Reference priors for high energy physics

Luc Demortier ${ }^{1}$, Supriya Jain ${ }^{2}$, and Harrison B. Prosper ${ }^{3}$ Statistical issues relevant to significance of discovery claims

Banff International Research Center

2. State University of New York at Buffalo
3. Florida State University

Reference priors for high energy physics

Luc Demortier
Laboratory of Experimental Higl
Rockefeller University, New Yo

Supriya J

Homer L. Dodge Department

University of Oklahoma, N

Harrison
Department of Physics, Florida St,
(Date

Bayesian inferences in high energy pl about which little or no information ; rior distributions are therefore sensit' even be improper if this choice is nh . methodology, known as reference analysis, whica. priors that embody the notion of minimal informativeness 1 .

We apply this methodology to general cross section measurements ano . sible results. A recent measurement of the single top quark cross section illustrates

Outline

- Introduction
- Single-Count Model
- Multi-Count Model
- Studies
- refpriors
- Conclusions \& Summary

Introduction (1)

Some Terminology
evidence-based priors proper priors that incorporate pertinent information
formal priors
priors derived using formal rules
statistical model

1. probability distribution of data
2. the sampling space
3. the stopping rule

Introduction (2)

The Platonic Bayesian

uses evidence-based priors for every parameter for every problem... and is happy not to have a life.

The Non-Platonic Bayesian
acknowledging the impossibility of eliciting every detail of every prior for every problem chooses either:

1. to "Abandon all hope, ye who enter here."
2. or uses formal priors as needed and checks that results are reasonable.

Introduction (3)

Formal Priors

High energy physicists (who are pragmatic to a fault) use the simple formal rule:
"when in doubt, make it flat!"

The goal of our paper is to initiate a distancing of the field from this rule to one that has a foundation, namely, the rule by Bernardo (1979) and Berger and Bernardo (1989, 1992, 2009), which yields so-called reference priors. They are the basis of reference analysis, an integrated set of Bayesian methods that include methods for parameter and interval estimation and hypothesis testing.

Introduction (4)

Reference Priors

Their properties ought to appeal to physicists:

1. generality - there is a well-defined algorithm for creating a reference prior for almost any problem
2. invariance - reference priors are invariant under one-to-one transformations, $\pi(\phi \mid x)=\pi(\theta \mid x)|\partial \theta / \partial \phi|$
3. consistency - the posterior densities over the sampling space cluster around the true values of the parameters
4. coherence - avoidance of marginalization paradoxes: posterior densities that can be arrived at in two ways that ought to agree but do not.

Introduction (5)

Reference Priors

Basic intuition: the information provided by observations is contingent on what is already known.

Therefore, since the posterior $\pi(\theta \mid x)$ encodes what one knows about the parameter θ after the observation x, while the prior $\pi(\theta)$ encodes what one knows before, one expects that the greater the discrepancy between the posterior and the prior, the greater the information gain.

This is made precise using ideas from information theory.

Introduction (6)

Expected Information (I)

The information expected from one observation x is quantified using the expected intrinsic information

$$
I\{\pi\}=\int D\left[\pi, \pi_{x}\right] m(x) d x, \quad \pi \equiv \text { prior }, \quad \pi_{x} \equiv \text { posterior }
$$

where

$$
m(x) \equiv \int p(x \mid \theta) \pi(\theta) d \theta
$$

is the marginal distribution (or integrated likelihood) and

$$
D[q, p] \equiv \int p(\theta) \ln \frac{p(\theta)}{q(\theta)} d \theta
$$

is the Kullback-Leibler divergence between the densities $p(\theta)$ and $q(\theta)$.

Introduction (7)

Expected Information (II)

Suppose we have k observations, $x_{(\mathrm{k})}=\left(x_{1}, x_{2}, \ldots, x_{\mathrm{k}}\right)$. The expected intrinsic information generalizes in a natural way:

$$
I_{k}\{\pi\}=\int D\left[\pi, \pi_{x(k)}\right] m\left(x_{(k)}\right) d x_{(k)}
$$

with

$$
m\left(x_{(k)}\right) \equiv \int p\left(x_{(k)} \mid \theta\right) \pi(\theta) d \theta=\int\left[\prod_{i=1}^{k} p\left(x_{i} \mid \theta\right)\right] \pi(\theta) d \theta
$$

As k grows to infinity, we expect to recover all the information that can possibly be had about the parameter θ.

In principle, $I_{\infty}\{\pi\}$ (the missing information) is the quantity to be maximized with respect to $\pi(\theta)$ to obtain the reference prior $\pi_{R}(\theta)$.

Introduction (8)

Reference Priors for One-Parameter Models (I)

$I_{\infty}\{\pi\}$ typically diverges. Therefore, its maximization is defined by a limit: one maximizes $I_{\mathrm{k}}\{\pi\}$ to find π_{k}. (NB: since π_{k} must integrate to 1 , it may be necessary to restrict its domain to a compact set $\Theta_{k} \subset \Theta_{k+1}$)
This procedure yields the following constructive definition of the reference prior:

$$
\begin{aligned}
& \pi_{R}(\theta)=\lim _{k \rightarrow \infty} \pi_{k}(\theta) / \pi_{k}\left(\theta_{0}\right) \\
& \pi_{k}(\theta)=\exp \left\{\int p\left(x_{(k)} \mid \theta\right) \ln \left[\frac{p\left(x_{(k)} \mid \theta\right) h(\theta)}{\int p\left(x_{(k)} \mid \theta\right) h(\theta) d \theta}\right] d x_{(k)}\right\}
\end{aligned}
$$

where the fixed point θ_{0} and $h(\theta)$ may be freely chosen.

Introduction (9)

Reference Priors for One-Parameter Models (II)

If the posterior $\pi(\theta \mid x)$ is asymptotically normal, a very useful result obtains, namely, that the reference prior for models with one continuous parameter reduces to the well-known Jeffreys prior (the square-root of the Fisher information F):

$$
\begin{aligned}
\pi_{R}(\theta) & =\sqrt{F} \\
& =\sqrt{\int p(x \mid \theta)\left[-\frac{d^{2}}{d \theta^{2}} \ln p(x \mid \theta)\right] d x}
\end{aligned}
$$

Introduction (10)

Nuisance Parameters

When nuisance parameters are present, there are two plausible ways to proceed depending on what prior information is available (Sun, Berger):

1. Method 1: Assume that

$$
\pi(\theta, \phi)=\pi_{R}(\theta \mid \phi) \pi(\phi), \text { where } \pi_{R}(\theta \mid \phi) \text { is }
$$

computed from the model $p(x \mid \theta, \phi)$ for fixed ϕ.
2. Method 2: Assume that

$$
\pi(\theta, \phi)=\pi(\phi \mid \theta) \pi_{R}(\theta), \text { where } \pi_{R}(\theta) \text { is }
$$

computed from the marginalized model

$$
p(x \mid \theta)=\int p(x \mid \theta, \phi) \pi(\phi \mid \theta) d \phi
$$

Count Models - Some Exact Results

The Single-Count Model (1)

Let
$n \quad$ be the observed count (the number of events)
σ the cross section (the signal strength)
$\varepsilon \quad$ the effective integrated luminosity and
μ the mean background count.

The likelihood for the model is
$p(n \mid \sigma, \varepsilon, \mu)=\operatorname{Poisson}(n \mid \varepsilon \sigma+\mu), \quad 0 \leq \sigma<\infty \quad$ and $\quad 0<\varepsilon, \mu<\infty$
ε and μ are nuisance parameters.

The Single-Count Model (2)

The Evidence-based Prior

We assume that ε and μ are independent a priori and both are independent of the cross section σ.

We further assume that the priors for ε and μ can be modeled with gamma densities:

$$
\begin{aligned}
\pi(\varepsilon, \mu \mid \sigma)=\pi(\varepsilon, \mu) & =\operatorname{Gamma}(a \varepsilon \mid x+1 / 2) \\
& \times \operatorname{Gamma}(b \mu \mid y+1 / 2)
\end{aligned}
$$

where a, b, x, and y are known constants.

The Single-Count Model (3)

Reference Prior - Method 1 (I)
In this method, we find the conditional reference prior $\pi_{R}(\sigma \mid \varepsilon, \mu)$ using

$$
\pi_{R}(\sigma \mid \varepsilon, \mu)=\lim _{k \rightarrow \infty} \pi_{k}(\sigma \mid \varepsilon, \mu) / \pi_{k}\left(\sigma_{0} \mid \varepsilon, \mu\right)
$$

where σ_{0} is any fixed point.

Since the single-count model is asymptotically normal, we can use Jeffreys' rule to compute

$$
\pi_{k}(\sigma \mid \varepsilon, \mu) \propto \frac{\varepsilon}{\sqrt{\varepsilon \sigma+\mu}}
$$

The Single-Count Model (4)

Reference Prior - Method 1 (II)
As a function of σ, the function

$$
\pi_{k}(\sigma \mid \varepsilon, \mu) \propto \frac{\varepsilon}{\sqrt{\varepsilon \sigma+\mu}}
$$

does not integrate to 1 , so we must restrict its domain to a compact set. Let's try

$$
\Theta_{k}=\left\{(\sigma, \varepsilon, \mu): \sigma \in\left[0, u_{k}\right], \varepsilon \in\left[0, v_{k}\right], \mu \in\left[0, w_{k}\right]\right\}
$$

where $u_{\mathrm{k}}<u_{\mathrm{k}+1}, v_{\mathrm{k}}<v_{\mathrm{k}+1}, w_{\mathrm{k}}<w_{\mathrm{k}+1}$. We obtain:

$$
\pi_{R}(\sigma \mid \varepsilon, \mu) \propto \frac{\sqrt{\varepsilon}}{\sqrt{\varepsilon \sigma+\mu}}
$$

The Single-Count Model (5)

Reference Prior - Method 1 (III)

This prior was found to yield an improper posterior when the evidence-based prior for ε is $\sim \exp (-\varepsilon) \varepsilon^{-1 / 2}$. This problem can be traced to our choice of compact sets (Berger).
Noting that ε and σ enter as a product in the model, a better choice is

$$
\Theta_{k}=\left\{(\sigma, \varepsilon, \mu): \sigma \in\left[0, u_{k} / \varepsilon\right], \varepsilon \in\left[1 / v_{k}, v_{k}\right], \mu \in\left[0, w_{k}\right]\right\}
$$

This yields a result identical to the Jeffreys prior

$$
\pi_{R 1}(\sigma \mid \varepsilon, \mu) \propto \frac{\varepsilon}{\sqrt{\varepsilon \sigma+\mu}}
$$

and produces well-behaved posterior densities.

The Single-Count Model (6)

Reference Prior - Method 2 (I)

In this method, the reference prior $\pi_{R 2}(\sigma)$ is computed from the marginalized model

$$
\begin{aligned}
p(n \mid \sigma) & =\iint p(n \mid \sigma, \varepsilon, \mu) \pi(\varepsilon, \mu \mid \sigma) d \varepsilon d \mu \\
& =\left[\frac{a}{a+\sigma}\right]^{x+1 / 2}\left[\frac{b}{b+1}\right]^{y+1 / 2} S_{n}^{0}(\sigma)
\end{aligned}
$$

where

$$
S_{n}^{m}(\sigma)=\sum_{k=0}^{n}\left[\frac{a}{a+\sigma}\right]^{k} C_{m k}
$$

$C_{m k}$ are constants
We find

$$
\pi_{R 2}(\sigma) \propto \sqrt{\sum_{k=0}^{\infty} \frac{\left[(x+1 / 2) S_{k}^{0}(\sigma)-a S_{k}^{1}(\sigma) / \sigma\right]^{2}}{(a+\sigma)^{x+5 / 2} S_{k}^{0}(\sigma)}}
$$

The Multiple-Count Model

Reference Prior - Method 1

An important generalization is to the multi-count model comprising M counts:

$$
p(\vec{n} \mid \sigma, \vec{\varepsilon}, \vec{\mu})=\prod_{i=1}^{M} \operatorname{Poisson}\left(n_{i} \mid \varepsilon_{i} \sigma+\mu_{i}\right)
$$

The reference prior is again identical to the Jeffreys prior and is given by

$$
\pi_{R 1}(\sigma) \propto \sqrt{\sum_{i=1}^{M} \frac{\varepsilon_{i}^{2}}{\varepsilon_{i} \sigma+\mu_{i}}}
$$

(For Method 2, the marginalized model $p(\vec{n} \mid \sigma)$ can be computed exactly, but we compute $\pi_{R 2}(\sigma)$ numerically.)

Numerical Algorithms

Numerical Algorithms

Multi-count Model - Method 1

The reference prior is computed using the algorithm:
$1 \vec{n}_{0}=$ array of observed counts
2 for $i=1, \ldots, I$:
$3\left(\sigma, \vec{\varepsilon}_{i}, \vec{\mu}_{i}\right) \sim p\left(\vec{n}_{0} \mid \sigma, \vec{\varepsilon}, \vec{\mu}\right) \pi(\vec{\varepsilon}, \vec{\mu})$
$4 \quad$ for $j=1, \ldots, J$:
$5 \quad \vec{n}_{j} \sim p\left(\vec{n} \mid \sigma, \vec{\varepsilon}_{i}, \vec{\mu}_{i}\right)$
$6 \quad d_{j}=d^{2}\left[-\ln p\left(\vec{n}_{j} \mid \sigma_{i}, \vec{\varepsilon}_{i}, \vec{\mu}_{i}\right)\right] / d \sigma_{i}^{2}$ numerically
$7 \quad \pi_{R 1}\left(\sigma_{i} \mid \vec{\varepsilon}_{i}, \vec{\mu}_{i}\right)=\sqrt{\frac{1}{J} \sum_{j=1}^{J} d_{j}}$
$8 \pi_{R 1}\left(\sigma_{i} \mid \vec{n}_{0}\right)=$ histogram(fill σ_{i}, weight $\left.=\pi\left(\sigma_{i} \mid \vec{\varepsilon}_{i}, \vec{\mu}_{i}\right)\right)$

Numerical Algorithms

Multi-count Model - Method 2
The reference prior is computed using the algorithm:
$1 \vec{n}_{0}=$ array of observed counts
2 for $i=1, \ldots, I$:
3 specify σ_{i}
$4 \quad$ for $j=1, \ldots, J$:
$5 \quad \vec{n}_{j} \sim p\left(\vec{n} \mid \sigma_{i}\right)$
$6 \quad d_{j}=d^{2}\left[-\ln p\left(\vec{n}_{j} \mid \sigma_{i}\right)\right] / d \sigma_{i}^{2}$ numerically
$7 \quad \pi_{R 2}\left(\sigma_{i}\right)=\sqrt{\frac{1}{J} \sum_{j=1}^{J} d_{j}}$
$8 \pi_{R 2}\left(\sigma_{i} \mid \vec{n}_{0}\right)=\operatorname{integral}\left(\left\{p\left(\vec{n}_{0} \mid \sigma_{i}\right)\right\},\left\{\pi_{R 2}\left(\sigma_{i}\right)\right\}\right)$

Studies

Studies (1)

Prior and posterior densities

Studies (2)

Asymptotic behavior of posterior

N_{R} - number of replications,

$n_{\text {tot }}$ - summed counts

Studies (3)

Sampling Consistency
Coverage for a fixed value of σ, but averaged over the nuisance parameters, as a function of the number of replications, N_{R}, of the experiment.

Studies (4)

Dependence of upper limit on count and relative uncertainty on the background.

Studies (5)

D0 Single Top Measurement

Channel: electron, 1-tag, 2-jet, ~ 500 counts spread over $M=50$ bins.

Courtesy D0 Collaboration

refpriors

This package (written in $\mathrm{C}++$) implements the single and multi-count models and provides classes to calculate reference priors for any model (binned or un-binned) that depends on a single parameter of interest.

The code has been released to the Physics Statistics Code Repository (phystat.org).

Our near-term plan is to incorporate the classes into RooStats.
The longer term plan is to (have someone) implement reference analysis methods in RooStats, building on the work done in the refpriors package.

Conclusions \& Summary

- Incorporating reference priors into high energy physics analyses seems feasible (see arXiv:1002.1111v2).
- We have released code to perform the crucial first step of reference analysis: the construction of reference priors.
- We have implemented two construction methods depending on what prior information is available.
- Could this be the beginning of the end of flat prior mania?

