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1 Overview of the field and recent developments
The early work of Mostow, Margulis and Prasad on rigidity of arithmetic lattices has evolved into a broad use
of quasi-isometry techniques in group theory and low dimensional topology. The word metric on a finitely
generated group makes it into a metric space which is uniquely determined up to the geometric relation
called quasi-isometry, despite the fact that the metric depends on the choice of generating set. As for lattices
in suitable Lie groups, where quasi-isometry of lattices implies commensurability, the general quasi-isometric
study of groups aims to understand the remarkable extent to which this completely geometric notion often
captures algebraic properties of the group.

The Milnor-Schwarz Lemma provides an equivalence between the geometry of the word metric on the
fundamental group of a compact Riemannian manifold (or metric complex) with the geometry of its universal
cover. So the quasi-isometry study of groups also returns information about the spaces. This relationship has
proved particularly productive in low dimensional geometry/topology.

There are currently a large variety of groups whose quasi-isometric geometry is actively being studied
by geometric group theorists. Many of these groups have close relations to objects studied by low dimen-
sional topologists. Examples of these include automorphism groups of free groups, mapping class groups
(Hamenstädt, Behrstock-Kleiner-Minsky-Mosher), 3-manifold groups (Gromov-Sullivan, Cannon-Cooper,
Eskin-Fisher-Whyte, Kapovich-Leeb, Rieffel, Schwartz, Behrstock-Neumann), solvable Lie groups (Eskin-
Fisher-Whyte, Dymarz; the 3-dimensional group Solv had long been the holdout in understanding geomet-
ric 3-manifold groups), Artin groups (Bestvina-Kleiner-Sageev, Behrstock-Neumann), relatively hyperbolic
groups (Drutu-Sapir, Osin), and others.

The study of many of these groups had been completely out of reach until the flurry of activity which has
occurred in recent years, bringing many of these groups within grasp.

An old theorem of Stallings, the Ends Theorem, can be reinterpreted as quasi-isometric invariance of
splitting over a finite group. Quasi-isometric rigidity of group splittings has remained an active area of
research (Papasoglou, Mosher-Sageev-Whyte, etc.).

Questions of quasi-isometric rigidity and classification are studied using a range of techniques. Indeed,
Gromov’s Polynomial Growth Theorem, which was one of the seeds of the modern study of quasi-isometric
rigidity since it implies that virtual nilpotence is quasi-isometrically rigid, already employed a large number
of tools: representation theory, differential geometry, Montgomery–Zippen’s proof of Hilbert’s 5th prob-
lem, etc. Since then a number of other tools have also come into use, including quasi-conformal analysis,
asymptotic cones, CAT (0) geometry, logic, etc. Several recent proofs of outstanding problems have added
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new tools, including coarse differentiation used to answer questions about solvable Lie groups (Eskin-Fisher-
Whyte), applications of the Continuum Hypothesis to resolve non-uniqueness questions about asymptotic
cones (Kramer, Thomas, Tent, Shalah), harmonic analysis in Kleiner’s new proof of Gromov’s theorem,
representation theory in the work of Shalom, etc.

Despite recent major advances, very significant problems remain. For example, little is known about the
outer automorphism group of the free group, one of the central groups in the intersection of low dimensional
topology and geometric group theory. There have been several inroads into quasi-isometry for Artin groups,
but the general case remains wide open. Despite the fact that nilpotent groups were the first to be shown to be
quasi-isometrically rigid, their quasi-isometric classification remains a well-known difficult question. Sim-
ilarly classification of hyperbolic and relatively hyperbolic groups remains open although rigidity is known
(Gromov, Drutu). And there are several other areas of active study.

This conference brought together a range of specialists whose expertise in order to educate each other in
the broad spectrum of techniques and problems in quasi-isometric rigidity. A number of graduate students
actively participated in the conference as well.

2 Program

Monday March 8, 2010

9:15–10:15 Mladen Bestvina, The asymptotic dimension of mapping class groups is finite
10:45–11:45 Christopher Cashen, Line Patterns in Free Groups
14:00–15:00 Jason Behrstock, Quasi-isometric classification of right angled Artin groups
15:30–16:30 Walter Neumann, Quasi-isometry of 3-manifold groups

Tuesday March 9, 2010

9:00–10:00 Linus Kramer, Coarse rigidity of euclidean buildings
10:30–11:30 Anne Thomas, Lattices in complete Kac-Moody groups
14:00–15:00 Michael Kapovich, Ends of groups and harmonic functions
15:30–16:30 Mark Hagen, LERF after Dani Wise

Wednesday March 10, 2010

9:00–10:00 Mark Sapir, Dehn functions of groups and asymptotic cones
10:30–11:30 Kevin Wortman, Non-nonpositive curvature of some non-cocompact arithmetic lattices

Thursday March 11, 2010

9:00–10:00 Xiangdong Xie, Quasiisometries Łof some negatively curved solvable Lie groups
10:30–11:30 Tullia Dymarz, Bilipschitz equivalence vs. quasi-isometric equivalence
14:00–15:00 Eduardo Martinez-Pedroza, Separation of Quasiconvex Subgroups in Relatively Hyperbolic Groups
15:30–16:30 Genevieve Walsh, Quasi-Isometry classes of hyperbolic knot complements
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3 Presentations
3.1 Jason Behrstock (Lehman College, CUNY)

“QI classification of right-angled Artin groups”
This was the first of a two part talk involving joint work with Walter Neumann. This talk was on results from
the papers [2] and [4], the second part was given by Walter Neumann and focused on the work in [3].

A graph manifold is an irreducible, non-geometric 3–manifold (possibly with boundary) for which every
geometric piece is Seifert fibered. In the first half of the talk we discussed:

Theorem 3.1.1 (Behrstock–Neumann; [2]). Let M , M ′ be graph manifolds (possibly with boundary). The
following are equivalent:

1. M̃ and M̃ ′ are bilipschitz homeomorphic, here M̃ denotes the universal cover.

2. π1(M) and π1(M ′) are quasi-isometric.

3. BS(M) and BS(M ′) are isomorphic as 2-colored trees, here BS(M) is the Bass–Serre tree corre-
sponding to the graph of groups decomposition of π1(M).

4. The minimal 2-colored graphs in the bisimiliarity classes of the colored decomposition graphs Γ(M)
and Γ(M ′) are isomorphic.

During this period we introduced the notion of bisimiliarity and gave a number of explicit examples. We
sketched the proof of the above theorem, via a special case; showing that if M and M ′ are closed then their
universal covers are bilipschitz homeomorphic, this answered an conjecture of Kapovich–Leeb from the early
90’s.

Next we turned to applications of bisimilarity to the quasi-isometric classification of right-angled Artin
groups. We introduced a family of such groups, n–tree groups which are the right-angled Artin groups
associated to a family of n–dimensional simplicial complexes, namely the smallest family containing the
n–simplex and with the property that the union of any two complexes in this class along a co-dimension one
simplex is also in this class. For instance, for n = 1 this is the class of finite trees.

We then discussed:

Theorem 3.1.2 (Behrstock–Neumann; [2]). Any two irreducible right angled 1–tree groups are quasi-isome-
tric.

N–tree groups admit an analogue of the geometric decomposition for 3–manifold groups, accordingly,
some of the information in this geometric decomposition can be described via a finite bipartite colored graph,
which we called Γ(K), where K is the defining simplicial complex.

Theorem 3.1.3 (Behrstock–Januszkiewicz–Neumann; [4]). Given two simplicial complexes K, K which
yield n–tree groups. The groups AK and AK′ are quasi-isometric if and only if Γ(K) and Γ(K ′) are
bisimilar after possibly reordering one of the color sets by an element of the symmetric group on n + 1
elements.

3.2 Mladen Bestvina (University of Utah)
“Asymptotic dimension of the mapping class group”

I started the talk with an introduction to asymptotic dimension. In particular, I recalled Gromov’s proof that
hyperbolic groups have finite asymptotic dimension and the Bell-Fujiwara argument that curve complexes
associated to compact surfaces have finite asymptotic dimension.

Then I outlined a proof of the following theorem, joint with Bromberg and Fujiwara.

Theorem 3.2.1. Mapping class groups have finite asymptotic dimension.



4

The proof proceeds in three steps. The overall goal is to produce an action of a given mapping class
group on the finite product X1 × · · ·×Xk with each Xi hyperbolic and of finite asymptotic dimension, such
that an orbit map is a quasi-isometric embedding. Each Xi is obtained from a quasi-tree Ti by “blowing up”
each vertex to the curve complex of a subsurface. The key step is the construction of Ti. This can be done
“axiomatically”, that is, whenever a group Γ acts on a set Y satisfying certain axioms, there is an induced
action of Γ on a quasi-tree. A prototypical situation is that of a Kleinian group Γ acting on H3 with Y an orbit
of axes of loxodromic elements. In our application, Y is a certain collection of isotopy classes of connected
incompressible subsurfaces of the given surface Σ.

3.3 Christopher Cashen (University of Utah)
“Line patterns in free groups”

Take a word w in a free group F of rank at least 2. Consider a tree T quasi-isometric to F . The cosets of
〈w〉 in F correspond to a pattern of lines in T . We study a space called the decomposition space, which is a
quotient of the boundary of T related to the line pattern. We use the cut set structure of this space to prove
quasi-isometric rigidity results for line patterns. In particular, we would like to determine when the group of
quasi-isometries of the free group that preserves the line pattern is conjugate into an isometry group of some
“nice” space.

We show that this is never true if the decomposition space is disconnected, has cut points or has cut pairs.
We conjecture that these are the only cases that the line pattern fails to be rigid. With some hypotheses on the
complexity of the line pattern, we show that the pattern is rigid and furthermore that we can take the “nice”
space to be a finite valence tree.

These results have applications to quasi-isometric classifications for graphs of free groups, including
mapping tori of some free group automorphisms.

This is joint work with Natasa Macura.

3.4 Tullia Dymarz (Yale University)
“Bilipschitz equivalence is not equivalent to quasi-isometric equivalence for
finitely generated groups”

A quasi-isometric equivalence between metric spaces is a map f : X → Y such that for some K, C > 0

−C +
1
K

d(x, y) ≤ d(f(x), f(y)) ≤ Kd(x, y) + C

for all x, y ∈ X and such that nbhdC(f(X)) = Y . This is a generalization of the more common notion of a
bilipschitz equivalence: a bijection between metric spaces that satisfies for some K

1
K

d(x, y) ≤ d(f(x), f(y)) ≤ Kd(x, y).

A natural question to ask is for which classes of metric spaces are these two notions equivalent. Burago-
Kleiner and McMullen gave examples of a separated nets in R2 that are not bilipschitz equivalent to the
integer lattice (but all nets are quasi-isometric). Our interest is in the class of finitely generated groups
equipped with word metrics. For a finitely generated group Γ a choice of generating set S determines a
Cayley graph ΓS with metric dS . The metric dS depends on S but for any given group all Cayley graphs
are bilipschitz equivalent. The examples of Burago-Kleiner and McMullen are not Cayley graphs of finitely
generated groups. We prove the following Theorem:

Theorem 3.4.1. Let F and G be finite groups with |F | = n and |G| = nk where k > 1. Then there does not
exist a bijective quasi-isometry between the lamplighter groups G (Z and F (Z if k is not a product of prime
factors appearing in n.
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3.5 Mark Hagen (McGill University)
“LERF after Dani Wise”

We discuss recent work of Dani Wise on fundamental groups of special cube complexes, focusing on appli-
cations to the subgroup separability and virtual fibering of closed hyperbolic Haken 3-manifolds. A special
cube complex is a cube complex whose immersed hyperplanes do not exhibit certain pathologies; equiva-
lently, a cube complex is special if it admits a local isometry to the cube complex associated to a right-angled
Artin group. Special cube complexes generalize graphs in the sense that cubical local isometries to special
cube complexes are virtual retracts, as is the case for immersions of graphs. This is used to prove that quasi-
convex subgroups of virtually special groups are separable (QCERF). Moreover, the right-angled Artin group
characterization of special cube complexes shows that virtually special groups are “residually finite rational
solvable” (RFRS).

A quasiconvex hierarchy for a group G is a way of constructing G from a (finite) collection of trivial
groups by a finite sequence of iterated HNN extensions and amalgams in such a way that the edge groups are
all quasiconvex in G. Wise showed that groups admitting a quasiconvex hierarchy are virtually fundamental
groups of special cube complexes, and thus enjoy the QCERF and LERF properties. In particular, the Haken
hierarchy for a closed hyperbolic 3-manifold M with a geometrically finite incompressible surface yields a
quasiconvex hierarchy for π1M . That π1M is subgroup separable is immediate from local quasiconvexity
and QCERF. Virtual fibering follows from RFRS, by a result of Agol.

3.6 Michael Kapovich (University of California, Davis)
“Energy of harmonic functions and Gromov’s proof of Stallings’ theorem”

In his essay [9, Pages 228–230], Gromov gave a proof of the Stallings’ theorem [26] on groups with infinitely
many ends using harmonic functions:

Theorem 3.6.1 (Stallings). Let G be a finitely-generated group with infinitely many ends. Then G splits
nontrivially as an amalgam G = G1 ∗G3 G2 or HNN extension G1∗G3 with a finite edge group G3.

The goal of this talk is to provide the details for Gromov’s arguments.
Let M be a complete Riemannian manifold of bounded geometry, which has infinitely many ends. Sup-

pose that there exists a number R such that every point in M belongs to an R–neck, i.e., an R-ball which
separates M into at least three unbounded components. (This property is immediate if M admits a cocompact
isometric group action.)

Let M̄ := M ∪ Ends(M) denote the compactification of M by its space of ends. Given a continuous
function χ : Ends(M) → {0, 1}, let

h = hχ : M̄ → [0, 1]

denote the continuous extension of χ, so that h|M is harmonic. The uniqueness of h easily follows from the
maximum principle, while the existence of h is nontrivial was independently established in [12] and [18].

Let H(M) denote the space of harmonic functions

{h = hχ, χ : Ends(M) → {0, 1} is nonconstant}.

We give H(M) the topology of uniform convergence on compacts in M . Let E : H(M) → R+ = [0,∞)
denote the energy functional.

Definition 3.6.2. Given the manifold M , define its energy gap e(M) as

e(M) := inf{E(h) : h ∈ H(M)}.

If M admits an isometric group action G ! M , then G acts on H(M) preserving the functional E.
Therefore E projects to a lower semi-continuous functional E : H(M)/G → R+, where we give H(M)/G
the quotient topology. Our main technical result is

Theorem 3.6.3. 1. e(M) ≥ µ > 0, where µ depends only on R, λ1(M) and geometry of M .
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2. If M admits a cocompact isometric group action, then E : H(M)/G → R+ is proper in the sense that

E−1([0, T ])

is compact for every T ∈ R+.

Actually, it was observed by Bruce Kleiner that 1 easily implies 2.
We now sketch our proof of the Stallings’ theorem. Since E is semicontinuous and proper mod G, E

attains it minimum e(M). Let h ∈ H(M) be an energy-minimizing harmonic function. We then verify
that the set Σ := {h(x) = 1

2} is precisely-invariant with respect to the action of G, i.e.. gΣ ∩ Σ .= ∅ iff
gΣ =Σ . By choosing t sufficiently close to 1

2 we obtain a smooth hypersurface S = {h(x) = t} which is
precisely-invariant under G and separates the ends of M . We then define walls if M to be the hypersurfaces
Sf = {f = t}, f = g∗(h) for some g ∈ G. We say that a hypersurface Sf separates points x, y ∈ M if
f(x) < t while f(y) > t. We then define a graph T dual to the collection of walls in M : The edges of T are
the walls, while the vertices of T are the “indecomposable” subsets of M \ G · S, i.e., subsets which cannot
be separated by one wall. We then verify that T is a tree. Clearly, G acts on T and the edge-stabilizers are
finite since S is compact. Therefore, G splits over a finite group.

3.7 Linus Kramer (Universität Münster)
“Coarse rigidity of Euclidean buildings”

In my talk I presented the following results. We prove coarse (i.e. quasi-isometric) rigidity results for trees
(simplicial trees and R-trees) and, more generally, for discrete and nondiscrete Euclidean buildings. For trees,
a key ingredient is a certain equivariance condition. Our main results are as follows.

Theorem 3.7.1. Let G be a group acting isometrically on two metrically complete leafless trees T1, T2.
Assume that there is a coarse equivalence f : T1 → T2, that T1 has at least 3 ends and that the induced map
∂f : ∂T1 → ∂T2 between the ends of the trees is G-equivariant. If the G-action on ∂T1 is 2-transitive, then
(after rescaling the metric on T2) there is a G-equivariant isometry f̄ : T1 → T2 with ∂f = ∂f̄ . If T1 has at
least two branch points, then f̄ is unique and has finite distance from f .

Theorem 3.7.2. Let X1 and X2 be metrically complete nondiscrete Euclidean buildings whose spherical
buildings at infinity ∂cplX1 and ∂cplX2 are thick. Let f : X1 ×Rm1 → X2 ×Rm2 be a coarse equivalence.
Then m1 = m2 and there is a combinatorial isomorphism f∗ : ∂cplX1 → ∂cplX2 between the spherical
buildings at infinity which is characterized by the fact that the f -image of an affine apartment A ⊆ X1 has
finite Hausdorff distance from the f∗-image of A.

We remark that the boundary map f∗ is constructed in a combinatorial way from f . In general, a coarse
equivalence between CAT(0)-spaces will not induce a map between the respective Tits boundaries.

Theorem 3.7.3. Let f : X1 × Rm1 → X2 × Rm2 be as in Theorem 3.7.2 and assume in addition that X1

has no tree factors. Then there is (after rescaling the metrics on the irreducible factors of X2) an isometry
f̄ : X1 → X2 with boundary map f̄∗ = f∗. Put f(x× y) = f1(x× y)× f2(x× y). If none of the de Rham
factors of X1 is a Euclidean cone over its boundary, then f̄ is unique and d(f1(x× y), f̄(x)) is bounded as
a function of x ∈ X1.

For a more general statement see our preprint [16]. Theorem 3.7.2 and Theorem 3.7.3 were proved by
Kleiner and Leeb under the additional assumptions that the Euclidean buildings are thick (i.e. that the thick
points are cobounded) and that the spherical buildings at infinity are Moufang [13, 1.1.3] or compact [17,
1.3]. (These results extended, in turn, Mostow-Prasad rigidity [23].) By Tits’ extension theorem every thick
irreducible spherical building of rank at least 3 is automatically Moufang. The spherical building at infinity of
an irreducible 2-dimensional Euclidean building, on the other hand, need not be either Moufang or compact;
see, for example, [5]. In contrast to [13], we construct the combinatorial boundary map f∗ of Theorem 3.7.2
first and then use it to obtain a simpler approach to Theorem 3.7.3.

This is a joint work with Richard M. Weiss
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3.8 Eduardo Martı́nez-Pedroza (McMaster University)
“Separation of Quasiconvex Subgroups in Relatively Hyperbolic Groups”

A subgroup H of a group G is separable if for any g ∈ G−H there is a homomorphism π onto a finite group
such that π(g) .∈ π(H). A group is residually finite if the trivial subgroup is separable, is LERF if every
finitely generated subgroup is separable, and is slender if every subgroup is finitely generated. For example,
finitely generated abelian groups are LERF and slender.

Given a relatively hyperbolic group with peripheral structure consisting of LERF and slender subgroups,
we study separability of relatively quasiconvex subgroups. This is connected to residual finiteness of hyper-
bolic groups. It is not known whether all hyperbolic groups are residually finite. In particular, the main result
of [1] is the following.

Theorem 3.8.1. [1] If all hyperbolic groups are residually finite, then every quasiconvex subgroup of a
hyperbolic group is separable.

We extended this result, answering a question in [1], as follows:

Theorem 3.8.2. [19] Suppose that all hyperbolic groups are residually finite. If G is a relatively hyperbolic
group with peripheral structure consisting of subgroups which are LERF and slender, then any relatively
quasiconvex subgroup of G is separable.

This extension together with deep results in 3-manifolds have some interesting corollaries.

Corollary 3.8.3. [19] If all hyperbolic groups are residually finite, then all finitely generated Kleinian groups
are LERF.

Corollary 3.8.4. [19] If all fundamental groups of compact hyperbolic 3–manifolds are LERF, then all fun-
damental groups of finite volume hyperbolic 3–orbifolds are LERF.

Theorem 3.8.2 is proved by combining one of combination theorems for quasiconvex subgroups in [20]
with Theorem 3.8.1 and the Dehn filling technique of [10, 21].

The main technical result is stated below.

Definition 3.8.5. A relatively quasiconvex subgroup H of G is called fully quasiconvex if for any subgroup
P ∈ P and any f ∈ G, either H ∩ P f is finite or H ∩ P f is a finite index subgroup of P f . (Here
P f = fPf−1.)

Theorem 3.8.6. Let G be hyperbolic relative to a collection of slender and LERF subgroups. For any
relatively quasiconvex subgroup Q and any g ∈ G − Q, there is a fully quasiconvex subgroup H , and a
surjective homomorphism π : G −→ Ḡ such that

1. Q < H ,

2. Ḡ is a word-hyperbolic group,

3. π(H) is a quasiconvex subgroup of Ḡ,

4. π(g) .∈ π(H).

Theorem 3.8.2 is proved by combining one of combination theorems for quasiconvex subgroups in [20]
with Theorem 3.8.1 and the Dehn filling technique of [10, 21]. The main technical result is stated below.

Definition 3.8.7. A relatively quasiconvex subgroup H of G is called fully quasiconvex if for any subgroup
P ∈ P and any f ∈ G, either H ∩ P f is finite or H ∩ P f is a finite index subgroup of P f . (Here
P f = fPf−1.)

Theorem 3.8.8. Let G be a torsion free group hyperbolic relative to a collection of slender and LERF
subgroups. For any relatively quasiconvex subgroup Q of G and any element g ∈ G such that g .∈ Q, there
is a fully quasiconvex subgroup H of G, and a surjective homomorphism π : G −→ Ḡ such that

1. Q < H ,
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2. Ḡ is a word-hyperbolic group,

3. π(H) is a quasiconvex subgroup of Ḡ,

4. π(g) .∈ π(H).

We can prove Theorem 3.8.2 from Theorem 3.8.8 as follows:

Proof of Theorem 3.8.2. Let Q < G be relatively quasiconvex, and let g ∈ G \ Q. By Theorem 3.8.8 there
is a fully quasiconvex H < G containing Q but not g, and a quotient π : G → K so that π(g) /∈ π(H), K is
hyperbolic, and π(K) is quasiconvex.

Assuming all hyperbolic groups are residually finite, Theorem 3.8.1 implies that there is a finite group F
and a quotient φ : K → F so that φ(π(g)) /∈ φ(π(H)). Since φ(π(H)) contains φ(π(Q)), the map φ ◦ π
serves to separate g from Q.

This is a joint work with Jason Manning.

3.9 Walter Neumann (Columbia University)
“Quasi-isometries of 3-manifold groups”

The remaining case to be resolved for quasi-isometric classification of fundamental groups of compact 3–
manifolds (allowing torus boundary components) is the case of irreducible 3-manifolds with non-trivial geo-
metric decomposition in the sense of Thurston and Perelman.

The classification for non-geometric 3-manifolds with no hyperbolic pieces in their geometric decompo-
sitions was described in Jason Behrstock’s talk (see subsection 3.1 and [2]). The general non-geometric case
(also joint work with Behrstock, see [3]) is a combination of this case and the case when all pieces are hy-
perbolic, so my talk restricted to the all-hyperbolic case for simplicity. However, we assume that at least one
piece is non-arithmetic, since if all pieces are arithmetic, then the manifold has very “arithmetic” behaviour,
and the theory in this case is not yet fully worked out.

A non-geometric 3–manifold whose geometric decomposition decomposes it into hyperbolic pieces, at
least one of which is non-arithmetic, is called an NAH-manifold.

The classification for graph-manifolds (no hyperbolic pieces) described in Behrstock’s talk (subsection
3.1) was in terms of finite labelled graphs; the labelling consisted of a color black or white on each vertex and
the classifying objects are such two-colored graphs which are minimal under a relation called bisimilarity. For
NAH–manifolds the classification is again in terms of finite labelled graphs, and the the classifying objects
are again given by labelled graphs which are minimal in a similar sense. The labelling is more complex:
each vertex is labelled by the isomorphism type of a hyperbolic orbifold and each edge is labelled by a linear
isomorphism between certain 2-dimensional Q–vectorspaces. We call these graphs NAH–graphs. There is a
natural morphism concept for such graphs, and the equivalence relation generated by existence of morphisms
turns out to have a unique minimal object in each equivalence class. The main results are:

1. These minimal NAH–graphs classify fundamental groups of NAH-manifolds up to quasi-isometry.

2. A minimal NAH–graph arises as the classifying graph for a quasi-isometry class of 3-manifold groups
if and only if it is balanced (the product of determinants of the linear maps labelling edges along any
closed path in the graph should be ±1).

3. If the minimal NAH–graph is a tree and the vertex labels have no orbifold cusps then any two manifolds
in the corresponding quasi-isometry class are commensurable.

The third of these theorems and the “if” in the second are currently proved only under the assumption that
the Cusp Covering Conjecture (CCC below) is true in dimension 3. They must therefore still be considered
to be conjectural, although CCC is used in part for simplicity, and much less should be needed to prove these
results.

CCC: Any hyperbolic manifold M has a finite index subgroup of each of its cusp fundamental groups such
that, for any choice of a smaller finite index subgroup Pi of each cusp fundamental group, there is a
finite cover M̄ → M which restricts on each cusp of M̄ to the covering given by the corresponding Pi.
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CCC (in all dimensions) is implied by the well known conjecture that any word-hyperbolic group is residually
finite (RFCH). However the truth of RFCH is considered to be rather doubtful, while the Cusp Covering
Conjecture is much more plausible.

3.10 Mark Sapir (Vanderbilt University)
“On Dehn functions of groups”

I formulated and proved Gromov’s theorem that a group with all asymptotic cones simply connected has
polynomial Dehn function and linear isodiametric function. A partial converse was proved by Papasoglu:
groups with quadratic Dehn functions have simply connected asymptotic cones. There are many different
types of examples of groups with quadratic Dehn functions. Nevertheless they all seem to satisfy some
strong algorithmic properties. In particular I formulated a conjecture due to Rips that all these groups have
solvable conjugacy problem. I presented a quasi-proof of this conjecture (due to Olshanskii and myself). It
is not known if this proof works for all groups with quadratic Dehn function It does work for multiple HNN
extensions of free groups. In particular, this and the result of Bridson and Groves imply that free-by-cyclic
groups have solvable conjugacy problem. Finally I formulated the main new result obtained jointly with
A. Olshanskii

Theorem 3.10.1. There exists a finitely presented group with undecidablde word problem and almost quadratic
Dehn function (that is the Dehn function is smaller than Cn2 on arbitrary long intervals).

3.11 Anne Thomas (Oxford University)
“Lattices in complete Kac–Moody groups”

Let G be a complete Kac–Moody group of rank 2 with symmetric Cartan matrix, defined over a finite field.
An example is the “affine case” G = SL2(Fq((t))), which is over Fq. Such a group G is a totally discon-
nected locally compact group, which, apart from the affine case, is non-linear. The group G is obtained by
completing a minimal or incomplete Kac–Moody group Λ with respect to some topology. For example, in
the affine case Λ = SL2(Fq[t, t−1]).

The group G acts on its Bruhat–Tits building X , a (q + 1)–regular tree, with quotient a single edge. We
classify the cocompact lattices in G which act transitively on the edges of X . These lattices are given as
graphs of groups, together with an embedding of the fundamental group of the graph of groups into G. Using
this classification, we prove our main result:

Theorem 3.11.1. Let G be a topological Kac–Moody group of rank 2 defined over the finite field Fq, with

symmetric generalised Cartan matrix
(

2 −m
−m 2

)
, m ≥ 2. Then for q ≥ 540

min{µ(Γ\G) | Γ a cocompact lattice in G} =
2

(q + 1)|Z(G)|δ

where δ ∈ {1, 2, 4} (depending upon the particular group G). Moreover, we construct a cocompact lattice
Γ0 < G realising this minimum.

Here, Z(G) is the centre of G, which is a finite group and is the kernel of the G–action on X . For q even
or q ≡ 3 mod 4 we find the minimum covolume among cocompact lattices in G by proving that the lattice
which realises this minimum is edge-transitive. For q ≡ 1 mod 4, there are in general no edge-transitive
lattices in G, and Γ0 in this statement has two orbits of edges on X .

A result of independent interest is the following analogue of the fact that lattices in semisimple Lie groups
do not contain unipotent elements:

Proposition 3.11.2. Let G be as in Theorem 3.11.1 above. If Γ is a cocompact lattice in G, then Γ does not
contain p–elements.

This is proved using the dynamics of the G–action on X . Our proofs also use covering theory for graphs
of groups, the Levi decomposition for the parahoric subgroups of G and finite group theory.
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3.12 Genevieve Walsh (Tufts University)
“Quasi-isometry of hyperbolic knot complements”

A result due to R. Schwartz says that cusped hyperbolic 3-manifolds are rigid: they are quasi-isometric
exactly when they are commensurable. Thus for hyperbolic knot complements, we have rigidity, and the
remaining problem is to classify such knot complements up to commensurability. This is the goal of this
work. An easier question is to understand how many knot complements are in a commensurability class. We
say that K ∼ K ′ if the 3-manifolds S3 \ K and S3 \ K ′ are commensurable. Let C(K) = {K ′|K ∼ K ′}.
The following conjecture was made in [24].

Conjecture 3.12.1. (Reid, Walsh) If S3 \ K is hyperbolic |C(K)| ≤ 3.

The following is substantial evidence for this conjecture.

Theorem 3.12.2. (Boileau, Boyer, Walsh) Let K be a hyperbolic knot without hidden symmetries. Then
|C(K)| ≤ 3.

For a Kleinian group Γ the commensurator C+(Γ) is the group of those elements g of PSL(2, C) such
that Γ ∩ gΓg−1 is finite index in Γ and in gΓg−1. A hyperbolic knot admits hidden symmetries if the
commensurator of Γ is strictly larger than the normalizer of Γ where S3 \ K = H3/Γ. There are only two
knots up to 12 crossings known to have hidden symmetries. In addition, there are restrictions on the shape
on the cusp of a knot which has hidden symmetries. Thus we argue that not having hidden symmetries is a
generic condition for knot complements. As a partial answer to the classification of hyperbolic knots up to
commensurability, the proof yields that hyperbolic knot complements which do not admit hidden symmetries
are commensurable exactly when they are cyclically commensurable. By this we mean that they admit a
common cyclic cover. A more concrete classification is the following.

Theorem 3.12.3. (Boileau, Boyer, Walsh) Let K by a periodic hyperbolic knot without hidden symmetries
such that |C(K)| > 1. Then K is an unwrapped Berge-Gabai knot.

3.13 Kevin Wortman (University of Utah)
“Non-nonpositive curvature of some non-cocompact arithmetic lattices”

We show that irreducible non-cocompact arithmetic groups of type An, Bn, Cn, Dn, E6 and E7 have an
isoperimetric inequality in some dimension that is bounded below by an exponential function. Consequently,
such groups do not satisfy any reasonable definition of nonpositive curvature, including for example, comba-
bility or CAT (0).

The proof proceeds by constructing an infinite family of cycles in a neighborhood of an orbit of the
arithmetic group acting on its associated symmetric space. The volumes of the cycles grow polynomially.

The volumes of any family of chains filling the cycles that are contained in the same neighborhood of the
orbit grows exponentially, even though there exist fillings of polynomial volume in the symmetric space.

The proof is a generalization of the proof of Thurston-Epstein that SLn(Z) is not combable if n ≥ 3. The
cycles we construct are contained on a “horosphere”, and their most efficient fillings extend into a horoball
that is disjoint from the orbit neighborhood of the arithmetic group.

The type restriction from the statement of the result ensures the existence of a maximal proper parabolic
subgroup whose unipotent radical is abelian. It is this parabolic group that determines the horosphere men-
tioned above, and the unipotent radical being abelian simplifies computations.

3.14 Xiangdong Xie (Georgia Southern University)
“Quasiisometries of some negatively curved solvable Lie groups”

Let A be an n × n matrix. Let R act on Rn by (t, x) → etAx (t ∈ R, x ∈ Rn). Denote the corresponding
semi-direct product by GA = Rn "A R. If the eigenvalues of A have positive real parts, then GA admits
left-invariant Riemannian metrics with negative curvature.

We classify all these GA up to quasiisometry. We show that all quasiisometries between such manifolds
(except when they are biLipschitz to the real hyperbolic spaces) are almost similarities and height-respecting.
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Furthermore, we derive that such manifolds (except when they are biLipschitz to the real hyperbolic spaces)
are not quasiisometric to any finitely generated groups.

Since two negatively curved spaces are quasiisometric if and only if their ideal boundaries are quasisym-
metric, we prove these results by studying the quasisymmetric maps on the ideal boundary of these manifolds.
We classify the ideal boundaries of negatively curved GA = Rn "A R up to quasisymmetry, and show that
every quasisymmetric map between the ideal boundaries (except when the solvable Lie groups are biLipschitz
to the real hyperbolic spaces) are biLipschitz.

The results of Eskin-Fisher-Whyte, Dymarz and Peng yield quasiisometric classification and rigidity
results for the class of groups {GA}, where A has eigenvalues with positive real part and eigenvalues with
negative real part, but has no eigenvalues with zero real part. Our results complement theirs. The proofs are
also completely different.

4 Outcome of the Meeting
Due to late cancellations, the number of partipants was 17 instead of the planned 20, but there was a general
consensus that the size of the group led to even closer interactions and more focussed discussion than is
common at such meetings. Some progress was made on problems raised at the meeting, but it is too early
to predict the full impact on new research and collaborations from the meeting. Suffice it to say that in
conversations at the meeting and since, participants have described the meeting as having been unusually
successful.
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