!”  

The goal of our paper is to initiate a distancing of the field 
from this rule to one that has a foundation, namely, the rule 
by Bernardo (1979) and Berger and Bernardo (1989, 1992, 
2009), which yields so-called reference priors. They are 
the basis of reference analysis, an integrated set of 
Bayesian methods that include methods for parameter and 
interval estimation and hypothesis testing.  
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Reference Priors  
Their properties ought to appeal to physicists:  

1.  generality – there is a well-defined algorithm  for 
creating a reference prior for almost any problem 

2.  invariance – reference priors are invariant under one-
to-one transformations, 

3.  consistency – the posterior densities over the sampling 
space cluster around the true values of the parameters 

4.  coherence – avoidance of marginalization paradoxes: 
posterior densities that can be arrived at in two ways 
that ought to agree but do not.   
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π (φ | x) = π (θ | x) | ∂θ / ∂φ |



Reference Priors 
Basic intuition: the information provided by observations is 

contingent on what is already known.   

Therefore, since the posterior π(θ | x) encodes what one 
knows about the parameter θ after the observation x, while 
the prior π(θ) encodes what one knows before, one expects 
that the greater the discrepancy between the posterior and 
the prior, the greater the information gain. 

This is made precise using ideas from information theory. 
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Expected Information (I) 
The information expected from one observation x is 

quantified using the expected intrinsic information 

 where 

 is the marginal distribution (or integrated likelihood) and 
   

 is the Kullback-Leibler divergence between the densities 
p(θ) and q(θ).    
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m(x) ≡ p(x |θ)π (θ)dθ∫

D[q, p] ≡ p(θ)ln p(θ)
q(θ)

dθ∫

I{π} = D[π , π x ]∫ m(x)dx, π ≡  prior, π x ≡ posterior



Expected Information (II) 
Suppose we have k observations, x(k) = (x1, x2,…,xk). The 

expected intrinsic information generalizes in a natural way: 

 with 

As k grows to infinity, we expect to recover all the 
information that can possibly be had about the parameter θ.  

In principle, I∞{π} (the missing information) is the quantity to 
be maximized with respect to π(θ) to obtain the reference 
prior πR(θ).   
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m(x(k ) ) ≡ p(x(k ) |θ)π (θ)dθ∫ = p(xi |θ)
i=1

k

∏⎡
⎣⎢

⎤
⎦⎥
π (θ)dθ∫

Ik{π} = D[π , π x(k ) ]∫ m(x(k ) )dx(k )



Reference Priors for One-Parameter Models (I) 
I∞{π} typically diverges. Therefore, its maximization is 

defined by a limit: one maximizes Ik{π} to find πk. (NB: 
since πk must integrate to 1, it may be necessary to restrict 
its domain to a compact set      .) 

This procedure yields the following constructive definition of 
the reference prior: 

 where the fixed point θ0 and h(θ) may be freely chosen.  
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π R (θ) = limk→∞
π k (θ) /π k (θ0 )

π k (θ) = exp p(x(k ) |θ) ln
p(x(k ) |θ)h(θ)
p(x(k ) |θ)h(θ)dθ∫

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dx(k )∫

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Θk ⊂ Θk+1



Reference Priors for One-Parameter Models (II) 
If the posterior π(θ | x) is asymptotically normal, a very useful 

result obtains, namely, that the reference prior for models 
with one continuous parameter reduces to the well-known 
Jeffreys prior (the square-root of the Fisher information F): 
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π R (θ) = F

= p(x |θ) −
d 2

dθ 2
ln p(x |θ)

⎡

⎣
⎢

⎤

⎦
⎥∫ dx



Nuisance Parameters 
When nuisance parameters are present, there are two 

plausible ways to proceed depending on what prior 
information is available (Sun, Berger): 
1.  Method 1: Assume that 

  π(θ, ϕ) = πR(θ | ϕ) π(ϕ), where πR(θ | ϕ) is 
computed from the model p(x |θ, ϕ) for fixed ϕ. 

2.  Method 2: Assume that 
  π(θ, ϕ) = π(ϕ |θ) πR(θ), where πR(θ) is 
computed from the marginalized model 
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p(x |θ) = p(x |θ,φ)π (φ |θ)dφ∫





Let  
 n  be the observed count (the number of events)  
 σ  the cross section (the signal strength) 
 ε  the effective integrated luminosity and  
 µ  the mean background count. 

The likelihood for the model is 

 ε and µ are nuisance parameters. 
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p(n |σ ,ε,µ) = Poisson(n | εσ + µ), 0 ≤ σ < ∞ and 0 < ε, µ < ∞



The Evidence-based Prior 
We assume that ε and µ are independent a priori and both are 

independent of the cross section σ.  

We further assume that the priors for ε and µ can be modeled 
with gamma densities: 

 where a, b, x, and y are known constants. 
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π (ε,µ |σ ) = π (ε,µ) = Gamma(aε |x +1 / 2)
×Gamma(bµ | y +1 / 2)



Reference Prior – Method 1 (I) 
In this method, we find the conditional reference prior  
πR(σ | ε, µ) using 

 where σ0 is any fixed point.  

Since the single-count model is asymptotically normal, we 
can use Jeffreys’ rule to compute  
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π k (σ | ε,µ)∝
ε

εσ + µ

π R (σ | ε,µ) = limk→∞
π k (σ | ε,µ) /π k (σ 0 | ε,µ)



Reference Prior – Method 1 (II) 
As a function of σ, the function 

 does not integrate to 1, so we must restrict its domain to a 
compact set. Let’s try 

 where uk < uk+1, vk < vk+1 , wk < wk+1. We obtain:  

Reference Priors - BIRS 2010          Harrison B. Prosper 18 

π k (σ | ε,µ)∝
ε

εσ + µ

Θk = (σ ,ε,µ) :σ ∈[0,uk ], ε ∈[0,vk ], µ ∈[0,wk ]{ }

π R (σ | ε,µ)∝
ε

εσ + µ



Reference Prior – Method 1 (III) 
This prior was found to yield an improper posterior when the 

evidence-based prior for ε is ~ exp(-ε) ε-1/2. This problem 
can be traced to our choice of compact sets (Berger).  

Noting that ε and σ enter as a product in the model, a better 
choice is 

 This yields a result identical to the Jeffreys prior 

 and produces well-behaved posterior densities. 
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π R1(σ | ε,µ)∝
ε

εσ + µ

Θk = (σ ,ε,µ) :σ ∈[0,uk / ε], ε ∈[1 / vk ,vk ], µ ∈[0,wk ]{ }



Reference Prior – Method 2 (I) 
In this method, the reference prior πR2(σ) is computed from 

the marginalized model 

     where 
     Cmk are constants 

We find   
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p(n |σ ) = p(n |σ ,ε,µ)π (∫∫ ε,µ |σ )dε dµ

=
a

a +σ
⎡
⎣⎢

⎤
⎦⎥

x+1/2 b
b +1
⎡
⎣⎢

⎤
⎦⎥

y+1/2

Sn
0 (σ )

π R2 (σ )∝
(x +1 / 2)Sk

0 (σ ) − aSk
1(σ ) /σ⎡⎣ ⎤⎦

2

(a +σ )x+5 /2Sk
0 (σ )k=0

∞

∑

Sn
m (σ ) = a

a +σ
⎡
⎣⎢

⎤
⎦⎥

k

Cmk
k=0

n

∑



Reference Prior – Method 1 
An important generalization is to the multi-count model 

comprising M counts: 

 The reference prior is again identical to the Jeffreys prior 
and is given by 

(For Method 2, the marginalized model             can be 
computed exactly, but we compute πR2(σ) numerically.)  
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p(n |σ , ε , µ) = Poisson(ni | εiσ + µi )
i=1

M

∏

π R1(σ )∝
εi
2

εiσ + µii=1

M

∑

 
p(n |σ )





Multi-count Model – Method 1 
The reference prior is computed using the algorithm: 
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1 n0 =  array of observed counts
2 for i = 1,…, I :
3 (σ , εi ,


µi ) ~ p(n0 |σ , ε , µ)π (ε , µ)

4 for j = 1,…, J :
5 nj ~ p(n |σ , εi ,


µi )

6 dj = d
2[− ln p(nj |σ i ,


εi ,

µi )] / dσ i

2  numerically

7 π R1(σ i | εi ,

µi ) =

1
J

d j
j=1

J

∑
8 π R1(σ i | n0 ) = histogram(fill σ i ,weight = π (σ i | εi ,


µi ))



Multi-count Model – Method 2 
The reference prior is computed using the algorithm: 
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1 n0 =  array of observed counts
2 for i = 1,…, I :
3 specify σ i

4 for j = 1,…, J :
5 nj ~ p(n |σ i )

6 dj = d
2[− ln p(nj |σ i )] / dσ i

2  numerically

7 π R2 (σ i ) =
1
J

d j
j=1

J

∑
8 π R2 (σ i | n0 ) = integral({p(n0 |σ i )}, {π R2 (σ i )})
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Prior
s 

Posterior
s 

Prior and posterior densities 
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NR –  number of replications,   ntot – summed counts 

Asymptotic behavior of posterior 



Sampling Consistency 
Coverage for a fixed 
value of σ, but averaged 
over the nuisance 
parameters, as a  
function of the number 
of replications, NR, of the 
experiment. 
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Dependence of upper limit on count and relative uncertainty 
on the background.  
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D0 Single Top Measurement 
Channel: electron, 1-tag, 2-jet, ~ 500 counts spread over  

M = 50 bins.  
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Method 2

Flat prior
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Courtesy D0 Collaboration 



This package (written in C++) implements the single and 
multi-count models and provides classes to calculate 
reference priors for any model (binned or un-binned) that 
depends on a single parameter of interest. 

The code has been released to the Physics Statistics Code 
Repository (phystat.org). 

Our near-term plan is to incorporate the classes into RooStats.  
The longer term plan is to (have someone) implement 

reference analysis methods in RooStats, building on the 
work done in the refpriors package. 
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h Incorporating reference priors into high energy physics 
analyses seems feasible (see arXiv:1002.1111v2).  

h We have released code to perform the crucial first step of 
reference analysis: the construction of reference priors. 

h We have implemented two construction methods 
depending on what prior information is available. 

h Could this be the beginning of the end of flat prior mania?  
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