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IS HINCHLIFFE’S RULE TRUE? -

Boris Peon

Abstract

Hinchliffe has asserted that whenever the title of a paper
is a question with a yes/no answer, the answer is always no.
This paper demonstrates that Hinchliffe’s assertion is false,

but only if it is true.

* Accepted for publication in Annals of Gnosis.
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Statistics of Discovery: Theorists’ View

PHYSICAL REVIEW D, VOLUME 62, 015009

Measurements of masses in supergravity models at CERN LHC

Henri Bachacou  Ian Hinchliffe Frank E. Paige

I. INTRODUCTION

If supersymmetric (SUSY) particles exist at the TeV mass
scale, they will be produced at the CERN Large Hadron
Collider (LHC) with large rates, so discovery of their exis-
tence will be straightforward.
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But Maybe It Won’t Be Easy.
we'll want Efficient Techniques.
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« As mentioned yesterday, somehow fixed 5 sigma
(alpha=2.87E-7) has become (even more than) the rule
of thumb for discovery in HEP.

o Partly itis avery crude attempt to account for the LEE.
e Partly it is to account for unknown systematic errors.

« We have to do better at the LHC. But what?

« Two obvious candidates to consider:

— N-P test with more intelligent (and variable) choice of
alpha.

— Bayesian Model selection.

« What does the statistics literature say about each, and
about comparisons?
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 We all know that p-value is neither probability nor odds of
H given data.

o Still, one frequently finds comparisons of the two
(especially by Bayesians).
* It should not be surprising that the numbers are different.

 But can they be calibrated with respect to each other with
“rules of thumb”?

 Jim Berger and others, before and after, have many
examples and arguments to say no.

« The most disturbing thing to me is that for fixed values of
alpha (such as the 5-sigma criterion), the scaling of “the
answer” with sample size is different!

 Physicists like to look at limiting cases. That takes us to
the Jeffreys-Lindley paradox: large sample limit.
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The setup:
 Null model is 8 =0, , where for definiteness | take 8, = 0.
e Alternativeis 6 > 0.
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Classical Hypothesis Testing (cont.)
“Test for 6=0," < “Is 6, In confidence interval for 6"

Table 20.1 Relationships between hypothesis testing and interval estimation

Property of corresponding

Property of test confidence interval
Size = « Confidence coefficient = | — «
Power = probability of rejecting a  Probability of not covering a false
false valueof 8 =1 — 8 valueof 6 =1—- 8
Most powerful Uniformly most accurate
Unbiased

— l Urbiased ] .

Equal-tails test ) = a2 = %cz Central interval

“There is thus no need to derive optimum properties
separately for tests and for intervals; there is a one-to-one
correspondence between the problems as in the dictionary in
Table 20.1” — Stuart99, p. 175.
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o So for frequentist test, choose your favorite test and
proceed. In 1D, people tend to focus exclusively on
Inherently 1-sided test.

 This does not generalize to two new parameters of
Interest, and also has some bad properties. Some of this
IS ameliorated by “unified approach advocated by F-C.
But use one-sided for now.

« Consider a set of experiments, all giving (exactly)
5-sigma effect, but some having much better resolution
on 0 than others.

o Useful to think of the “better and better” experiments as
simply having same intrinsic measurement apparatus,
with larger and larger sample size n.

 Does “5-sigma” give the necessary and sufficient
Information to convey to a consumer?
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These statistics are the correct way
REF ERENCE FRAM to do inductive reasoning from neces-
sarily lmperfect experimental data.

Let us take the “fifth force.” If we
assume from the outset that there is a
fifth force and we need only measure

THE REVEREND THOMAS BAYES, NEEDLES ~  its magnitude, we are assigning the

bin with zero range and zero magni-
IN HAYSTACKS, AND THE FIFTH FORCE TR e
begin with. Actually, we should be
Philio W. Anderson assigning this bin, which is the null
hypothesis we want to test, some
finite a priori probability—like %,—
and sharing out the remaining Y,
among all the other strengths and
ranges. We then ask the question,
Does a given set of statistical mea-
surements increase or decrease this
share of the probability? It turns out
that when one adopts this point of
view, it often takes a much larger
deviation of the result from zero to
begin to decrease the null hypothe-
sis’s share than it would in the
conventional approach. The formu-
las are complicated, but there are a
couple of rules of thumb that give
some ideas of the necessary factor.
For a large number N of statistically
independent measurements, the prob-
ability of the null hypothesis must
increase by a factor of something like
Bob Cousins, Banff 2010 N'2. (For a rough idea of where this o




Recall from Tom Loredo Yesterday
(I have added “atom” of probability at null.)

The Occam Fg itor

Likelihood

0

p(DIM;) = fd@,— p(8iI M) L(6;) = p(8;IM)L(6;)6;

00
Ab;

— Maximum Likelihood x Occam Factor

~ ﬁ(@;)
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As sample size increases, 80 decreases as 1/4n

The Occam Fg&tor

Likelihood

0

p(DIM,) — ] do; p(0;1M) £(6;) ~ (i M)L(6:)50,
00;
A,

= Maximum Likelihood x Occam Factor

= Given g and fixed p-value, there exists an n for
which posterior P in favor of alternative is <e.
(Still assuming null has a fixed prior p.)
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Lindley, 1957

A STATISTICAL PARADOX

By D. V. LINDLEY
Statrstical Laboratory, University of Cambridge

An example is8 produced to show that, if H is a simple hypothesis and x the result of an
experiment, the following two phenomena can occur simultaneously:

(i) a significance test for H reveals that z is significant at, say, the 59, level;

(ii) the posterior probability of H, given z, is, for quite small prior probabilities of H,
as high as 95 9%,.

Clearly the common-gense interpretations of (i) and (ii) are in direct conflict. The phenom-
enon is fairly general with significance tests and casts doubts on the meaning of a signi-
ficance level in some circumstances.

The paradox is not, in essentials, new, although few statisticians are aware of it. The
difference between the two approaches has been noted before by Jeffreys (see, in particular,
1948, Appendix), who is the originator of significance tests based on Bayes’s theorem and
a concentration of prior probability on the null value. But Jeffreys is concerned to emphasize
the similarity between his tests and those due to Fisher and the discrepancies are not
emphasized.

Bob Cousins, Banff 2010
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Lindley’s Example (corrected by Bartlett)

Let (x,, X, X3,...,X,) be @a random sample from a normal of mean 0 and
known variance oc?2.

Let the probability that 0 = 0, the value on the null hypothesis, be c.

Suppose the remainder of the probability is distributed uniformly over
some interval | containing 0,. [Suppose mean of x well within I].

Then the posterior odds for 0 = 0, are:
c 1 n —n(T— 6,)2
1—c [E‘ J (é_?rr) °xP { 20*

Note that variance of mean of x is 62 /n.

Now consider the scaling with n in the situations with same
Z = (mean-of-x — 0,) / (c/Vn).

The odds in favor of 0, increase without bound as n.
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Bartlett, 1957

A comment on D. V. Lindley’s statistical paradox

By M. S. BARTLETT
Unaversity of Manchester

reasonable to choose the sample size n analogously, making ,/n proportional to 1/1. If wewrite\/n = Ao/I,
we obtain
c c A
_ —4A? 2
1-3 l—cL/(2n)e } (2)

where A = /n(ZT—0,)/0 ; in (2) there is a constant relation between ¢ and A for fixed c.
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Editor’'s Note (Kendall)

Inregard to Prof. Bartlett’s final point, it may be useful to observe that some procedure of the type he
suggests is implicit in the idea of the asymptotic relative efficiency of a test. In general, the power of a test
against & specific alternative tends to unity with increasing sample size. To compare two tests asympto-
tically at a fixed significance level, it is necessary to allow the alternative to approach the null hypothesis

as the sample size increases. .
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Jeffreys, 3rd Edition, Appendix B

(p. 434 ff) It is interesting to compare the results with those based on
the customary use of the P integral...

In spite of the difference in principle between my tests and those based
on the P integrals, and the omission of the latter to give the increase of
the critical values for large n, dictated essentially by the fact that in
testing a small departure found from a large number of observations
we are selecting out a value out of a long range and should allow for
selection, it appears that there is not much difference in the practical
recommendations...

At large numbers of observations there is a difference, since the tests
based on the integral would sometimes assert significances at
departures that would actually give K>1. But these will be very rare...

If an estimate gives K>1 and P<0.01, internal correlation should be
suspected and tested...

Bob Cousins, Banff 2010
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Ward Edwards, Harold Lindman, Leonard J. Savage, 1963

Vor. 70, No. 3

May 1963

PSYCHOLOGICAL REVIEW

BAYESIAN STATISTICAL INFERENCE FOR

PSYCHOLOGICAL RESEARCH !

WARD EDWARDS, HAROLD LINDMAN, ano LEONARD J. SAVAGE

University of Michigan

Experiment#: 1 2 3 4
n 50 100 400 10000
Y 32 60 220 5098
7 0.64 0.60 055 0.51
Bayes factor 0.82 1.09 217 11.69
Normed likelihood 0.14 0.13 0.13 0.15

More important, Experiments 3 and
4, which would lead a classical stat-
istician to reject the null hypothesis,
leave the Bayesian who happens to
have a roughly uniform prior, more
confident of the null hypothesis than
he was to start with. And Experiment
4 should reassure even a rather
skeptical person about the truth of
the null hypothesis. Here, then, is a
blunt practical contradiction between
conclusions produced by classical and

Translated into modern language/notation by J.K. Lindsey, p. 356, who also

notes that Bayes factor is not monotonic with n.

Bob Cousins, Banff 2010
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J.K. Lindsey, 1996

p. 356: In the light of such results, some Bayesians

Parametric
Statistical
Inference

J. K. LINDSEY

OXFORD SCIENCE PUBLICATIONS

2. Consider again the normal distribution with known variance, but let us
now compare the model Hp with pug = 0 to H4 with p4 unspecified. We
shall here take a proper uniform prior for pa: dP(pa) = 1/(2¢) on (—c¢,c)
for ¢ large. Then, the Bayes factor for comparing the two hypotheses is

2c\/a—Tq exp [— ;—f;]

) \}'?([; '_Jr:))}/: exp|—u?]du

For a given frequentist significance level, we would fix \/ng,./c. The de-
nominator rapidly approaches unity as ¢ increases. Thus, this Bayes factor
becomes arbitrarily large as ¢ — o0 or n — o0, for any fixed value of the
significance level, increasingly favouring Hy over H 4.

Bob Cousins, Banff 2010

have argued that sharp hypotheses are
unreasonable...

Others have held that the improper prior causes
the problem and that Bayesian decision-making
should be limited to informative priors. Example
2 above demonstrates that the problem does not
lie here.

Thus, this paradox appears to imply that, if one
already has enough prior information to place a
point mass (counting measure) on one hypothesis
but not on other possible individual models, so
that the latter set has Lebesgue measure, then
empirical data are not necessary. In this sense,
the prior probability of a sharp hypothesis should
always be zero (Novick, 1969). But this evidently
causes problems for model selection.

’

19



Principles
of Statistical
Inference

Bob Cousins, Banff 2010

David Cox, 2006

p. 106: ...we now consider where there is an atom of
probability 7, at a null hypothesis 0 = 6, and the
remaining prior probability is distributed over nonnull
values. It is tempting to write this latter part in the form
(1 —m,y)p,(0), where p,(0) is some smooth density not
depending on n. This is however, often to invite
misinterpretation, because in most, if not all, specific
applications in which a test of a hypothesis is thought
worth doing, the only serious possibilities of such a
hypothesis needing consideration are that either the null
hypothesis is (very nearly) true or that some alternative
within a range fairly close to 0, is true. This suggest that
the remaining part of the prior density should usually be
taken of the form g{(0 — 90)‘/ n}\/n , Where g(.) is some
fixed probability density function...

Thus as n — o the posterior odds are asymptotically a
fixed function of the test statistic... the relationship
between the significance level and the posterior odds is
independent of n.

[Bartlett 1957 same idea: ext has \n prop to 1/scale.]
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Christian Robert, 1993

The fundamental argument underlying our reevaluation of the Jeffreys-
Lindley paradox is that the prior probability p, of the null hypothesis H,

should depend on the prior variance under the alternative hypothesis
H,, c° ..

The dependency of p, on 2 thus avoids the undesirable convergence to
1 and provides an estimator which can be considered as a

noninformative answer and a Bayesian counterpart to the p-value...

...behavior seems to be quite unreasonable... [more discussion]

Bob Cousins, Banff 2010
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O’'Hagan (K&S vol. 2B), 1994

Section 7.43: Difficulties arise with nested models if f,() is specified to
represent very weak prior information about ¢ ...

7.46 Sensitivity will also be a problem even when prior information
about @ is not particularly weak but the data are strong... Any
perturbation of the prior distribution f,(@) that alters its value f,(p -hat)
at @ = ¢ -hat will result in a proportionally identical change in the Bayes
factor...

This is in direct contrast to the argument in 3.26 which says that as the
amount of data increases the prior information is overwhelmed by the
data and becomes irrelevant. [3.26 was about posterior for continuous
parameter.]

Bob Cousins, Banff 2010
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Richard M. Royall, 1986

Conclusion on direction of Sample-Size dependence depends on
whether one works with p-value, or with index of whether fix threshold
was passed!

Bob Cousins, Banff 2010
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Berger and Sellke, 1987, with comments

“The main reason for the substantial difference between the magnitude of p and the
evidence against H_0...is essentially one of conditioning. The actual vector of
observations is x, and Pr(H_0|x) and |_x depend only on the evidence from the
actual data observed. To calculate a P value, however, one effectively replaces x by
the “knowledge” that X is in A = {y: T(y) >= T(x)} and then calculates p = Pry_y,(A)...
Common sense supports the distinction between x and A...

1.J.Good: “...1 proposed “standardizing” a tail-area probability P to sample size 100,
by replacing P by min(1/2, nA{1/2}P/10) (Good 1982b)

Varadaman: finds priors with “spike at 0,” “completely unappealing”. Uses “a
physical constant light the speed of light” as example (!).

Casella and R. Berger: “A good frequentist would always report the probabilities of
both Type | and Type Il error, and Morris shows us that reporting the sample size
along with the p value is somewhat equivalent to this; we thoroughly agree with
him.

B&S rejoinder: “...nonconstancy in interpretation of P value: as the sample size
increases, a given P value provides less and less real evidence against the null...
We remain unconvinced that p-values have any merit.”
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Glenn Shafer, 1982 and comments

Morris DeGroot comment: | do not agree with the notion expressed by
Shafer, and by many others before him, that a diffuse prior represents
ignorance about, 0 or with the statement, “the more ignorant we are,
the more diffuse” the prior distribution should be. Indeed, a diffuse
prior distribution, represented by a normal distribution, indicates not
that | am totally ignorant about 0, but that | am quite certain the |0] is
large. | doubt that the concept of total ignorance about 6 has any
precise meaning...

In summary, diffuse prior distributions...are never appropriate for tests
of significance.

I.J. Good comment: The Neyman-Pearson theory of errors of the first
and second kind also shows that a given tail-area probability has less
power when N is increased” (see e.g., Leamer 1978, Good 1980)

Bob Cousins, Banff 2010
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Aitkin, 1991

Smith and Spiegelhalter (1980) proposed the use of the prior N(mu_1,sigma”2/n)
for mu_2, in the context of local alternatives to the null...

This Bayes factor is not a function of n and therefore does not suffer from the
Lindley paradox, it requires very large values of z for evidence against M_1...

Bernard comment: In this spirit | wish that we could agree on regularly quoting
the observed likelihood ratio L(H_1|y)/L(H_0)|y) in addition to attained mid-P
values on hypothesis H_0, and power on a specified alternative H_1.

With Aitkin’s example...such a practice would produce the correct conclusion —
that model 1 fits much better than model 2, but neither model 1 nor model 2 fits
at all well.

Cox comment: | agree with Professor Bernard that we must distinguish between:

(a) The assessment of the relative fit of two models, M_1 and m_2, assuming
provisionally that one of the models is “true” , and

(b) Analysis of the adequacy of M_1 looking for departures in the direction of
M_2, and vice versa.

In (b), the conclusion may be that the fit of both, one, or neither model is
adequate.

Bob Cousins, Banff 2010
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Jose Bernardo and Raul Rueda, 2002

...If O is a continuous parameter, this forces the use of a non-regular
(not absolutely continuous) ‘sharp’ prior concentrating a positive
probability mass on 6,. One unappealing aspect of this non-regular
prior structure, noted by Lindley (1957) and generally known as
Lindley’s paradox, is that for any fixed value of the pertinent test
statistic, the Bayes factor increases as sqrt(n) with the sample size;
hence, with large samples, “evidence” in favor of H_0 may be over-
whelming with data sets that are both implausible under H_0 and quite
likely under alternative 0, values, such as (say) the MLE 0-hat.

The Bayes factor approach to hypothesis testing in a continuous
parameter setting...analyzes how such very strong beliefs about the
value of 0 should be modified by the data...

Bayes factors should not be used unless this strong prior formulation is
an appropriate assumption.

[Italics in original: they evidently have strong beliefs about this!]

Bob Cousins, Banff 2010
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Berger and Delampady, 1987, and comments

Do such objective Bayesian answers always exist, however? The answer is no,
and the precise null testing situation is a prime example in which objective
procedures so not exist...

Unfortunately, the choice of the scale factor, tau, for g has a large effect on the
answer...

A dramatic effect o the Bayesian and likelihood answer. Furthermore, letting
12 — oo so that g becomes “non-informative” is ridiculous, since then
P(H_0|x)=> 1. Thus, a Bayesian must, at a minimum, subjectively specify 12,
and there is no default value that “lets the data speak for itself”.

...it becomes ridiculous to argue that we can intuitively learn to properly
calibrate P-values...

First and foremost, when testing precise hypotheses, formal use of P-values
should be abandoned.

Cox comment: In summary, it seems to me that the paper is a valuable and
thought-provoking one, but that the conclusion that P-values have no role at

all is wrong
Bob Cousins, Banff 2010
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What about using the p-value as the “test statistic” and
proceeding with Bayesian analysis?

Physicists interpretation of “number of sigma”
combined with prior belief is an informal attempt at
something like this, | think.

Various papers try this:, are generally unhappy with results:
James Dickey, 1977. (Also has idea of prior densities locally a power of mu)

Berger and Mortera, 1991
Johnstone and Lindley, 1995
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| think that Jim Berger will discuss conditioning aspects,
Including his work on Conditional Frequentist tests and
“unification” with Bayesian approach

E.g., Berger, Brown, Wolpert 1994 and Berger, Boukai, Wang, 1997.
From the latter:

A final comment on this issue is that precise
hypothesis testing should not be done by form-
ing a traditional confidence interval (frequentist
or Bayesian) and simply checking whether or not
the precise hypothesis is compatible with the con-
fidence interval. A confidence interval is usually of
considerable importance in determining where the
unknown parameter (say) is likely to be, given that
the alternative hypothesis is true, but it is not use-
ful in determining whether or not a precise null
hypothesis is true. For discussion of this point, see
Berger and Delampady (1987).
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Bounds on Bayes Factors

Edwards, Lindman, Savage, 1963
p. 225 “...classical procedures quite typically are, from a Bayesian point of

view, far too ready to reject null hypotheses.”

At least for Bayesian, however, no procedure for testing a sharp null is likely
to be appropriate unless the null hypothesis deserves special attention.

Idea of bound on Bayes factors developed by Jim Berger and Collaborators.
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Using Bayes Factor as test statistic in
frequentist calculation

Idea promoted as part of “Bayes frequentist compromise” by l.J. Good
(1957, 1982, 1992).

In fact | think we do essentially this in HEP! We often use likelihood
ratios as the test statistics, and often integrate out nuisance parameters
rather than profile them.

Of course, many Bayesians do not want to compromise and see this as
inheriting ills of frequentism.

“The real objection to P values is not that they are utter nonsense, but
that they can be highly misleading, especially if the value of N is not
taken into account... replace P by P, = min(1/2, P YN / 10).

Comic relief: Good 1992 ends with crackpot numerology on fine
structure constant a la Eddington! Seems not to know u and d quark
have different masses (in 1992!). Is this how physicists look when talk
about statistics? Yikes.

Bob Cousins, Banff 2010
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In “modern” use of N-P testing, how should alpha be
chosen?

E.L. Lehmann, Testing Statistical Hypotheses, 1959

The choice of a level of significance alpha will usually be somewhat
arbitrary...

In fact, when choosing a level of significance one should also consider
the power that the test will achieve against various alternatives. If the
power is too low one may wish to use much higher values of alpha...

Another consideration that frequently enters into the specification of a
significance level is the attitude toward the hypothesis before the
experiment is performed. If one firmly believes the hypothesis to be
true, extremely convincing evidence will be required before one is
willing to give up this belief, and the significance level will be most
unlikely to occur if H were true.
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In “modern” use of N-P testing, how should
alpha be chosen? (cont.)

E.L. Lehmann, 1993:

It 1s interesting to note that unlike Fisher, Neyman and
Pearson (1933a, p. 296) did not recommend a standard level
but suggested that “how the balance [between the two kinds
of error] should be struck must be left to the investigator,”
and (1933b, p. 497) “we attempt to adjust the balance be-
tween the risks P; and P to meet the type of problem be-
fore us.”

Bob Cousins, Banff 2010
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E.L. Lehmann, 1993:

1. Both Neyman-Pearson and Fisher would give at most
lukewarm support to standard significance levels such as 5%
or 1%. Fisher, although originally recommending the use of
such levels, later strongly attacked any standard choice.
Neyman-Pearson, in their original formulation of 1933, rec-
ommended a balance between the two kinds of error (i.e.,
between level and power). For a disucssion of how to achieve
such a balance, see, for example, Sanathanan (1974). Both
level and power should of course be considered conditionally
whenever conditioning 1s deemed appropriate. Unfortu-
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Journal of the American Statistical Association, Vol. 69, No. 346 (Jun., 1974)

Critical Power Function and
Decision Making

LALITHA SANATHANAN*

It is generally recognized that when deciding on a significance level for
a test, its power must also be taken into account. Determination of the
optimal significance level, however, is not a straightforward task. It is
pninted' out here that by use of critical significance level and power we
can achieve the usual objective of making a reject-or-accept decision
without explicitly determining the optimal significance level.

Bob Cousins, Banff 2010
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arXiv:1005.1891v1

Trial factors or the look elsewhere effect in high energy
physics

Eilam Gross, Ofer Vitells

Weizmann Institute of Science, Rehovot 76100, Istael
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Figure 6: The trial factors as a function of the fixed mass significance Z ;.
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Claim: In most, if not all, of HEP’s “Nobel”
level discoveries, there is a new particle or
new “discrete” symmetry in nature.

Circles: Nobel Prizes

Also Nobels for two
antiparticles:
positron, anti-proton,
and force carriers: W,
/ bosons




Discovery of b quark

1 AucusTt 1977

Observation of a Dimuon Resonance at 9.5 GeV in 400-GeV Proton-Nucleus Collisions

S. W. Herb, D. C. Hom, L. M. Lederman, J. C. Sens,® H. D. Snyder, and J. K. Yoh
Columbia University, New York, New York 10027

and

J. A. Appel, B. C. Brown, C. N. Brown, W. R. Innes, K. Ueno, and T. Yamanouchi
Fermi National Accelevator Labovatovy, Batavia, Ilinois 60510

and

A, S. Ito, H. Jostlein, D. M. Kaplan, and R. D. Kephart

State University of New York al Stony Brook, Stony Brook, New York 11974
(Received 1 July 1977)

The errors quoted on the magnitude of the continuum
and resonance cross sections and the resonance masses
are statistical only. Systematic normalization effects
are probably less than 25% and do not affect the conclu-
sions drawn here. Systematic errors onthe mass cali-
brﬂation are probably less than 1%,

The discovery was all in the shape.
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FIG. 3. (a) Measured dimuon production cross sec-
tions as a function of the invariant mass of the muon

pair. The solid line is the continuum fit outlined in the
text. The equal-sign—dimuon cross section is also
shown. (b) The same cross sections as in (a) with the
smooth exponential continuum fit subtracted in order to
reveal the 9—-10-GeV region in more detail.
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...The Upsilon was Preceded by the Oops-Leon

Observation of High-Mass Dilepton Pairs in Hadron Collisions at 400 GeV

D, C. Hom, L. M. Lederman, H., P. Paar, H, D. Snyder, J. M. Weiss, and J. K. Yoh
Columbia Univevsity, New Yovk, New York 10027%

and

J. A, Appel, B, C, Brown, C. N, Brown, W, R. Innes, and T. Yamanouchi
Feymi National Accelevator Labovatovy, Batavia, Illinois 60510%

and

D, M. Kaplan
State University of New Yovk at Stony Brook, Stony Brook, New Yovk 11794 *
(Received 28 January 1976)

We report preliminary results on the production of electron-positron pairs in the mass
range 2.5 to 20 GeV in 400-GeV p-Be interactions. 27 high-mass events are observed in
the mass range 5.5—10.0 GeV corresponding to ¢=(1.2£0.5) x10™ % ¢m? per nucleon. Clus-
tering of 12 of these events between 5.8 and 6.2 GeV suggests that the data contain a new
resonance at 6 GeV.
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FIG. 2. Electron-positron mass spectrum: do/dm
per nucleon versus the effective mass. A linear A de-
pendence is assumed. Note bin-width changes.
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The events near 6 GeV correspond to a total
cross section of 0B=(5,2+2,0)x10"* c¢m?® per
nucleon under the assumptions of Eq. (3) and of
a linear A dependence.” We have studied the
probability for a clustering of events as is ob-
served here to result from a fluetuation in a
smooth distribution, e.g., Eq. (3). To avoid the
difficult problems involved in the statistical theo-
ry associated with small numbers of events per
resolution bin, a Monte Carlo method was used.
Histograms were generated by throwing events
according to a variety of smooth distributions,
modulated by the mass acceptance, over the
mass range 5.0 to 10,0 GeV, Clusters of events
as observed occurring anywhere from 5.5 to 10,0
GeV appeared less than 2% of the time.® Thus
the statistical case for a narrow (< 100 MeV) res-
onance is strong although we are aware of the
need for confirmation. These data, at a level of

Toy M.C. of look-elsewhere effect!
LEE-corrected p was 0.02.
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Ratio of production of muons and quarks in e+e- collisions
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To the trained eye, the different horizontal levels correspond to small
integers:
Electric Charge of produced quarks in units of e/3:
(n=1,2; e = charge of proton), and
Number of types of charges in the strong force (3 colors !)
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Continuation of the plot is fun as well!
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The first evidence of the new “discrete” addition to
the fundamental theory can be a small effect change
In an experimental observable

EVIDENCE FOR THE 27 DECAY OF THE K,° MESON*T
J. H. Christenson, J. W. Cron.in,I V. L. Fitch,I and R. Turlay§

() Cro n I n & FI tC h N O b el Princeton University, Princeton, New Jersey

(Received 10 July 1964)
Prize for discovering that
. 484 <m* < 494 ti0
In 1 out of 500 decays of r“”ﬁq
the long-live neutral S el AL B W s,
kaon, there were two %
pions rather than three in o 5
the final state.
] _ 494 <m*< 504 1o z
e Implication was that
equations of physics ol o *
were not time-reversal aexesia
Invariant! n I
[m* = mm‘c ’ COSO=1 <~ M ET:O] FIG. 3. Angular dci:str?bution in three mass ranges

Bob Cousins, Banff 2010 for events with cos8 >0.9995,



More generally, the existence of a new force-
carrying boson can show up as atiny change in
the interaction rate of order

1/M? or 1/M*, where

M is mass of the new particle (and absolute rate
Involves a coupling constant as well)

Ranges of M currently accessible are

~103 GeV at LHC, ~10° GeV rare decays, ~101°
GeV from neutrinos, ~101> GeV from proton
decay.

Bob Cousins, Banff 2010
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quarks

leptons

What are the smallest building blocks of matter?

LHC experiments will
look for signs of yet
smaller building
blocks.

(So far, no sign from
experiment or theory.)



What are the smallest building blocks of matter?

And is there yet another column???
LHC experiments will look for It.

quarks

leptons

| If it exists, neltrinos
~are very massive; that
downgrades many
people’s prior.




What are the smallest building blocks of matter?

Supersymmetry: Double the whole table
with a new type of matter!?

quarks

leptons

u

ve’vM
i

Heavy versions of every
quark and lepton!




/ The Occam Factor
P, L
1

Likelihood

0

p(DIM,) — f do; p(0;1M) £(6;) ~ (i M)L(6:)50,
00;
A,

= Maximum Likelihood x Occam Factor

= Given g and fixed p-value, there exists an n for
which posterior P in favor of alternative is <e.
(Still assuming null has a fixed prior p.)
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Does this Occam Factor Really Correspond to
the Way “Good” Physicists Adjust Beliefs?

Personally, | doubt it.

All kinds of issues, beginning with the obvious ones: To
make any sense of it at all, one needs both a cut-off scale
and a metric in the parameter space.

For most exploratory experiments | can think of, these
metrics just don’t exist in a relevant way.

Recent example with Higgs seems to be a counter-
example (no one’s belief has been modified even though
favored region of parameter space is “excluded”.

Some recent examples: neutrino oscillations, Minimal
Supersymmetry, axion. All had parts of parameter space
ruled out.
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AXion

In 1977, Peccel and Quinn proposed a new symmetry to
“explain” why the strong interaction does not have a
term violating time-reversal invariance.

Weinberg and Wilzcek independently pointed out that
this symmetry would be spontaneously broken, and
there would be a new particle: the axion.

Mass of the axion depends depends on the completely
unknown scale, from say, below 1 GeV to
10,000,000,000,000,000,000 GeV.

AXion is also a viable “cold dark matter” candidate —
and some people think that its supersymmetric partner
would be an even better one!

Bob Cousins, Banff 2010
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Annu. Rev. Nucl. Part. Sci. 2006. 56:293-326

doi: 10.1146/annurev.nucl.56.080805.140513

Copyright (©) 2006 by Annual Reviews. All rights reserved
First published online as a Review in Advance on July 5, 2006

SEARCHES FOR ASTROPHYSICAL AND
CosMOLOGICAL AXIONS™

Stephen J. Asztalos,' Leslie | Rosen’berg,1 Karl van Bibber,!
Pierre Sikivie,> and Konstantin Zioutas®

1 105 IOID 1015 1020
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105 1 105 IG-“I' mii (cv)
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Red giants
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Accelerato |
e y Sn ‘937? | Cosmology
Open axion
mass range

Figure 2 The allowed axion mass range, bounded from below by the requirement
that axions should not overclose the universe and from above by accelerator searches
and stellar evolution.



Did “real” theorists’ belief get updated by this
reduction in parameter space?

e Using what metric??

 This is not necessarily a failure of Bayesian theory in
principle, but rather just a statement that in this
example, | think it Is useless.

Bob Cousins, Banff 2010
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What about the claims in the literature (e.g., Cox) that
there is some intrinsic connection between what
experiments that get designed and done, and the ¢?/n of
the experiment ?

 Typical modern HEP experiments make many many
measurements beyond those which motivated the
design, sample size etc. So not really a connection.

« For more specialized experiments, there is an informal
rule of thumb: worth doing “fishing expedition” for a
rare process if you can gain a factor of 10 in rareness.
So there may indeed be a number that can be used,
traced back not to any belief, but to the number of
fingers we have. And our preference for multiplication
makes the metric flat in the log.
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« Back to the frequentist p-value approach. What to use if
the alternative model has two parameters of interest?

« And what does it say about 1 parameter of interest?

Bob Cousins, Banff 2010
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From Feldman and Cousins, 1998
Neutrino Oscillations: Null hypothesis is (0,0)

10 *errmy
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s
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Sensitivity ----
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Undercoverage i
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<

1
W

10

Bob Cousins, Banff 2010

10

N

sin2(29)

10

The global Aln(L) using “book” values
of critical values over-covers in some
places and undercovers in others. The
reason as that the effective
dimensionality of the number of
degrees of freedom changes
continuously across the plot!

So the notion is to calibrate the critical
value as a function of point in
parameter space.

The big conceptual point is that, for
exact coverage, this table of critical
values has to be organized by unknown
true value!

And that is “all” F-C does!



Classical Hypothesis Testing (cont.)

“Test for 6=0," < “Is 6, In confidence interval for 6

Using the likelihood ratio hypothesis
test, this correspondence is the basis
of intervals/regions we advocated in
Phys. Rev. D57 3873 (1998):

Unified approach to the classical statistical analysis of small signals

Gary J. Feldman
Department of Physics, Harvard University, Cambridge, Massachusetts 02138

Robert D. Cousins’
Department of Physics and Astronomy, University of California, Los Angeles, California 90095

While paper was “in proof”, Gary
realized that the method (including
nuisance parameters) was all on 1Y
pages of “Kendall and Stuart” ! =
We thought this was good !

It led to rapid inclusion in PDG RPP.

Bob Cousins, Banff 2010

CHAPTER 22
LIKELTHOOD RATIO TESTS AND TEST EFFICIENCY

The LR statistic
221  The ML method discussed in Chapter |8 is aconstructive method of obtaining estimators
which, under certain conditions, have desirable properties. A method of test construction closely
allied to it is the likelihood ratio (LR) method, proposed by Neyman and Pearson (1928). It has
played a role in the theory of tests analogous to that of the ML method in the theory of estimation.
As before, we have the LF
n
Lexi8) = [ o),
i=1
where 8 = (8., 8,) is a vector of ¥ + 5 = k parameters (¢ = |, 5 > 0) and x may also be a vector.
We wish to test the hypothesis
Ho: 8, =8, (22.1)

which is composite unless s = 0, against
Hy o8, # 6.

We know that there is generally no UMP test in this situation, but that there may be a UMPU test
—-«¢f. 21.31.
The LR methad first requires us to find the ML estimators of (8., #,), giving the unconditional

maximum of the LF

Lix|yy. 8,). (222
and also 1o find the ML estimators of 8, when Hp holds,' giving the conditional maximum of
the LF .

Lix|@., 0, 22.3)

b, in (22.3) has been given a double circunflex to emphasize that it does not in general coincide
with @, in (22.2). Now consider the likelihood ratio?

L(x16,0,8,
§ = Lxifro.9,) (22.4)
Lix|#, . 8;)

Since (22.4) 1s the ratio of a conditional maximum of the LF to its unconditional maximum, we
clearly have

O=l=1L (22.5)

Intuitively, I is a reasonable test statistic for Hy: it is the maximum likelihood under Hy as a
fraction of its largest possible value, and large values of { signify that Hy is reasonably acceptable.
The critical region for the test statistic is therefore

I 2 ¢, (22.6)

where ¢ is determined lrom the distribumtion g{/) of ! 1o give a size-c (est, that is,
f gihdl = e 1221
1]

Nerther maximum value of the LF is affected by a change of parameter from @ o 7(#), the ML
estimator of T(#) heing () — cf. 18.3. Thus the LR statistic is invariant under reparametrization.
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PHYSTAT2003, SLAC, Stanford, California, September 8-11, 2003

Bayesians, Frequentists, and Physicists

Bradley Efron

Department of Statistics and Department of Health Research and Policy,
Stanford University, Stanford, CA 94305, USA

. e

Upper .95 limit

o ==|dman-Cousins ModSelect

© T U(-Inf,Inf)

- T .
X
Figure 2: Four possible 95% upper bounds for g having observed x in model (7,8): standard frequentist and Bayesian

bounds x 4+ 1.645 (labelled U(-Inf, Inf) in figure); Bayesian bound given a uniform prior on [0, co] (labelled U(0, Inf));
Model Selection bound.
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As time permits

« “Objective” Bayes priors depend on the model” means
that they are derived from measurement model, not the
physics model.

— Jeffreys’s Rule gives flat prior for a parameter
measured with Gaussian/Normal measurement
uncertainty

— But thinking about charged of electron charge itself,
Jeffreys concluded prior should be 1/q.

 This is why “objective” priors have a connection to
coverage (Welch and Peers, etc.)

e Lots of nice properties for estimation, but for model
checking, as Jim said, need subjective prior.

Bob Cousins, Banff 2010

58



Conclusions

« My answer to the title question violates Hinchliffe’s Rule
(if it is true).

 The result of Eilam and Ofer may be the way to see that
the Yn behavior in the LEE-corrected p-value (!)

 Even within the frequentist paradigm, our test reporting
IS not complete enough.

o Likelihood-ratio test ala K&S may alleviate some issues
with testing, as it did with confidence intervals.

« More than ever, | think we need to provide the consumer
with the results of different ways of testing.

Bob Cousins, Banff 2010
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Beyond that, Jim said it best

I shall
resist the temptation of saying more, because model selection is a can of worms
for both objectivists and subjectivists.

J. Berger, “The Case for Objective Bayesian Analysis,” Bayesian Analysis 1.
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But he was incomplete

I shall
resist the temptation of saying more, because model selection is a can of worms

for both objectivists and subjectivists. _
...and frequentists.

Bob Cousins, Banff 2010
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Backup
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Classical Hypothesis Testing (cont.)

1
JamesO06, pp. 258, 262

power

p(6)

o 6’ ¢ g

Fig. 10.3. Power functions of tests A, B, and C at significance level a. Of these three tests
B is the best for & > #'. For smaller values of &, C is better.

Where to live on the B vs a curve is along discussion. (Even longer

when considered as number of events increases, So curve moves

toward origin.) Decision on whether or not to declare discovery

requires two more inputs:

1) Prior belief in Hy vs H;

2) Cost of Type | error (false discovery claim) vs cost of Type Il error
(missed discovery)

| argue in HEP that a one-size-fits-all criterion of a corresponding to
5o is without foundation, but it is a common convention.
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