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1 Overview of the Field
Computational Fluid Dynamics is a field on the interface between Numerical Analysis, Computational Sci-
ence, Physics and Engineering. It underwent an intensive development primarily because of the needs of
aeronautics, nuclear physics and engineering, geophysics, chemical and automotive engineering etc., and the
rapid development of fast computers. The major efforts are concentrated on the efficient numerical approx-
imation of the solution of the incompressible, quasi-compressible and compressible Navier-Stokes or Euler
equations, sometimes in conjunction with additional advection-diffusion systems for transport of heat or sub-
stances. Relatively recently, the scope of problems was widened by considering fluid structure interaction,
MHD and non-Newtonian fluids, which introduced some major new challenges. In addition, the develop-
ment of models for multiphase flows, biofluids, micro/nanofluids is a challenge by itself, and it is far from
being completed yet. The focus of this workshop was on the development and analysis of new algorithms as
well as the practical solution of some very challenging physical problems (which themselves require some
non-standard thinking even if more classical techniques are used).

The common ground for all these models is that they comprise nonlinear advection-diffusion(-reaction)
equations with linear constraints. Depending on the parameters of the system, they can exhibit the whole
scale from a predominantly parabolic/elliptic behaviour (low Reynolds number flows) up to a predominantly
hyperbolic behaviour (the Euler system). Other challenges are the (sometimes very strong) non-linearity of
the problems, the presence of constraints which necessarily lead to saddle point systems, the appearance of
more than one spatial and/or temporal scale, etc. All these make the development of a universal and optimal
algorithm impossible and stimulated the development of various methods for the various classes of problems.

Several major classical discretization techniques have been developed, based on finite difference, finite
element, finite volume and spectral methods. More recently, we witnessed the development of some new in-
teresting techniques like the hp finite elements, discontinuous Galerkin methods and other non-conforming or
div-conformingmethods, unstructured finite volumes, domain decomposition and mortar techniques. In case
of advection-dominated flows, these techniques are combined with various stabilization mechanisms: edge
stabilization; residual- and entropy-based viscosity; and special fluxes for discontinuous Galerkin schemes.
These are closely related to some recent approaches for turbulence modelling like subgrid viscosity, varia-
tional multiscale methods and large eddy simulation. A major development in all these areas was the idea
for a posteriori error estimation and nonlinear adaptivity. The discretization of time dependent problems
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triggered the development of various operator splitting and projection techniques as well as time adaptive
schemes.

Finally, distributed parallel computers with fast interconnect and a massive number of processors added a
new challenge which triggered the development of highly parallelizable solution methods for linear systems
based on domain decomposition or multigrid. Actually, currently one of the most important characteristic of
any solution method is its performance when implemented in parallel. This led to the rediscovery and further
development of some methods dating from the dawn of numerical analysis, like fictitious domain/penalty
methods and direction splitting methods.

CFD being too vast of a field to be dealt with at one single workshop, the workshop was mainly focused
on solution methods for incompressible and quasi-incompressible flow problems in the context of advanced
applications. These included in particular multiphysics problems like magneto-hydrodynamics, combustion,
fluid-structure interaction, mixtures, and of multiscale problems like turbulent flows, particle flows and sedi-
mentation.

2 Recent Developments and Open Problems
Several open problems were discussed during the workshop and we are summarizing below some of them.

A lot of effort has been spent toward the development of parameter-free or almost parameter-free stabi-
lization techniques for the Euler and Navier-Stokes equations. These are often combined with a posteriori
estimation and adaptivity. There is also a clear link between those stabilization techniques and the various
LES turbulence models developed by the physics community.

In multicomponent fluids and the treatment of contact lines, the quest for an efficient and optimal method
is still open. A new development is the so-called phase-field method and several presentations were focussed
on its development. Some recent results on the analysis of the immersed boundary methods were also shown.
The treatment of contact lines is in general quite open too.

The development of optimal methods for multiphysics problems, for instance fluid-structure interaction
or the coupling of Stokes and Darcy or Stokes and Brinkman models, is a very active research area with
competing models and methods. Interesting results on the integration of observation and modelling were
presented.

Another area which is quite open from both, modelling and analysis points of view, is the non-Newtonian
fluid mechanics. Some new models and particularly their numerical analysis and the development of optimal
solution methods were discussed in several presentations. Some interesting results on the non-Newtonian
behaviour of blood even in the largest vessels were presented.

Finally, new developments of massively parallel algorithms for the incompressible Navier-Stokes equa-
tions were discussed, for instance a very recent new development is based on a direction splitting algorithm
which allows for extremely efficient parallelization and highly accurate discretization.

3 Presentation Highlights and Scientific Progress
3.1 Stabilization techniques and Discontinuous Galerkin (DG) methods
When the Reynolds number is high the standard Galerkin method may fail to produce the expected optimal
error reduction under refinement even for smooth flows. Regardless of whether or not some turbulence
model is used, stabilized methods are therefore a mandatory tool if computations are to be performed without
resolving the viscous scales of the flow. To illustrate this, some simple examples of the failure of the standard
Galerkin method were discussed and compared with a stabilized method. Then the ideal properties of the
stabilized method were discussed and theoretical or computational results in the literature, either for the full
Navier-Stokes’ equation or for simpler model problems, were recalled, indicating the possibility of designing
methods with the desired properties [1, 2, 3, 5].

Modeling of high Reynolds number turbulent fluid flow based on computational solution of the Navier-
Stokes equations (NSE) poses a number of challenges related to stability, accuracy and resolution of the
turbulent scales in the problem. Finite element (FE) methods produce approximate weak solutions to NSE.
If not all scales in the flow are resolved by the computational mesh, a stabilized discretization is needed. One



3

can show that certain FE approximations satisfy a local energy equation, with dissipation of kinetic energy
from the numerical stabilization. A numerical stabilization, based on the residual of NSE, is active mainly
where the method is unable to approximate the NSE on the given mesh, typically near shocks, boundary
layers or turbulence, which are parts of the flow where also high physical dissipation takes place. J. Hoffman
presented an investigation of the dissipative effect from numerical stabilization, focussed on incompressible
turbulent flow and modeling of turbulent boundary layers. This problemwas studied in the context of adaptive
FE methods for turbulent flow, and a posteriori error estimation of mean value output from the computation.

With respect to the time-discretization methods, it is important to distinguish between Petrov-Galerkin
methods, such as the SUPG method or the PSPG method, and the more recently introduced symmetric sta-
bilization methods. In the latter case time-discretization is relatively straightforward and some results both
for stabilization of dominant convection and for the pressure-velocity coupling of the Stokes’ problem were
presented. Then these results were compared with recent results for the respective Petrov-Galerkin methods
[4, 6]. The solution of fluid flows may lead to numerical instabilities due to the incompressibility restric-
tion, and also to dominating operator terms such as convection, Coriolis force, among others. These stability
restrictions are treated by bounding a convenient range of high-frequency components of the terms to be
stabilized. This is achieved either by enriching the velocity discretization space (Mixed methods), or by
adding specific terms to the standard Galerkin discretizations (Stabilized methods). Both procedures turn
out to be essentially equivalent, as this second procedure may be interpreted as an augmented mixed method
constructed with an enriched velocity space, via bubble finite element functions (Cf. [7]). Mixed methods
include stabilizing degrees of freedom that do not yield accuracy, so becoming more costly than stabilized
methods. The talk of E. Burman was focussed on high-order stabilized methods, due to their reduced com-
putational cost and high accuracy. On one hand, high-order penalty methods are considered, which are an
extension of the well-known Brezzi-Pitkäranta method. These methods provide low-cost solvers with high
accuracy. On another hand, the Orthogonal Sub-Scale (OSS) method is considered, which is a residual-based
stabilized method that introduces a minimal level of numerical diffusion (Cf. [8]). In both methods the stabi-
lizing terms are filtered by projection operators, in such a way that only the high-frequency components that
are not representable in the discretization space are stabilized.

The talk of A. Ern considered discontinuous Galerkin (DG) methods for the steady incompressible
Navier–Stokes equations. It focused on stabilized versions with equal-order approximations for velocity
and pressure; other choices can be considered as well. A crucial issue is the design of a suitable discrete
trilinear form for the convective term that does not modify the kinetic energy balance. This feature allows
both to reduce numerical dissipation and to infer an existence result for the discrete problem under very mild
assumptions. Two choices were discussed, one based on Temam’s device and the other which is fully con-
servative and requires a nonstandard modification of the pressure hinted to in [10]. The main result, see [11],
is the existence of a solution for the discrete problem and the convergence of (a subsequence of) discrete
solutions to a solution of the continuous problem without any smallness assumption on the data and with
the minimal regularity requirement on the exact solution. The convergence proof, inspired by [12], relies
on new discrete functional analysis tools in broken polynomial spaces, namely discrete Sobolev embeddings
and a compactness result for discrete gradients. Examples illustrating the theory and numerically delivering
convergence rates were presented. Finally, it briefly addressed the unsteady case by discussing a projection
method originally proposed in [9] and showing some numerical results on 2D and 3D problems. The primary
focus was on the ability of the method to deal with convection-dominated problems. Different choices for the
approximation of the pressure were also investigated.

Stabilized finite element methods for convection-dominated problems require the choice of appropriate
stabilization parameters. From numerical analysis, often only their asymptotic values are known. The talk
of V. John presented a general framework for optimizing the stabilization parameters with respect to the
minimization of a target functional. Exemplarily, this framework was applied to the SUPG finite element
method, see [13], and spurious oscillations at layers diminishing (SOLD) schemes. The minimization of
different target functionals, e.g. residual-based error estimators and error indicators, was considered. Benefits
of this approach were shown and further improvements were discussed.

A variational multiscale method for Large-Eddy simulation of turbulent incompressible flows based on
a general proposal in [14] was considered in the talk of G. Lube. More precisely, the approach relies on lo-
cal projection of the velocity deformation tensor and grad-div stabilization of the divergence-free constraint,
see [15]. An a priori error estimate with rather general nonlinear and piecewise constant coefficients of the
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subgrid models for the unresolved scales of velocity and pressure is derived in the case of inf-sup stable
approximation of velocity and pressure. An extension of the approach to the incompressible Navier-Stokes/
Fourier model can be found in [16]. The talk also discussed preliminary numerical simulations for basic
benchmark problems like decaying homogeneous isotropic turbulence, channel flow and natural convection
in a differentially heated cavity. The efficient solution of the arising discrete problems relies on a flexi-
ble GMRES method with a robust preconditioner for the generalized Oseen problem together with parallel
computation [17].

The talk of G. Matthies considered finite element discretizations of the Oseen problem by inf-sup stable
finite element spaces. In contrast to standard equal order interpolation, no pressure stabilization is needed.
However, the Galerkin method still suffers in general from spurious oscillations in the velocity which are
caused by the dominating convection. To handle this instability, the local projection stabilization is used.
Originally, the local projection technique was proposed as a two-level method where the projection space
is defined on a coarser mesh. Unfortunately, this approach leads to an increased discretization stencil. The
main objective is to analyze the convergence properties of the one-level approach of the local projection
stabilization applied to inf-sup stable discretizations of the Oseen problem. Moreover, new inf-sup stable
finite element pairs approximating both velocity and pressure by elements of order r with respect to theH1-
norm were proposed. In contrast to the ’classical’ equal order interpolation, the velocity components and the
pressure were discretized by different elements. For these pairs of finite element spaces it was shown an error
estimate of order r + 1/2 in the convection dominated case ν < h.

The objective of the talk of R. Codina is to present a framework for the finite element approximation of
elliptic problems in which the unknown is split into two parts, the first corresponding to a continuous approx-
imation and the second to a discontinuous one. A hybrid formulation is used for the discontinuous part, using
as unknowns the field in the interior of the elements of the finite element partition and the fluxes and traces
on the boundaries. Thus, the resulting formulation involves four unknowns, namely, the continuous part and
the three fields coming from the hybrid formulation of the discontinuous part. A general result stating well–
posedness of this problem is presented. The key assumptions are an appropriate minimum angle condition
between the spaces for the continuous and discontinuous components of the unknown and inf-sup conditions
between the spaces for fluxes and bulk field of the discontinuous part as well as between the spaces for traces
and bulk field of this discontinuous part. Different applications of the framework presented are discussed.
First, it is shown that classical discontinuous Galerkin methods can be derived by deleting the continuous
component of the approximation and taking appropriate closed form expressions for the traces and fluxes
of the discontinuous component. In particular, it is shown that if fluxes are approximated using classical
finite difference approximations and the traces are determined by imposing continuity of fluxes, general-
ized versions of the interior penalty discontinuous Galerkin method are recovered, including in particular the
treatment of discontinuous coefficients. As a second application, stabilized finite element methods for the
convection-diffusion and the Stokes problems are presented. The unknown in this case is split into a resolv-
able continuous component and a so-called subgrid scale part which is taken as discontinuous, and for which
the hybrid formulation described before is employed. Closed-form expressions are proposed for the three
fields associated to the discontinuous part. The result is a stabilized formulation that accounts for boundary
contributions of the subgrid scales [46]. In the case of domain interaction problems, the ideas described above
allow one to design iterative algorithms with enhanced convergence properties. In the case of homogeneous
domain interaction, better enforcement of transmission conditions between subdomains is achieved, whereas
in heterogeneous domain interaction, such as fluid-structure interaction problems, convergence of iterative
schemes is improved. In particular, this alleviates the so called added mass effect found when fluid and solid
densities are similar [47].

D. Schoetzau presented a new class of discontinuous Galerkin (DG) methods for the numerical discretiza-
tion of incompressible flow problems that yield exactly divergence-free velocity approximations [26]. Exact
incompressibility is achieved by using divergence-conforming finite element spaces for the velocities and
suitably matched discontinuous spaces for the pressures. The H1-continuity of the velocities is enforced
through a discontinuous Galerkin approach. He then presented extensions to hp-version DG methods on
geometrically and anisotropically refined meshes in three dimensions. In particular, it was shown that the
discrete inf-sup constants are independent of the elemental aspect ratios, and depend only very weakly on
the polynomial degrees. Finally, the application of exactly divergence-free methods to an incompressible
magneto-hydrodynamics problem [27] was demonstrated. All theoretical findings were illustrated and veri-
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fied in numerical experiments.

3.2 Free boundary flows
The accurate numerical computation of two-phase flows is a challenging task, in particular if surface active
agents are present which lower the surface tension on the interface. Nonuniform distributions of surfactants
on the interface induce Marangoni forces. Adsorption and desorption of surfactants between the interface
and the bulk phase may take place in the soluble surfactant case. Thus, the presence of surfactants influences
strongly the dynamics of the moving interface. The talk of L. Tobiska considered a mathematical model
for two-phase flows consisting of the incompressible Navier-Stokes equations, a transport equation for the
surfactant concentration in the outer phase, and a surface transport equation for the surfactant concentration
on the interface. The Navier-Stokes equations are solved together with the bulk and interface concentration
equations using the coupled ALE-Lagrangian method in 3D-axisymmetric configuration [19]. The surface
force can be directly incorporated due to the resolution of the interface by the moving mesh. The curvature in
the surface force is replaced by the Laplace-Beltrami operator and an integration by parts is applied to reduce
the order of differentiation [20]. Continuous, piecewise polynomials of second order enriched by cubic
bubble functions and discontinuous, piecewise polynomials of first order (P b

2/P
d i sc
1 ) for the discretization of

the velocity and pressure, respectively, are used. The bulk and interface concentrations are approximated by
continuous, piecewise polynomials of second order (P2). A fractional step-ϑ scheme has been used for the
temporal discretization. To handle the moving mesh, the elastic-solid technique has been applied [18]. The
numerical scheme has been validated for surface flows with insoluble surfactants in [19] and for interfacial
flows with soluble surfactants in [21]. Several examples of numerical tests were presented.

The talk of P. Quintela focussed on the movement of two fluids, one of them being a gas bubble immersed
in a liquid, considering the surface tension effects. Using an Eulerian methodology to simulate the transport of
the bubble, a velocity-pressure mixed formulation was proposed to solve the hydrodynamic equations, com-
bined with a level set method to characterize the position of each fluid. In order to improve the approximation
of the pressure when there is a severe discontinuity in the interface, the finite element space is enriched on
the elements being cut by the interface. Besides, the static condensation technique in the bubble components
on the enriched elements has been developed. In order to evaluate the elemental matrices on the elements
crossed by the interface and their neighbours, a suitable quadrature rule has to be chosen, since a classical
one cannot be applied to discontinuous functions. It is usual to overcome these difficulties by splitting the
elements into subelements where the integrands are continuous. The description of the interface considered
allows to automatically split a simplex into several sub-simplices and to construct a new quadrature formula
for the element avoiding a casuistic analysis. The partitioning is done for numerical quadrature purpose only
and it does not modify the approximation properties of the finite elements in a direct way. Numerical results
for academic examples were presented for large ratios of density and viscosity. A laboratory experiment was
also numerically reproduced and a benchmark example shown.

The no-slip boundary condition is usually regarded as a cornerstone in fluid dynamics, and its applica-
bility has been proven for diverse fluid flow problems. However, when dealing with two-phase flows it is of
importance to accurately describe the displacement of the so-called contact line, that is, the points which are
at the intersection of the solid boundary of the domain and the interface separating the two fluids. In this case,
contrary to what is seen in experiments, the no-slip condition implies that the contact line does not move. This
is known as the contact line problem (paradox) and it has recently been the subject of intense research and
debate ( see [29, 32] for more details). On the basis of molecular dynamics simulations, Qian et. al. have
proposed (c.f. [32]) the so-called generalized Navier-slip boundary condition, which aims at resolving the
contact line problem. Later ([33]), the same authors derived this condition from thermodynamical principles.
The first objective of the talk of A. Salgado was to introduce the generalized Navier-slip boundary condition
and show that the obtained initial boundary value problem, which consists of a Cahn-Hilliard Navier-Stokes
system with non-local boundary conditions, has an energy law. After that it presented a discretization of this
problem which is based on an operator splitting approach for the Cahn-Hilliard part, much similar to the ones
existing in the literature. For the Navier-Stokes part, the scheme consist of fractional time-stepping based on
penalization of the divergence, in the spirit of [30, 31] and [34]. It was shown that this scheme satisfies a
discrete energy law similar to the one obtained in the continuous case.

The talk of J. Shen presented a new phase-field model for the incompressible two-phase flows with vari-
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able density which admits an energy law. It also utilized weakly coupled time discretization schemes that are
energy stable. Efficient numerical implementations of these schemes were also presented. The model and the
corresponding numerical schemes are particularly suited for incompressible flows with large density ratios.
Ample numerical experiments are carried out to validate the robustness of these schemes and their accuracy.

3.3 Non-Newtonian Fluid Mechanics
Motivated by live experiments, the talk of A. Bonito presented an algorithm for Oldroyd-B viscoelastic fluids
with complex free surfaces in three space dimensions. A splitting method is used for the time discretization
and two different grids are used for the space discretization in order to separate the advection terms from the
others. The advection problems are solved on a fixed, structured grid made out of small cubic cells, using a
forward characteristic method. The viscoelastic flow problem without advection is solved using continuous,
piecewise linear stabilized finite elements on a fixed, unstructured mesh of tetrahedra. Numerical results are
provided for the buckling of a jet and for the stretching of a filament where finger instabilities are observed.
In the second part of the talk, a new stochastic model based on a reflected diffusion process is proposed. Its
advantages together with different possible numerical approximations were discussed.

Owens [43] introduced a new haemorheological model accounting for the contribution of the red blood
cells to the Cauchy stress. In this model the local shear viscosity is determined in terms of both the local
shear rate and the average rouleau size, with the latter being the solution of an advection-reaction equation.
The model describes the viscoelastic, shear-thinning and hysteresis behavior of flowing blood, and includes
non-local effects in the determination of the blood viscosity and stresses. This is done through an advection-
reaction equation for the extra-stresses, in the spirit of Oldroyd-B viscoelastic models. In the talk of Y.
Bourgault, this rheological model was first briefly derived. A stabilized finite element method was next
presented, extending the Discrete Elastic Viscous Split Stress (DEVSS) method of Fortin et al. [44] to the
solution of this Oldroyd-B type model but with a non-constant Deborah number. A streamline upwind Petrov-
Galerkin approach is also adopted in the discretization of the constitutive equation and the microstructure
evolution equation. Test cases were next presented to assess the accuracy and computational requirements
of the finite element method. The results show that the passage from a constant to a non-constant Deborah
number in the Oldroyd-Bmodel has a strong impact on the convergence of the method. Numerical challenges
related to the solution of this rheological model were covered. The need for efficient FEM will be highlighted
using a test case in an aneurytic channel under both steady and pulsatile flow conditions. Comparisons are
made with the results from an equivalent Newtonian fluid. This choice of material parameters leads to only
weakly elastic effects but noticeable differences are seen between the Newtonian and non-Newtonian flows,
especially in the pulsating case.

Mathematical models for non-Newtonian fluid flows typically involve a system coupling the Navier-
Stokes equations with other equations describing the mechanical behaviour of the material which are termed
as constitutive equations. Numerical simulations can then be performed by judiciously choosing established
discretizations of the Navier-Stokes equations and coupling them with adequate discretizations of the con-
stitutive equations. Yet, the picture may not be so simple and years of computational rheology have indeed
shown that intuitively good discretizations can be unstable. For viscoelastic fluids, this was often referred
to as the High-Weissenberg Number Problem (HWNP). the talk of S. Boyaval discussed discretizations of
the Oldroyd-B equation preserving a physical quantity that is also a Lyapunov functional for the Dirichlet
problem, the so-called free energy. Another question of interest for these ”multiscale” systems of equations
is how to reduce the computational effort needed by numerical simulations, even in simple geometries.

3.4 Multiphysics Techniques
The Immersed Boundary Method (IBM) has been designed by Peskin for the modeling and the numerical
approximation of fluid-structure interaction problems and it has been successfully applied to several systems,
including the simulation of the blood dynamics in the heart; see [35]. In the IBM, the Navier-Stokes equations
are considered everywhere and the presence of the structure is taken into account by means of a source term
which depends on the unknown position of the structure. These equations are coupled with the condition that
the structure moves at the same velocity as the underlying fluid. Recently, a finite element version of the IBM
has been developed, which offers interesting features for both the analysis of the problem under consideration
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and the robustness and flexibility of the numerical scheme; see [36, 37, 38]. The numerical procedure is
based on a semi-implicit scheme for which we performed a stability analysis showing that the time-step and
the discretization parameters are linked by a CFL condition, independently of the ratio between the fluid and
solid densities. The mass conservation of the IBM is strictly related to the discrete incompressibility of the
scheme used for the approximation of the fluid.

Data assimilation of distributed mechanical systems – i.e. estimation of uncertain physical parameters
from a set of available measurements – can be performed through a variational approach, i.e. minimizing a
least square criterion which includes observation error and regularization. One of the main difficulties of this
approach lies in the iterative evaluation of the criterion and its gradient, often based on adjoint problem. In the
work of J.F. Gerbeau another family of methods is considered: the sequential filtering. The model prediction
is improved at every time step by means of the statistical information from observations and model output.
Classical Kalman filtering is not tractable for distributed systems, but some effective sequential procedures
were introduced recently for mechanical systems in [40] and are the basis of the proposed approach [39]. The
resulting algorithm can easily be run in parallel, making the total time needed for the estimation similar to the
duration of a sequential direct computation. Preliminary results were shown for blood flows in large arteries.

The talk of B. Fabreges presented a method to solve elliptic problems in domains with holes, in particular
those which arise in fluid-rigid bodies simulations. It considered the system of the Stokes equations and the
rigid body motion condition. To solve this system a fictitious domain method is used. In order to preserve
optimality of the finite element approximation, a control approach is utilized (in the spirit of [41] and [42])
to build anH2 extension, within the inclusions, of the solution. Thus, it uses a non-physical extension in the
whole domain of the right-hand side of the Stokes equations as a control to enforce the rigid body motion.
The idea is to find an extension of the right-hand side which leads to a solution of the Stokes equations that
satisfies the rigid body motion condition. First of all it was proved that there exists such a right-hand side.
Second the algorithm used to find an optimal control has the following features: It consists in minimizing a
cost functional with a conjugate gradient method. The gradient of this functional is the solution of a Stokes
problem, with Neumann boundary conditions, set within the inclusions. These Neumann problems are solved
using fictitious domain methods around each particles which leads to the resolution of problems where the
right-hand side is a single layer distribution on the boundary of the particles. One way to discretize these
problems is to approximate the single layer distributions by a sum of Dirac functions. Rigorous numerical
analysis of this method was also presented.

Y. Yotov discussed numerical modeling of Stokes-Darcy flow based on Beavers-Joseph-Saffman interface
conditions. The domain is decomposed into a series of small subdomains (coarse grid) of either Stokes or
Darcy type. The subdomains are discretized by appropriate Stokes or Darcy finite elements. The solution is
resolved locally (in each coarse element) on a fine grid, allowing for non-matching grids across subdomain
interfaces. Coarse scale mortar finite elements are introduced on the interfaces to approximate the normal
stress and impose weakly continuity of the velocity. Stability and a priori error analysis is presented for
fairly general grid configurations. By eliminating the subdomain unknowns the global fine scale problem is
reduced to a coarse scale interface problem, which is solved using an iterative method. A multiscale flux
basis is precomputed, solving a fixed number of fine scale subdomain problems for each coarse scale mortar
degree of freedom, on each subdomain independently. Taking linear combinations of the multiscale flux basis
functions replaces the need to solve any subdomain problems during the interface iteration. Numerical results
for coupling Taylor-Hood Stokes elements with Raviart-Thomas Darcy elements were presented.

3.5 Massive Parallel Algorithms
The simulation of incompressible flows on very large unstructured meshes, that is up to billions of cells,
leads to the important issue of solving the Pressure-Poisson equation on supercomputers grouping up to tens
of thousands of cores. As the cost of this solving tends to be the largest part of the computational costs
of the simulation, the issue of implementing as fast a parallel linear solver as possible becomes primordial.
Multigrid methods, widely used on structured meshes, become more challenging to implement efficiently on
unstructured grids ; whether geometric or algebraic multigrid methods are used, they actually require to refine
the grid, which presents great difficulties for unstructured meshes. This seems to be a sufficient reason that
deflation methods are preferred in this case. Many solvers used nowadays start by grouping cells from the
fine mesh in order to create a coarse one, thus creating a ”two-level hierarchy of grids” on which a deflated
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solver is implemented (see e.g. [48] and [49]). In order to accelerate the convergence of the Pressure-Poisson
equation solver, a deflation-based Preconditioned Conjugate Gradient solver has been implemented in Yales2
that benefits from a geometric multigrid-approach, that is : a three-level hierarchy of grids is created, so that
the solution on the fine grid is computed thanks to a deflated solver, in which the solution on the coarse grid
is computed thanks to a deflation on an even coarser grid. The whole program is stabilized thanks to the
A-DEF2 algorithm described and tested by Tang et al. in [50]. As the number of iterations of the fine grid
solver remains the same, the number of iterations of the coarse grid solver is dramatically reduced at every
call by the deflation applied to it. Therefore, computational times for the Pressure-Poisson solver in parallel
are reduced by up to 15 percent compared to the usual two-level deflated solver, which has to be confirmed
by further testing for massively parallel use.

The talk of P. Minev discussed a new direction-splitting-based fractional time stepping for solving the
incompressible Navier-Stokes equations. The main originality of the method is that the pressure correction
is computed by solving a sequence of one one-dimensional elliptic problem in each spatial direction (see
[51]). The method is unconditionally stable, very simple to implement in parallel, very fast, and has exactly
the same convergence properties as the Poisson-based pressure-correction technique, either in standard or
rotational form. The one-dimensional problems are discretized using central difference schemes which yield
tri-diagonal systems. However, other more accurate discretizations can be applied as well. The method is
validated on the lid-driven cavity problem showing an excellent parallel efficiency on up to 1024 processors.

3.6 Finite Volume Methods on Unstructured Grids
The talk of R. Eymard proposed an extension for the MAC scheme to any nonstructured nonconforming grid
in 2D or 3D. This extension, dedicated to the approximation of the incompressible Navier-Stokes equations,
is based on the following principles:

1. the degrees of freedom for the pressure are the values in the grid blocks of the mesh; they are associated
to the discrete conservation of the fluid mass in each grid block;

2. the degrees of freedom for the velocity are the normal components to the faces of the mesh;

3. an interpolator is defined for reconstructing second order velocity at the faces of the mesh;

4. a finite volume operator is used for computing the viscous terms in a variational formulation;

5. the nonlinear term is discretized in such a way that it involves at most a positive contribution in the
kinetics energy balance, in the case of the upstream weighting scheme.

It was shown that this scheme converges to a continuous solution of the Navier-Stokes equations, thanks to
discrete analysis tools developped for the diffusion equation.

R. Herbin presented the study of numerical schemes for the simulation of the flow of compressible fluids,
for which little is known up to now. It considered the “classical” Marker and Cell (MAC) scheme for the
discretization of a “toy” problem, that is the steady state compressible Stokes equations, on two or three
dimensional Cartesian grids. The discrete unknowns are the pressure located at the cell centers and the normal
components of the velocity located at the barycenters of the interfaces of the pressure grid cells. Existence
of a solution to the scheme is proven, followed by estimates on the obtained approximate solutions, which
yield the convergence of the approximate solutions, up to a subsequence, and in an appropriate sense. Then
it was proven that the limit of the approximate solutions satisfies the mass and momentum balance equations,
as well as the equation of state: the passage to the limit in the EOS is the main difficulty of this study.

4 Outcome of the Meeting
The following important directions for further research were clearly identified:

• The phase field method possesses good potential for simulation of flows with free boundaries. Its
mathematical theory requires further development. Some discretization issues around the interface are
still open.
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• Clearly one of the main challenges at present is the development of models and appropriate numerical
methods for multiphysics problems. Significant progress was made in the coupling of porous media to
Stokes flows. Fluid-structure interaction, however, requires a lot more attention. Its numerical analysis
is still in its infancy and the numerical algorithms are expensive. The models used so far are mostly
qualitative. Some important areas of applications like biological flows will require the integration of
actual data in the simulations.

• Although the stabilization techniques are a focus of the community for many years, the progress is
very slow. One very encouraging development is the combination with a posteriori based adaptivity
which allows to minimize the effect of stabilization on the results and simulate complex phenomena
like turbulent boundary layers for example.

• The appearance of powerful parallel computers clearly redefines the requirements to the numerical
algorithmsmaking their parallel performance one of the most important features. A new development is
based on the direction-splitting techniques which allows to develop stable algorithmswith a complexity
similar to fully explicit methods.
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[27] C. Greif, D. Li, D. Schötzau and X. Wei, A mixed finite element method with exactly divergence-free
velocities for incompressible magnetohydrodynamics, Comput. Methods Appl. Mech. Engrg. (2010), in
press.
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[42] C. Atamian, P. Joly, Une analyse de la méthode des domaines fictifs pour le problème de Helmholtz
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