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You Can Make a Discovery with Just One Event

H,,= Bearrate=0. H, = Bearrate>0. p-valueis *almost* zero.

Some contributions to the expected background rate:

* People dressing as grizzly bears (good selection requirements can reduce this
background)

* Cardboard cutout pictures of grizzly bears

* Digital photograph manipulation

Each background source needs some kind of prior, or auxiliary measurement if possible.
There is also not much skepticism about the discovery claim.
Tom Junk, BIRS July 2010



Extensions of Banff Challenge 1

Ny * T as an estimate of b

n,, is the measurement in the signal region, with an estimated signal
acceptance of . Given n_g, T, €, n,,, set a limit on the signal rate s (where
se is the expected signal yield and b is the background yield)

1) Usually there are multiple background sources b, ... b,

2) Often there’s more than one kind of signal, too. And they don’t have to scale
together (multidimensional signal parameter space). Grizzlies, brown bears, black
bears, sun bears, ....

3) Usually there’s more than one signal region (n,, .-, ... n,, ,), €ach with its
own sets of €’s and T’s. Direct sightings of bears, observation of disturbed garbage
cans, eyewitness accounts, auditory-only incidents, etc.

4) The €’s are uncertain. Sometimes they are just ratios of Poisson distributed numbers,
but often there are more sources of uncertainty than just that. Same with the t’s.
How to convert grizzlies/day to an expected number of pictures of grizzlies/day?

5) Often we have two or more “off-signal” auxiliary experiments used to evaluate b,

each with its . What to do when they disagree?

Banff Challenge 2 samples 1, 3, and 4 above. 2 isn’t so important as long as we can
understand how to deal with the 1-signal problem, although problems occur in
high-dimensional models that are not present in 1D models.



It would be nice if all discoveries were this clear (even with low s/b)
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Guess a shape that fits the backgrounds, and fit it with a signal.
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At Least they Explained what They Did

“the width of the bins 1s
designed to correspond to twice
the expected resolution ... and
their origin 1s deliberately chosen
to maximize the number of
events found in any two
consecutive bins”

Events per 3.15 GeV/c?

ALEPH Collaboration, Z. Phys. C71, 179 (1996)
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Search for structures in J/y¢ mass--Data

* We model the Signal (S) and Background (B) as:

S: S-wave relativistic Breit-Wigner  B: Three-body decay Phase Space

CDF Il Preliminary, 2.7 fb™ Convoluted with resolution
Yield =14+5 (1.7 MeV)

Am =1046.3+ 2.9 (stat) MeV/c?

1 Width=11.7*3_ (stat) MeV Slide from K. Yi,
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V(-2log(L,,../Ly))=5.3, need Toy MC to determine significance for low statistics

What if we don’t have a signal model, and we’re just on a hunting expedition? What’s LEE now?



A Comment on low s and low b

Bins with tiny s and tiny b can have large s/b (Louis: large s/sqrt(b) is suspicious)
Naturally occurring in HEP and others seeking discovery:

1) Each beam crossing has very small s and b but has the same s/b as
neighboring beam crossings. Can make a histogram of the search for new
physics separately for each beam crossing. Same s and b predictions, just
scaled down very small.

Adding is the same as a more elaborate combination if the histograms were
accumulated under identical conditions (all rates, shapes, and systematics are
the same)

2) Surveillance video catching a bear — each frame has a small s, b, but still
worthwhile to collect each frame (and analyze them separately)



MC Statistics and “Broken” Bins

Overbinning is like 2 _o_Data, {Ldt=2.015"
HP 2 [ [JFakey, Real+fake b
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e Limit calculators/discovery tools cannot tell if the background expectation

is really zero or just a downward MC fluctuation.

e Real background estimations are sums of predictions with
very different weights in each MC event (or data event)

e Rebinning or just collecting the last few bins together often helps.

e Problem compounded by requiring shape uncertainties to be evaluated!
Alternate shape MC samples are often even more thinly populated than the
nominal samples. Validation of adequate preparation of results is necessary?
(but what are the criteria?)
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A Pitfall -- Not Enough MC (data) To Make
Adequate Predictions

An Extreme Example (names removed) Cousins, Tucker and
Linnemann tell us prior

3.5L predictive p-values
33_ undercover with 0+0
: events are predicted
2.5 - in a control sample.
207 (- 1" CTL Propose a flat prior in
|| = true rate, use joint LF
150 B in control and signal
al LR 1 samples. Problem is, the
Cl S mean expected event rate
0_5; L‘- J‘-w—lz_ in the control sample is
- ro— n,,.+1 in control sample.
B 0762 05 04 05 66 57 08 081 Fine binning — bias in
background prediction.
Questions: What’s the shape we are trying to estimate? Overcovers for discovery,

What is the uncertainty on that shape? undercovers for limits?



An Extreme Example from Georgios Choudalakis

Ten MC events, used to estimate a background b, but with different weights.

1,=0.1 The sumis5.5=b

1,=0.2 But what to use for the prior on b?

1,=0.3

1,=0.4 Are there any possible (and possibly large) weights which are not
1.=0.5 represented here? Could we have gotten a MC event with weight=1007?
1.=0.6

1,=0.7 Very little information about the distribution of the

1,=0.8 weights is present here.

1,=0.9

T,,=1.0 Need acceptance as a function of weight.

General limit/discovery tools — do we need a histogram of weights
for each bin of each signal and background contribution? What if
this is insufficient anyway (as it is in this case).



Commonly Used Tools for Setting Limits and
Discovering New Processes in use at the Tevatron

e Bayesian limits -- common at CDF

e genlimit code by Joel Heinrich, added to mclimit
code by Tom Junk. New MCMC calculations are more robust
on big problems.

e Implements posterior integrated over systematic
uncertainties with a flat prior in cross section in 1D

e Method described in PDG statistics reveiw

e Extra feature -- “correlated prior”

e CL, limits -- common at DO, but used at CDF as well.

Collie code by Wade Fisher in use at DO

Method described in PDG statistics review

* mclimit was originally designed to do CL, and still does.
e Guaranteed to cover within the ensemble chosen
Often more optimal than Bayesian limits
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Mini-Review: Bayesian Limits

L(r.0) = || || Pruldatalr.6)

channels bins

Where r is an overall signal scale factor, and 6 represents
all nuisance parameters.

n; ,=(rs;(0)+b;(6))
P, (datalrg)= O *+0O) "€

n,!

where n, is observed in each bin j, s; is the predicted

signal for a fiducial model (SM), and b; is the predicted
background. Dependence of s;and b; on 6 includes rate, shape,
and bin-by-bin independent uncertainties.
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Mini-Review: Bayesian Limits

Including uncertainties on nuisance parameters 6

L'(datar) = f L(data | r,0)m(0)d0

where 71(0) encodes our prior belief in the values of

the uncertain parameters. Usually Gaussian centered on

the best estimate and with a width given by the systematic.

The integral is high-dimensional. Markov Chain MC integration is

quite useful!
Useful for a variety of results: Typically 7{r) is constant
Nim
o Other options possible.
Limits: 0.95 = fL'(data | r)7(r)dr Sensitivity to priors a
° concern.
Thigh
Measure r: 0.68 = fL'(datalr)Jt(r)dr (=t )
ig max

=

Tiow max—(r

max ~ Tlow )

Usually: shortest interval containing 68% of the posterior
(other choices possible)
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Bayesian Example: CDF Higgs Search at m,,=160 GeV

CDF Run II Preliminary, L=3.6 fb™

CDF Run II Preliminary, L=3.6 fb™
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An Example Where Usual Bayesian Software Doesn’t Work

e Typical Bayesian code assumes fixed background, signal shapes (with

systematics) -- scale signal with a scale factor and set the limit on the scale factor
e But what if the kinematics of the signal depend on the cross section? Example --

MSSM Higgs boson decay width scales with tan?3, as does the production cross

section.

e Solution -- do a 2D scan and a two-hypothesis test at each m,,tanf3 point
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Priors in Non-Cross-Section Parameters o

Example: take a flat prior in m,;
can we discover the Higgs boson
by process of elimination?
(assumes exactly one Higgs boson
exists, and other SM assumptions)

Example: Flat priorin
log(tanf}) -- even with no
sensitivity, can set non-trivial
limits..

T. Junk, W. Fisher, Tevatron Higgs Exclusion and Discovery
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Nuisance Parameter Priors

* An endless discussion for every measurement/limit/evidence/observation
* Central to the process -- A result is not ready until the collaboration is satisfied that
all systematic uncertainties are estimated sufficiently and included in the result.

* Usually we do not have complete estimations:
* +l1o variations, but what does 20 look like? +507?

alternate histogram shapes — is it safe to extrapolate?

What if the variation is say between two arbitrary models (Pythia vs. Herwig,
or from a data —MC comparison?) Is it fair to extrapolate these?
How can you be more like the data than the data?
What if a nuisance parameter variation makes a prediction go negative, say
for the background or the signal? If a parameter is truncated for one
prediction, should we apply that truncation everywhere?
Truncated Gaussians have biased means and medians (and sometimes modes)
Other priors move mean, median, or mode away from the central prediction,
or have “corners” in their distributions.
Symmetric and asymmetric impacts for the same nuisance parameter on
different predictions.

Predictions like b=1.0£0.1 are easy. What does 1.0+1.0 mean? What does
1.0*%2 ,, mean? What does 1.0*>%, ; mean?



Our Theorists are not Statisticians

e NLO corrections -- “80% (almost double the cross section)!
e NNLO QCD corrections -- An additional 40% on top of that!
Residual uncertainty ~10%. Catani, de Florian, Grazzini, Nason

JHEP 0307, 028 (2003) hep-ph/0306211

Also resummed QCD corrections at NNLL

NLL,NNLL bands: 0.5m_ <ug,u<2M,,.
Bands on LO and LL unreliable.

We take a £12% uncertainty

on O,,_,, for scale and PDF
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Mini-Review: CL, Limits

e Based on p-values using the log likelihood ratio
as the test statistic. Neyman-Pearson lemma says
LLR is the uniformly most powerful test statistic, although
the Neyman-Pearson one fits for the parameter of
interest, not just the nuisance parameters, making the
null hypothesis a subset of the test hypothesis

( AL
210 = LLR = —21n| d3@15+0.0)

| L(datalb,0) |

Glen Cowan’s LLR also fits for s (actually rxs)
in the numerator, while r = 0 in the denominator
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Mini-Review: CL, Limits

L 01 : LE?usG 7
B e kg p-values:
Yellow area = 1-CL, = 1-P(-2InQ>-2InQ_, .| b only)
- Green area = CL,, = P(-2InQ>-2InQ,,, | s+b)
CL,=CL,,/CL, 2CL,,
Exclude if CL,<0.05
et ] Vary r until CL.=0.05 to get r;,

-21In(Q)
e Advantages:

e Exclusion and Discovery p-values are consistent.
Example -- a 20 upward fluctuation of the data
with respect to the background prediciton appears
both in the limit and the p-value as such

e Does not exclude where there is no sensitivity
(big enough search region with small enough resolution
and you get a 5% dusting of random exclusions with

CI‘s+b)
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Discovery with p-Values

CDF Run Il Preliminary, L = 3.2 iy

2100
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o o o
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o
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Test Statistic [-2In(Q)]

Buzzword: “Prior Predictive ensemble”

Example: CDF single top.

2InQ=LLR = -2111[L(data 5+ li’e)]

L(data | b,0)

100 M s+b and b-only
pseudoexperiments,

each with fluctuated nuisance
parameters, and fit twice.

50: p-value of 2.77x10”7 or
less.

30: p-value of 1.35x1073 or
less

20: p-value of 2.28% or less
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Fitting and Fluctuating

CDF Run Il Preliminary, L = 3.2 fb" A
2InQ=LLR =-2In L(datals+ bA,B)
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* Monte Carlo pseudoexperiments
are used to get p-values.
e Test statistic -2InQ is not uncertain
for the data.
e Distribution from which -2InQ_is
drawn is uncertain!

900 200 100 TestOStatIsti::O[E)zln(Q)]
e Nuisance parameter fits in numerator and denominator of -2InQ do not incorporate
systematics into the result.
Example -- 1-bin search; all test statistics are equivalent to the event count, fit or no fit.
¢ Instead, we fluctuate the probabilities of getting each outcome since those are
what we do not know. Each pseudoexperiment gets random values of nuisance parameters.
e Can also try values of nuisance parameters that maximize the p-value, but that’s very
conservative (called the supremum p-value, still needs choices of parameter ranges).
e Why fit at all? It’s an optimization. Fitting reduces sensitivity to the uncertain true
values and the fluctuated values. For stability and speed, you
can choose to fit a subset of nuisance parameters (the ones that are constrained
by the data). Or do constrained or unconstrained fits, it’s your choice.
e If not using pseudoexperiments but using Wilk’s theorem, then
the fits are important for correctness, not just optimality,
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Using Bayesian Techniques as an ingredient for Discovery

e DO measures the single top cross section with a Bayesian technique
e The measured cross section is used as a test statistic for the p-value
for significance. Pseudoexperiments fluctuate systematics.
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LLR

Tevatron Higgs Combination Cross-Checked Two Ways

Tevatron Run Il Preliminary, L=0.9-4.2 fb!
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Testing Two Non-Nested Hypotheses

Lambda = P(data|Intelligent Design)/P(data|Evolution)

* Two models share some parameters but not all (e.g. some nuisance parameters
relating to the conversion of direct observation to interpretable statements)

* P(data|Intelligent Design) = 1? P(data|evolution) ~ 0?
But what are the nuisance parameters?

* Maybe you can nest these, but is that scientific?



Sociological Issues

e Discovery is conventionally 50. In a Gaussian asymptotic
case, that would correspond to a £20% measurement.

e |ess precise measurements are called “measurements”
all the time

e We are used to measuring undiscovered particles and
processes. In the case of a background-dominated search,
it can take years to climb up the sensitivity curve and
get an observation, while evidence, measurements, etc.
proceed.

e Referees can be confused.



