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In this note I consider the look elsewhere effect for exclusion testing. The
conclusions are these:

� When testing multiple hypotheses a potential look elsewhere effect
arises if it is possible for more than one of the null hypotheses to be
correct at the same time.

� If it is known that at most k of these hypotheses can be true simulta-
neously then the relevant trials factor is at most k.

� In particular in a scan over some variable such as mass to exclude some
particle which cannot exist at more than one such mass no multiplicity
effect arises.

� This must be understood via the confidence set — hypothesis testing
duality. The problem is not quite the same as testing the null hypoth-
esis that a particle exists somewhere within a pre-specified range.

� There are other similar sounding problems where the frequency theory
treatment is more complex. I consider the effect of somewhat different
inference protocols. In particular I compare exclusion without testing
for discovery (Protocol 1 below) with exclusion after testing for discov-
ery (Protocol 3 below).

I consider a relatively simple context. The experimenter considers just
two masses m1 and m2. At each mass she tests the null hypothesis that the
Higgs particle is present at that mass (with the cross-section predicted by

1



the standard model – the null hypothesis that it exists at any cross section at
all at that mass is not testable by frequency methods). So there are two test
statistics: T1 and T2 and corresponding critical values which produce level α
tests of the two null hypotheses against the alternative that the particle does
not exist at that mass.

Protocol 1: The analyst will declare as excluded each mass for which the
null hypothesis is rejected at level α. In particular the analyst will declare
the pair of values to be excluded if both null hypotheses are rejected by their
corresponding test statistics. Let Ab be the (statistical) event defined by ‘the
analyst excludes both values’ and for i = 1, 2 let Ai be the event that the
analyst announces that mass mi is excluded. If neither test rejects then the
analyst says neither value is excluded; call this outcome An.

The frequency theory conclusion is that the type 1 error rate for this
protocol is α – the probability that an exclusion statement is made and that
this statement is wrong is no more than α regardless of which of three possible
states of nature obtains. The three possiblities contemplated are: the Higgs
particle exists at mass m1; it exists at mass m2 and it does not exist at either
of these two masses.

I now want to be quite careful in the analysis. I consider in turn each of
the three possible states of nature and evaluate the probability that I make
an incorrect exclusion.

First if the particle does not exist at either mass I cannot make an in-
correct exclusion; exclusion is correct at both masses. The probability that
I incorrectly exclude the correct mass is 0.

If the particle exists at mass m1 then I make an incorrect exclusion if
either I say that I exclude mass m1 or I say I exclude both masses m1 and
m2. I make one of these two statements if and only if statistic T1 causes me
to reject the null hypothesis at mass m1; the probability that this happens
is α. The same argument applies for mass m2. Notice that I am saying that
the chance of Ab or of A1 happening is α. In protocol 3 below I compare the
probabilities of all 4 events for this protocol to those for the more realistic
protocol 3 in one simplified example.

Summary: the probability that I make any incorrect exclusion is no more
than α.

There is nothing special here about the choice of 2 hypotheses. The
conclusion is the same even if I scan an infinite number of masses – say by
demonstrating that all the test statistics for masses in some range would be
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significant.
The major point is that it is impossible for more than one of the null

hypotheses to be true. In any such situation the set of rejected hypotheses
might be called an exclusion set; its complement is a confidence set – except
that here the possibility that none of the models here is correct is permitted.
The coverage probability of the confidence set is 1− α – if the particle does
exist at one of the masses scanned then the chance that the confides set
includes that mass is 1−α. The probability of an incorrect exclusion is α (if
all the individual tests have level α). Notice that this is all just a rephrasing
of the duality between confidence sets an hypothesis tests.

Protocol 2: A different problem arises if the set of masses to be examined
is prespecified and this whole set is regarded as a null hypothesis. In this
protocol the analyst computes a single test statistic to test the null hypothesis
that the Higgs exists and its mass is one of m1 and m2. The analyst will either
declare that the hypothesis has been rejected – mean the Higgs does not exist
at either of these two prespecified masses — or accept the null hypothesis
that it exists at one of those two masses. This classical hypothesis testing
paradigm does not permit partial rejection of the kind where the analyst says
it does not exist at mass m1, say.

The two tests described for protocol 1 must somehow be combined into
a single test of the composite null hypothesis and a suitable critical value
derived for this combined test. The level is computed by calculating the
probability that the combined statistic exceeds this critical level assuming
in turn that the true mass is m1 and that it is m2. The larger of these two
probabilities of rejection is the level α of the test.

This is a lot more work than Protocol 1. The extra work is required if
you don’t find halfway measures useful. In the Higgs particle context I do
not see the value of this protocol.

Protocol 3: In fact the data are going to be analyzed in a different way
entirely, I think, and this makes difficulties for frequentists. It is likely that
you will look at a range of masses and test first the null hypothesis that
the Higgs particle does not exist anywhere in this range. If this composite
hypothesis is accepted – that is, you haven’t already concluded it does exist
– then you will go on to try to follow Protocol 1. The motivation for doing
so is, of course, that acceptance of a null hypothesis is a very weak form of
decision making.

The difficulty now is that the decision to use protocol 1 depends on the
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data – you only use it if you accept the first null hypothesis – that it doesn’t
exist anywhere in the range examined. The impact of this difference depends
on the true state of nature:

1. The Higgs particle does not exist at either mass: With a 5σ standard
for discovery you will almost always accept the null hypothesis of no
Higgs and so the probabilities of outcomes Ab, A1, A2 and An above
are virtually unchanged. In any case false exclusion rates are 0 because
the particle does not exist.

2. The Higgs exists at mass m1: The impact of discovery testing depends
on how well separated the null and alternative hypotheses are.

(a) If the tests are not very sensitive at mass m1 because the cross-
section at that mass is low then discovery is unlikely. As in the
case where the particle does not exist the probabilities of the var-
ious outcomes are not much changed. Now, however, outcomes
in which mass m1 is excluded constitute errors. The overall error
rate (the sum of the probabilities of Ab and A1) is slightly less
than guaranteed by the 2σ standard.

(b) If the tests are very sensitive (have high power against the cross-
section predicted at the masses examined) then having accepted
the null hypothesis it is likely that every value in the alternative
will be rejected – particularly in view of the 5σ rule for discovery
and the 2σ rule for exclusion. In other words if the mass exists
and the predicted cross section amounts to a 7σ difference or more
then if the particle is not discovered it will be incorrectly excluded.
Fortunately the power is high so that the incorrect exclusion rate
remains down below 5%.

Summary: False exclusion rates remain controlled but if a discovery is
missed the conditional error rate goes way up.

Protocol 4: One of the main topics of discussion in Banff was the notion that
it is wrong to exclude a mass when there is no sensitivity at that mass. It is
not possible to capture this concept within the hypothesis testing paradigm.
Consider the following decision theory problem, however. You study two
masses again and make one of the following decisions: discovery at mass m1,
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discovery at mass m2, no discovery and exclusion at mass m1, no discovery
and exclusion at mass m2, no discovery and exclusion at both masses, no
discovery and no exclusions. Call these events D1, D2, A1, A2, Ab and An.
The states of nature which are possible are: no Higgs at either mass, Higgs
at M1 and Higgs at m2. A loss function might be specified in a table like the
following

No Higgs Higgs at m1 Higgs at m2

D1 Lfd 0 Lwd

D2 Lfd Lwd 0
Ab 0 Lfe Lfe

A1 Lme Lfe Lmd

A2 Lme Lmd Lfe

An 2Lme Lmd + Lme Lmd + Lme

In the table fd is ‘false discovery’, fe is ‘false exclusion’, wdd is ‘wrong
discovery’, me is ‘missed exclusion’, and md is ‘missed discovery’. The losses
for ‘missed exclusion’ and ‘missed discovery’ are small; they amount to missed
opportunities. The losses for ‘false discovery’ is very large if the 5σ rule is
to be taken seriously. The loss for ‘false exclusion’ must be smaller than this
though there is an argument to be made that exclusion is to be permitted
more often because it is thought, a priori, that existence at any particular
mass considered is unlikely.

I present here the Bayes procedure for a loss function of this form. I
assume that there are two test statistics, T1 and T2, one for each mass, which
are independent and have Gaussian distributions with mean 0 if the particle
does not and with mean µi if the particle does exist at mass mi. I have taken
Lme = 1, Lfd = Lwd = 10, Lfe = 5 and Lmd = 2 for illustration. I have
evaluated for each value of µ1 and µ2 belonging to {0.5, 2, 3.5, 5} the set of
pairs (T1, T2) for which each of the 6 possible decisions will be taken. I used
prior probabilities of 1/2, 1/4 and 1/4 for the three states of nature. In the
figure the rows correspond to µ2 with µ2 = 0.5 at the bottom. Columns
correspond to µ1 with µ1 = 0.5 on the left. The areas in green and red
correspond to values of the statistics leading to discovery claims, those in
blue lead to both masses being excluded, those in yellow to neither being
excluded and the narrow cyan and magenta bands to areas where 1 mass is
excluded but not the other.

It is possible to take this procedure and ask about its frequency properties.
This would involve computing the probabilities of the 6 decisions as functions
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of the parameters for the procedures shown above. I have not tried to do
this yet.

It is worth noticing that large negative values of say T1 lead to exclusion.
It is clear that physicists are leery of exclusion in this situation – they feel
that they should not be doing exclusion when the hypothesized value µ1 is
low and sensitivity is low. The problem is that for an observation of T1 = −3
the likelihood at µ1 = 1 is much lower that the likelihood at 0. If the model is
right and µ1 ≥ 0 is absolutely certain then mass m1 should be excluded. But
the problem is that T1 = −3 casts substantial doubts on the premises of that
statement and so we should be reluctant. Nothing in the formal framework
here or in hypothesis testing contemplates the effects of model failure.

Other ideas: The problem of testing for discovery and exclusion of Higgs
in SUSY was discussed in Banff. This theory predicts, I think, that there
are k = 5 Higgs particles so that if you consider a range of masses you could
make up to k = 5 false exclusions. There is now a multiple comparisons
problem but it is controlled by dividing the desired overall false exclusion
rate by k. Suppose, for instance, that I want an overall 2σ or better false
exclusion rate. If I use a 2.608σ standard for each mass I consider, and I
consider any number of masses then:

P (any false exclusions) ≤
5∑

i=1

P (false exclusion at mass mi) ≤ 0.02275

where the mi are the 5 true masses. (The number 0.02275 is the 2σ one-sided
error rate.)

The key point is that the number of possible false exclusions bounds the
trials factor.
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