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Topics:
» Follow up to the on/off problem
- Hybrid (prior predictive) method for general problems
» Show and tell of some complicated particle physics models

» Graphical models?

» Fisher Information Matrix/Metric and the “Asimov” data set

» Dealing with the look-elsewhere effect via conditioning?
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The “on/off” problem

This is a simplified problem that has been studied quite a bit to
gain some insight into our more realistic and difficult problems

» number counting with background uncertainty
- main measurement: observe non with s+b expected
- auxiliary measurement: observe nos with 7b expected

P(non, nof|s, b) = Pois(non|s 4+ b) Pois(neg|T0).

» Note: noir IS used to constrain background uncertainty

- In this approach “background uncertainty” is a statistical error

We learned that exact frequentist solution (construction) is
formally identical to prior predictive treatment with flat prior

» eg. choose 7(b) as posterior from a flat prior and nos term

P(n0n]5) = / db Pois(noy|s + b) 7(b),
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Bayesian-Frequentist Hybrid Solutions

Goal of Bayesian-frequentist hybrid solutions is to provide a frequentist
treatment of the main measurement, while eliminating nuisance
parameters (deal with systematics) with an intuitive Bayesian technique.

P(noy|s) = / db Pois(ney|s + b) (D),

Recommendations:

» clearly state prior 7(b) ; identify control samples or other
auxiliary measurements, then base prior on

_ P(noff|b)n(b)
J dbP(nog|b)n(b)

w(b) = P(b|nog)
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Generalizing the Hybrid approach

In RooStats we are providing several techniques given a common
specification of the problem that relies on:

» the joint model  P(z,y|s, b, 7)
» a Bayesian prior 7(s, b)

» and some data (xo, yo)

The question is "how do we generalize the Hybrid (prior predictive)
approach” given this information
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Generalizing the Hybrid approach

Start with “on/off” example
» the joint model P(x,y|s, b, ) P(non, nogls, b) = Pois(nen|s + b) Pois(nog|b).
» a Bayesian prior p(s, b)

How do we identify the “off” part of the model

» was an average model for non, SO use largest factor
independent of non, or

» think find largest parameter independent of parameter of
Interest

P(nop|s) = / db Pois(ngy|s + b) (D),

)  Plnealb)(d)
m(0) = POm) = 0P (e b)n(B)
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Generalizing the Hybrid approach

The two approaches are not equivalent for joint models like this:
» was an average model for non, SO use largest factor independent of non, or
» think find largest parameter independent of parameter of interest

R

And then there is the question of the prior... what if n(s,b) doesn’t factorize
» marginal over s will have some residual prior dependence on s
For numerical reasons, we would like to have a table of replacements:

PDF Prior Posterior

Gaussian uniform Gaussian
Poisson uniform Gamma
Gord C Qo Qo

ICD

Log-normal reference Log-Normal
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The RooFit/RooStats workspace g:ig;ﬁ‘;;&"s?cs(?
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ATLAS H->yy

Events / 2 GeV

(3) [10.2%]
2.26 GeV

(7) [8.2%]

3.33 GeV

(8) [7.8%]
1.87 GeV

(7) [8.2%)]

3.33 GeV

(6) [22.7%]
2.26 GeV

Kyle Cranmer (NYU)

BIRS, July 13, 2010




3-channel top combination (@
The graph below represents this PDF

L(0Oyig, 2, aj) = H { ];[ [Pois(NiObS|N§f£)Gaus(jLSf,Gg) H Gaus(Oaj,l)]}
le{ee,uu,eu} \ ic€bins

jesyst

» where there are several relations between the expected means
in the different channels

3 observations from data
13 auxiliary measurements
1 parameter of interest
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4-channel ATLAS Higgs combination
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9 Channel ATLAS H->WW combination (‘T’

top level model

25 measurements from data parameter of interest
cBR

osmBRs

1 parameter of interest and 24 nuisance parameters =
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Visualization of the ATLAS+CMS Workspace S5 %

The full model has tob level model
12 observables and P ATLAS part
~50 parameters

A
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Graphical Models (¢T9
Given all these graphs, it's not

surprising that one might think there’s
an application for Graphical Models

» graphs are different, but let’s
discuss connection Directed Markov means

Graph of on/off model f(x) = fOa)fOelx)f (s x)f(ax)

o X (x5 |x2,x3)f (X6 | x3,%5)F(x7 | Xa, X5, X6)-

Theory exists for deriving all conditional independencies and
exploiting local structure in graph for gross computational

Pon @ simplifications in complex models. Has been successfully exploited

in Al, machine learning, and Bayesian statistics.
D <D

Steffen Lauritzen University of Oxford Statistical respondent

P(data | parameters) P(parameters|data) P(parameters)

U U o
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Raw Measurements to Interpretation ggir;";;&gcf?

Likelihood
Function
Fundamental Interpretation » L Data Modeling LHC Data
Lagrangian ] . . Digital publishing via _ _ _
Tools like ZFitter & SFitter interface to RooFit/RooStats Experimentalist provide p.d.f.s that
relate masses, cross-sections, etc. to

likelihood function to extract Workspace saved
Qmental Lagrangian parameters in portable .root file bservables including systematics are

Lo
./

From the raw LHC data, the experiments estiamate (“measure”) several
interesting quantities (like masses of particles)

- ideally the likelihood function for those quantities is provided

modeled using RooFit/RooStats

-

These quantities are not the parameters of the fundamental theory, but the are
usually functions of the fundamental parameters

> an entire industry has emerged that interprets these observations in terms of a
specific theory (see Roberto Trotta's talk for an example)

Kyle Cranmer (NYU) BIRS, July 13, 2010



Some applications of the Fisher information metric e, @8

PARTICLE PHYSICS

Our theories are parametrized in some form convenient for our underlying
quantum field theories. But this parametrization is somewhat arbitrary, and

» phenomenology nearly constant in large regions and changes quickly in others.
» It would be useful to efficiently sample this space efficiently
» g... uniform in fisher information metric

gii(a) = / gz (@) lﬁlogfa(x)] lﬁlogfa(x)]
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Spinoffs from the Asimov idea (‘T’

Calculating the Fisher info. matrix requires
an expectation over possible data.

10 =5 (2 020 (2 m20) o]

In many problems, this is too
computationally expensive to be useful.

Number of Events

We found that the curvature of the
likelihood function on the Asimov data
gives a very good estimate of gj

g:;(0) ~ ( (;Zi In LA(H)) (a% In LA(9)>

Last night, Earl L. and Richard L. helped
us see that this curvature of this single
Asimov dataset can be seen as a
numerical integration for calculating the
expectation of the curvature.

Number of Events

This also provides a convenient algorithm
determining for Jeffreys'’s prior numerically,
but | know their are issues with numerics
and improper priors.
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The Asimov dataset coenror Y

PARTICLE PHYSICS '

The name of the “Asimov” data set is inspired by the short story

Franchise, by Isaac Asimov.

Glen Cowan, KC, Eilam Gross, Ofer Vitells
http://arxiv.org/abs/1007.1727

“Multivac picked you as the most representative this year. Not the
smartest, or the strongest, or the luckiest, but just the most
representative. Now we don’t question Multivac, do we?”

Coincidentally, the story takes place in 2008, when we started to
formalize the properties of our “Asimov” Dataset
Kyle Cranmer (NYU) BIRS, July 13, 2010



http://arxiv.org/abs/1007.1727
http://arxiv.org/abs/1007.1727
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Implicit vs. Explicit systematics S v

|
In some cases, effect of systematics is explicitly parametrized with
nuisance parameters.

nominal

......................... - B variation
o variation
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Implicit vs. Explicit systematics g:;«;«;e;&gcf‘{

In other cases, one simply has a flexible model parametrized by v,
which is flexible enough to incorporate the systematic effects

» SO dependence on «,B (previously identified with specific
systematic effects) is implicit

nominal

v variation
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Implicit vs. Explicit systematics ::z:;;gG;H:gfcs(‘T’
A problem arises when one wants to combine these two measurements knowing
that the systematic effects of «,B are correlated between the two measurements

» but there is no explicit handle on «,B in the implicit model

nominal [ nominal

B variation s ) Variation
o variation I

» in some cases this may reduce to reparametrization  v(a, §)

» in some cases effect of several systematic effects may produce a degenerate
deformation of the shape, so it's not clear the dimensionality of the
parametrization is even the same

Basic idea is to add a term P(«, 8, v) that summarizes the correlation between
the parameters...

» what is the procedure for determining this term, especially if we want to maintain a
frequentist interpretation
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Conditioning & Look elsewhere g;m;e;&-gcf‘{

Look-elsewhere effect:
» location of peak is meaningless in null model

» several possibilities for background to fluctuate

- typical approach is to understand and/or correct for “trials” factor
(Bonferroni, talks by Eilam and Ofery, ...)

Is there an alternative approach based on conditioning:

» eg., what is p-value for a peak this large in the background for
the ensemble where the biggest peak is located at this point.
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Extras
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RooFit: A data modeling toolkit

A major too

- Addition

CENTER FOR
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PARTICLE PHYSICS

at BaBar. Fit complicated models with >100 parameters!
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Supersymmetric Mass Measurements e @

PARTICLE PHYSICS '

2/ ndf 40.11/45
Prob 0.679
Endpoint 99.66 = 1.399
Norm. -0.3882 + 0.02563
Smearing 2.273 + 1.339

Here is a graphical representation of a
measurement used for

supersymmetric parameter estimation
> Functions

Entries/4 GeV/ 1 fb™!

» Parameters of Interest

> Nuisance Parameters ' B R R VR R T R VR PO R T R o
- Observable

m(ll) [GeV]

P(mylmgo, mgg, mj, 0) = Triangle(m} ¢, mfldge(mﬁ, mgg,m)) @ Smearing(m}; "¢, my)
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Matrix Element Method as a Parametrization == @

PARTICLE PHYSICS

. . Matrix-element likelihood:
Wlth the sdame d|—|ept0n mass Calculate probability directly
distribution, we can either:

Plevent z | SM) = P (z | process A) + P(z | process B) + ...

» relate edge according to: where

P(z | A) =] dy [M|26f fily2) = doy/dz

2 2 ﬁ F
mSiEe = mygon|1— e} (I .
u Mg my Parton(y) to detector(z) transfer function (TF)

describes parton-shower and
detector response in parametrized

. . form (Issue 2)
» incorporate matrix element s ——
. atrix-elemen S TOr process ssue
techniques

Integration over parton-level quantities

0.679

it 99.66 + 1.399
-0.: 388 = 0.02563

il 273 + 1.339
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Matrix Element Method as a Parametrization ::zr,z:f.:;::;?cf‘f

Matrix-element likelihood:

With the same di-lepton mass Calculate probabilty directly
distribution, we can either: Plevent 2 | SW) = P (z | process A) + P(z | process B) + ...

where

P(z | A) =] dy [M|26f fily2) = doy/dz

2 2
meiee — o |1 — [ U 1-— e
o = xS Mo m; Parton(y) to detector(z) transfer function (TF)
2

describes parton-shower and
detector response in parametrized
form (Issue 2)

» relate edge according to:

» incorporate matrix element
techniques

Matrix-element*PDFs for process A (Issue 2)

Integration over parton-level quantities

- naturally, could include more
kinematic info -> more power.

P(
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