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The orbit method

Unitary representations Quantization of
of G symplectic G — manifolds

If G is a nilpotent simply connected Lie group, then there exists a
bijective correspondence

Irreducible unitary - G — orbits
representations of G in g*

There is a dictionary :

Algebraic operation | Geometric operation
Resfln p(O) wherep : g* — b*
Indgn p~1(O) where p : g* — b

1 ® Tp 01 +02
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Nilpotent Lie groups

G : nilpotent and simply connected g = Lie(G) O C g : a G-orbit.
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defined by Q, (X, Y) = A([X, Y]).
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Nilpotent Lie groups

G : nilpotent and simply connected g = Lie(G) O C g : a G-orbit.

Recipe to construct 7t from O

@ Fix A € O. Consider the skew-symmetric form

Qy:gxg—R

defined by Q, (X, Y) = A([X, Y]).

© Proposition. There exists a subalgebra m C g such that m is a
maximal isotropic subspace of Q;.

© Set M = exp(im) and define x, : M — C* by

Xi(exp(X)) = AOV-1 for every X € m.

Q Setn = Indf,[)(,\.
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Example : the Schrédinger model

@ (W, Q) : finite dimensional symplectic vector space, i.e.,

¢ Qisnondegenerate,
e Qv,w) = -Q(w, v).
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Example : the Schrédinger model

@ (W, Q) : finite dimensional symplectic vector space, i.e.,

¢ Qisnondegenerate,
e Qv,w) = -Q(w, v).

@ The Heisenberg group :
H, ={(v,s) |ve Wands € R}

The group law is given by

1
(v1,51) ® (v2,52) = (V1 + V2,81 + 52 + 59(01,02))-
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Example : the Schrédinger model

@ (W, Q) : finite dimensional symplectic vector space, i.e.,

¢ Qisnondegenerate,
e Qv,w) = -Q(w, v).

@ The Heisenberg group :
H, ={(v,s) |ve Wands € R}

The group law is given by

1
(v1,51) ® (v2,52) = (V1 + V2,81 + 52 + 59(01,02))-

o dim Z(H,) =1 and H,,/Z(H}) is commutative (i.e., H, is
two-step nilpotent).



Example : the Schrédinger model (cont.)

@ Consider a polarization of (W, ), i.e., a direct sum
decomposition

W = X @ Y such that Q(X, X) = Q(Y,Y) = 0.
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Example : the Schrédinger model (cont.)

@ Consider a polarization of (W, ), i.e., a direct sum
decomposition

W = X @ Y such that Q(X, X) = Q(Y,Y) = 0.

o SetH:=LX(Y):={f:Y>C| [ |fPdu<oo}.
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Example : the Schrédinger model (cont.)

@ Consider a polarization of (W, ), i.e., a direct sum
decomposition

W = X @ Y such that Q(X, X) = Q(Y,Y) = 0.

o SetH:=LX(Y):={f:Y>C| [ |fPdu<oo}.
@ Fix anonzero a € R and define a representation 7, of H, on

H via

M@ 0)f)y) = e Ny  ifveX,
1,(0,0) f )(v) fly+v) ifvey,
(ra@,9)f)) = &V Tfy) otherwise.
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Example : the Schrédinger model (cont.)

Facts:

@ Foreverya € R, 7, is an irreducible unitary rep. of H,,.
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Example : the Schrédinger model (cont.)

Facts:

@ Foreverya € R, 7, is an irreducible unitary rep. of H,,.

@ If a # b, the representations 7, and 7, are not unitarily
equivalent.
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Example : the Schrédinger model (cont.)

Facts:

@ For everya € R, 7, is an irreducible unitary rep. of Hj.

@ If a # b, the representations 7, and 7, are not unitarily
equivalent.

Theorem (Stone-von Neumann, 1930’s)

Up to unitary equivalence, an irreducible unitary
representation of H, is one of the following :

@ A one-dimensional representation (which factors through
H,/Z(Hy)),

Q@ 7, for some a € R*.
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Example : Schrédinger model and the orbit method

Recall that :
H,={(v,s)|ve Wands € R}

Set b, = Lie(H,) and fix Z € Z(by,).
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Example : Schrédinger model and the orbit method

Recall that :
H,={(v,s)|ve Wands € R}

Set b, = Lie(H,) and fix Z € Z(by,).

H,-orbits in by, are :

_ one-dimensional
o {A} where A(Z) =0 o representations of H,.

o {Aeb, | A(Z)=a} “ the representation .

20/107



Solvable and semisimple groups

Theorem (Auslander - Kostant)
Suppose G is a solvable, connected, simply connected, type I
Lie group. Then

G=]JSo

Ocg?

where each Sy is a torus of dimension b, (O) = first betti
number of O.
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Solvable and semisimple groups

Theorem (Auslander - Kostant)

Suppose G is a solvable, connected, simply connected, type I
Lie group. Then
G=]JSo

Ocg?

where each Sy is a torus of dimension b, (O) = first betti
number of O.

Semisimple Groups

@ Elliptic orbits ¢~ Discrete series
@ Nilpotent orbits «» associated varieties of unitary rep’s
° ...
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Crash course on Lie superalgebras

@ Introduced by physicists — motivated by supersymmetry.
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Crash course on Lie superalgebras

@ Introduced by physicists — motivated by supersymmetry.

@ A (nonassociative) superalgebra is a Z/2Z-graded algebra
A=Ayd A (ie., ﬂiﬂ]‘ - &Z{Hj (mod 2)).
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Crash course on Lie superalgebras

@ Introduced by physicists — motivated by supersymmetry.

@ A (nonassociative) superalgebra is a Z/2Z-graded algebra
A=Ayd A (ie., ﬂiﬂ]‘ - &Z{Hj (mod 2)).

@ A Lie superalgebra is a superalgebra g = go © g; with a

“bracket”
[, ]:axg—9
satisfying
[X, Y] = —(-D)XM[y, X]
and

DM 1Y, Z1 + (DM [Z, XD+ (CDPMZ, X, YT = 0



Crash course on Lie superalgebras (cont.)

Examples of Lie superalgebras

@ gl(m|n) :
V =Vy® V7 and g = End(V) = Endy(V) @ End; (V)
where

End(V) = { T € End(V) | T(V:) € Vasi (mod 2) for any s € Z/2Z. |
and for homogeneous X and Y, the bracket is given by

[X,Y] = XY — (-D)XMyx
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Crash course on Lie superalgebras (cont.)

Examples of Lie superalgebras

@ gl(m|n) :
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where

End(V) = { T € End(V) | T(V:) € Vasi (mod 2) for any s € Z/2Z. |
and for homogeneous X and Y, the bracket is given by
[X,Y] = XY — (-D)XMyx

@ Simple Lie superalgebras:
sl(mln), osp(m|2n), 7(4), 6(3), p(1), a(n), ...




Crash course on Lie superalgebras (cont.)

Examples of Lie superalgebras

@ gl(m|n) :
V =Vy® V7 and g = End(V) = Endy(V) @ End; (V)
where

End(V) = { T € End(V) | T(V:) € Vasi (mod 2) for any s € Z/2Z. |
and for homogeneous X and Y, the bracket is given by
[X,Y] = XY — (-D)XMyx

@ Simple Lie superalgebras:
sl(mln), osp(m|2n), 7(4), 6(3), p(1), a(n), ...
@ Heisenberg-Clifford Lie superalgebras.
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Heisenberg-Clifford Lie superalgebra

Let (W, Q) be a supersymplectic space, i.e.,
o W=WyoW.
@ O: W x W — R satisfies
o O(Wo, W1) = Q(W1, Wp) =0
o Quw,xw, is a nondegenerate symmetric form.
e Quw,xw, is a symplectic form.
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Heisenberg-Clifford Lie superalgebra

Let (W, Q) be a supersymplectic space, i.e.,
o W=WyoW.
o Q: Wx W — IR satisfies
o Q(Wo, W1) = Q(W;, Wo) =0
e OQuw,xw, is a nondegenerate symmetric form.
e Quw,xw, is a symplectic form.

Set hy = W & R where

[(v1,51), (v2,52)] = (0, Q(v1,v2))
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Heisenberg-Clifford Lie superalgebra

Let (W, Q) be a supersymplectic space, i.e.,
o W=WyoW.
o Q: Wx W — IR satisfies
o Q(Wo, W1) = Q(W;, Wo) =0
e OQuw,xw, is a nondegenerate symmetric form.
e Quw,xw, is a symplectic form.

Set hy = W & R where

[(v1,51), (v2,52)] = (0, Q(v1,v2))

@ by is two-step nilpotent and dim (Z(bw)) =1.
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Towards unitary representations : super Lie groups

e A super Lie group is a group object in the category of
supermanifolds.



Towards unitary representations : super Lie groups

o A super Lie group is a group object in the category of
supermanifolds.

Proposition
The category of Super Lie groups is equivalent to a category of
Harish-Chandra pairs, i.e., pairs (Go, g) such that :

Q g =90 ® g is a Lie superalgebra over R.

Q Gy is a real Lie group with Lie algebra gp which acts on g
smoothly via R-linear automorphisms.

© The action of Gp on gy is the adjoint action. The adjoint

action of gy on g is the differential of the action of Gy on g.




Towards unitary representations : super Lie groups

o A super Lie group is a group object in the category of
supermanifolds.

Proposition

The category of Super Lie groups is equivalent to a category of
Harish-Chandra pairs, i.e., pairs (Go, g) such that :

Q g =90 ® g is a Lie superalgebra over R.

Q Gy is a real Lie group with Lie algebra gp which acts on g
smoothly via R-linear automorphisms.

© The action of Gp on gy is the adjoint action. The adjoint
action of gp on g is the differential of the action of Gy on g.

e For simplicity, from now on we assume that Gy is connected
and simply connected.



Super Hilbert spaces

“Wrong"” definition : A super Hilbert space is a Z/2Z-graded Hilbert
space H = Hy & H; where Hj and H; are closed subspaces and

Ho L H,.

“Right” definition : Indeed H is endowed with an even super
Hermitian form:

0 if x, y are of opposite parity,
<x/ ]/)super = (X, y)m if x, ye 7‘(0,
V=1¢x, ), if x,y € Hi.

We have:

<]// x>super = (_1)|x\<|y\<x, ]/>5upg,
(X, X)super > 0 for x € Ho, x # 0
V=1x, X)super < 0 for x € Hy,x #0
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Unitary representations of super Lie groups

o Let (Go, g) be a super Lie group. We want to consider unitary
representations of (Gy, g) on super Hilbert spaces, i.e.,

7t : g — Endc(H).
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Unitary representations of super Lie groups

o Let (Go, g) be a super Lie group. We want to consider unitary
representations of (Gy, g) on super Hilbert spaces, i.e.,

7t : g — Endc(H).
Butif X € g1, then
n([X, X]) = n(X)n(X) + n(X)n(X) = 2n(X)?

and n([X, X]) is an unbounded, (only) densely defined operator.
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Unitary representations of super Lie groups

o Let (Go, g) be a super Lie group. We want to consider unitary
representations of (Gy, g) on super Hilbert spaces, i.e.,

7t : g — Endc(H).
Butif X € g1, then
n([X, X]) = n(X)n(X) + n(X)n(X) = 2n(X)?

and n([X, X]) is an unbounded, (only) densely defined operator.

e A natural choice of representation space is H* (the subspace
of smooth vectors) defined as

H™ = { v|v e H and the map g — m(g)v is smooth}

But then one needs to know that t(X)H* < H™.
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Unitary representaions of super Lie groups (cont.)

Definition ([Carmeli, Cassinelli, Toigo, Varadarajan])

A unitary representation of (Go, g) is a triple (7, p™, H) such that :
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Unitary representaions of super Lie groups (cont.)

Definition ([Carmeli, Cassinelli, Toigo, Varadarajan])

A unitary representation of (Go, g) is a triple (7, p™, H) such that :

@ H = Hy @& H, is a super Hilbert space.
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Unitary representaions of super Lie groups (cont.)

Definition ([Carmeli, Cassinelli, Toigo, Varadarajan])

A unitary representation of (Go, g) is a triple (7, p™, H) such that :

@ H = Hy @& H, is a super Hilbert space.

@ 1 : Gop — U(H) is a unitary representation of Gy (in the usual
sense).
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Unitary representaions of super Lie groups (cont.)

Definition ([Carmeli, Cassinelli, Toigo, Varadarajan])

A unitary representation of (Go, g) is a triple (7, p™, H) such that :

@ H = Hy @& H, is a super Hilbert space.

@ 1 : Gop — U(H) is a unitary representation of Gy (in the usual
sense).

@ p™: g — End(H®) is a super skew-Hermitian representation
which satisfies

P™([X, Y]) = p™(X)p™(Y) — (-1)XMMp™(Y)p™(X).
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Unitary representaions of super Lie groups (cont.)

Definition ([Carmeli, Cassinelli, Toigo, Varadarajan])

A unitary representation of (Go, g) is a triple (7, p™, H) such that :

@ H = Hy @& H, is a super Hilbert space.

@ 1 : Gop — U(H) is a unitary representation of Gy (in the usual
sense).

@ p™: g — End(H®) is a super skew-Hermitian representation
which satisfies

P™([X, Y]) = p™(X)p™(Y) — (-1)XMMp™(Y)p™(X).

e Here H®™ is the space of smooth vectors of (1, H).




Unitary representaions of super Lie groups (cont.)

Definition ([Carmeli, Cassinelli, Toigo, Varadarajan])

A unitary representation of (Go, g) is a triple (7, p™, H) such that :

@ H = Hy @& H, is a super Hilbert space.

@ 1 : Gop — U(H) is a unitary representation of Gy (in the usual
sense).

@ p™: g — End(H®) is a super skew-Hermitian representation
which satisfies

P™([X, Y]) = p™(X)p™(Y) — (-1)XMMp™(Y)p™(X).

e Here H®™ is the space of smooth vectors of (1, H).

0 pf =7 and p*(AdE)(X)) = n()p"(X)n(g™).
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Restriction and induction

Let (Ho, b) be a sub super Lie group of (Go, g). One can formally define
restriction and induction functors.

(71, p™, H) unitary rep. of (G, g) o Eg" ?)))(7'( P, H)

(0, 0%, K) unitary rep. of (Hy, b)
i

Not So Obvious Fact :
These functors are well defined.

Proof. Follows from [Carmeli, Cassinelli, Toigo, Varadarajan].
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Unitary equivalence and parity

Unitary equivalence

Two unitary representations (r, p™, H) and (1’, p™ , H’) are said to be
unitarily equivalent if there exists a linear isometry T : H — H’ such
that :

@ T preserves the Z/27Z-grading.
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Unitary equivalence and parity

Unitary equivalence

Two unitary representations (r, p™, H) and (1’, p™ , H’) are said to be
unitarily equivalent if there exists a linear isometry T : H — H’ such
that :

@ T preserves the Z/27Z-grading.
@ Forany g€ Gy, ' (g)o T =T o m(g).
@ Forany X € g, p" (X)oT =T o p™(X).
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Unitary equivalence and parity

Unitary equivalence

Two unitary representations (r, p™, H) and (1’, p™ , H’) are said to be
unitarily equivalent if there exists a linear isometry T : H — H’ such
that :

@ T preserves the Z/27Z-grading.
@ Forany g€ Gy, ' (g)o T =T o m(g).
@ Forany X € g, p" (X)oT =T o p™(X).

Parity change

Tensoring (7, p™, H) with the trivial representation on C%!
yields (1, p™, '1H) where 'H, = H; and 'H; = H,.
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Unitary equivalence and parity

Unitary equivalence

Two unitary representations (r, p™, H) and (1’, p™ , H’) are said to be
unitarily equivalent if there exists a linear isometry T : H — H’ such
that :

@ T preserves the Z/27Z-grading.
@ Forany g€ Gy, ' (g)o T =T o m(g).
@ Forany X € g, p" (X)oT =T o p™(X).

Parity change

Tensoring (7, p™, H) with the trivial representation on C%!
yields (1, p™, '1H) where 'H, = H; and 'H; = H,.

o (1, p™, H) and (7, p™, "'H) are not necessarily unitarily equivalent.
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Some of the difficulties . . .

@ General facts about rep’s of locally compact groups (e.g.,
Mackey machinery) may not generalize.
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Some of the difficulties . . .

@ General facts about rep’s of locally compact groups (e.g.,
Mackey machinery) may not generalize.

Q If gg were reductive, we could work “infinitesimally” (as
done by S.J. Cheng, H. Furutsu, K. Nishiyama, W. Wang,
R.B.Zhang, . . .)
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Some of the difficulties . . .

@ General facts about rep’s of locally compact groups (e.g.,
Mackey machinery) may not generalize.

Q If gg were reductive, we could work “infinitesimally” (as
done by S.J. Cheng, H. Furutsu, K. Nishiyama, W. Wang,
R.B.Zhang, . . .)

© One needs to define “super” polarizing subalgebras (and
prove that they exist).



Nilpotent super Lie groups

@ A super Lie group (G, ) is called nilpotent if the lower central series of g
has finitely many nonzero terms (equivalently, if g appears in its own
upper central series).
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Nilpotent super Lie groups

@ A super Lie group (G, ) is called nilpotent if the lower central series of g
has finitely many nonzero terms (equivalently, if g appears in its own
upper central series).

@ Unlike Lie groups, certain super Lie groups do not have any faithful
unitary representairons!
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pr(X1) = - = p"(Xw) = 0.




Nilpotent super Lie groups

@ A super Lie group (G, ) is called nilpotent if the lower central series of g

has finitely many nonzero terms (equivalently, if g appears in its own
upper central series).

@ Unlike Lie groups, certain super Lie groups do not have any faithful
unitary representairons!

If X1, ...X,, € g1 such that

m

) [X, Xi1=0

i=1
then for every unitary representation (1, p”, H) we have
pr(X1) = - = p"(Xw) = 0.

Proof. Observe that Y."; p"(X;)> = 0 and for every i, the operator e V'_lp” (X;)
is symmetric. For every v € H* we have :

Y (3 VT (Xiyo, e Y p(X)0) = (0,e VT Y p™(X)%0) = 0.
i=1 i=1




Reduced form

o Seta® = (X € gq | [X, X] = 0). We call g reduced if a = {0}.



Reduced form

o Seta® = (X € gq | [X, X] = 0). We call g reduced if a = {0}.

@ Set
a® =(X e g |[X,X] € a®)
a® =(X e g |[X,X] € a®)
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Reduced form

o Seta® = (X € gq | [X, X] = 0). We call g reduced if a = {0}.

@ Set
a® =(X e g |[X,X] € a®)
a® =(X e g |[X,X] € a®)

We have
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Reduced form

o Seta® = (X € gq | [X, X] = 0). We call g reduced if a = {0}.

@ Set
a@ = (X e g1 |[X,X] € a®)
a® = (X € g1 [ [X,X] € a?)
We have
Seta = U a,

j=1

Observation

@ p”(a) = 0 for every unitary representation (rt, p™, H).

@ ais Z/27Z-graded, hence corresponds to a sub super Lie group
(Ao, a) of (Go, g). The quotient g/a is reduced.
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Structure of nilpotent Lie superalgebras

Lemma (Kirillov ?)

Let (Go, g) be a nilpotent super Lie group such that g is reduced and
dim Z(g) = 1. Then exactly one of the following statements is true :
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dim Z(g) = 1. Then exactly one of the following statements is true :

@ There exists a graded decomposition
g=RX®RY®RX®w

such that Span(X, Y, Z} is a three-dimensional Heisenberg
algebra, Z € Z(9),
g =RY®RZ®w

is a subalgebra, and Y € Z(g’).
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such that Span(X, Y, Z} is a three-dimensional Heisenberg
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is a subalgebra, and Y € Z(g’).

@ gis isomorphic to by where Wy = {0}.



Structure of nilpotent Lie superalgebras

Lemma (Kirillov ?)

Let (Go, g) be a nilpotent super Lie group such that g is reduced and
dim Z(g) = 1. Then exactly one of the following statements is true :

@ There exists a graded decomposition
g=RX®RY®RX®w

such that Span(X, Y, Z} is a three-dimensional Heisenberg
algebra, Z € Z(9),
g =RY®RZ®w

is a subalgebra, and Y € Z(g’).

@ gis isomorphic to by where Wy = {0}.
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Unitary representations as induced representations

Let (Go, g) be a nilpotent super Lie group such that

@ gisreduced,
@ dimZ(g) =1,
@ gis not isomorphic to hy with W, = {0}.
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Unitary representations as induced representations

Let (Go, g) be a nilpotent super Lie group such that

@ gisreduced,
@ dimZ(g) =1,
@ gis not isomorphic to hy with W, = {0}.

Let ¢’ be as in Kirillov’s lemma, and let (G}, g’) be the sub super Lie
group of (G, g) defined in the super version of Kirillov’s lemma.

@ Observe that dim g] = dim gy, hence induction from (G, ¢") to
(Go, g) yields unitary representaions.
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Unitary representations as induced representations

Let (Go, g) be a nilpotent super Lie group such that

@ gisreduced,
@ dimZ(g) =1,
@ g is not isomorphic to by with Wy = {0}.

Let ¢’ be as in Kirillov’s lemma, and let (G}, g’) be the sub super Lie
group of (G, g) defined in the super version of Kirillov’s lemma.

@ Observe that dim g] = dim gy, hence induction from (G, ¢") to
(Go, 9) yields unitary representaions.

Proposition (codimension one induction)

Let (mt, p™, H) be an irreducible unitary representation of (Go, g)
whose restriction to Z(Gy) is nontrivial. Then
— (Go.8) (.t T ’
(T[r pnr 7{) - Ind(cg/qr)(n 7 Pn /7—{ )
for some irreducible unitary representation (7', p™, H") of (G/, &").
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Unitary rep’s of Heisenberg-Clifford super Lie groups

e Recall that hy = W & R where
[(Ulr Sl)/ (vlr SZ)] = (O/ Q(U/ w))
Set g = hw and let (Gy, g) be the corresponding super Lie group.
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Unitary rep’s of Heisenberg-Clifford super Lie groups

e Recall that hy = W & R where
[(Ulr Sl)/ (vlr SZ)] = (O/ Q(U/ w))
Set g = hw and let (Gy, g) be the corresponding super Lie group.

Theorem (generalized Stone-von Neumann)

Let x : R — C* be defined by x(t) = ¢ V-1 where a > 0. (The case a < 0is

similar.)

@ Oy, xw, positive definite = up to unitary equivalence and parity
there exists a unique unitary representation with central
character x.

@ O, xw, not positive definite = (Gy, g) does not have any unitary
representations with central character y.
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Unitary rep’s of Heisenberg-Clifford super Lie groups

e Recall that hy = W & R where
[(Ulr Sl)/ (vlr SZ)] = (O/ Q(U/ w))
Set g = hw and let (Gy, g) be the corresponding super Lie group.

Theorem (generalized Stone-von Neumann)

Let x : R — C* be defined by x(t) = ¢ V-1 where a > 0. (The case a < 0is

similar.)

@ Oy, xw, positive definite = up to unitary equivalence and parity
there exists a unique unitary representation with central
character x.

@ O, xw, not positive definite = (Gy, g) does not have any unitary
representations with central character y.

Let (1, p™, H,) denote the unitary representation with central character y.
dimg; = 2k = (1, P, Hy) # (1, P, TH,)
dimg; =2k+1 = (1w, p™, Hy) = (1, p™, Hy)
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The general case

Let (Go, g) be a nilpotent super Lie group.
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The general case

Let (Go, g) be a nilpotent super Lie group.
@ For every A € g; one can define a symmetric bilinear form

By:g1Xg1 >R
where B, (X, Y) = A([X, Y]).
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The general case

Let (Go, g) be a nilpotent super Lie group.
@ For every A € g; one can define a symmetric bilinear form
Bri:g1Xg1 = R
where B, (X, Y) = A([X, Y]).

@ Set
g5 = {A € g | B, is nonnegative definite }
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The general case

Let (Go, g) be a nilpotent super Lie group.
@ For every A € g; one can define a symmetric bilinear form

BA:glxgl—ﬂR

where B, (X, Y) = A([X, Y]).
@ Set
a5 = {A € g | By is nonnegative definite )

@ Observe that gg is a Gy-invariant cone.
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The general case

Let (Go, g) be a nilpotent super Lie group.
@ For every A € g; one can define a symmetric bilinear form
Bri:g1Xg1 = R
where B, (X, Y) = A([X, Y]).

@ Set
g5 = {A € g | B, is nonnegative definite }

@ Observe that g' is a Gyp-invariant cone.
0

There exists a bijective correspondence

Irreducible unitary Go — orbits
representations of (Go, g) in gg
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Polarizing systems

Let (Go, g) be a nilpotent super Lie group.
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Polarizing systems

Let (Go, g) be a nilpotent super Lie group.
A polarizing system of (G, g) is a 6-tuple
(Mo, m, @, Co, ¢, A)

such that:
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Polarizing systems

Let (Go, g) be a nilpotent super Lie group.
A polarizing system of (G, g) is a 6-tuple
(Mo, m, @, Co, ¢, A)

such that:

o d1mm1 = d1mg1




Polarizing systems

Let (Go, g) be a nilpotent super Lie group.
A polarizing system of (G, g) is a 6-tuple
(Mo, m, @, Co, ¢, A)

such that:
o dim ny = dim dJ1.

@ A € g and my is a maximally isotropic subalgebra of go
w.r.t. the skew symmetric form Q, (X, Y) = A([X, Y]).
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Polarizing systems

Let (Go, g) be a nilpotent super Lie group.
A polarizing system of (G, g) is a 6-tuple
(Mo, m, @, Co, ¢, A)

such that:
o dim ny = dim dJ1.

@ A € g and my is a maximally isotropic subalgebra of go
w.r.t. the skew symmetric form Q, (X, Y) = A([X, Y]).

@ (Co, ¢) is a Heisenberg-Clifford super Lie group such that
dim CO =1.

80/107



Polarizing systems

Let (Go, g) be a nilpotent super Lie group.
A polarizing system of (G, g) is a 6-tuple
(Mo, m, @, Co, ¢, A)

such that :
o d1mm1 = dim dJ1.
@ A € g and my is a maximally isotropic subalgebra of go
w.r.t. the skew symmetric form Q, (X, Y) = A([X, Y]).
@ (Co, ¢) is a Heisenberg-Clifford super Lie group such that
dim CO =1.
@ O : (Mp, m) — (Co, ¢) is an epimorphism.
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Polarizing systems

Let (Go, g) be a nilpotent super Lie group.
A polarizing system of (G, g) is a 6-tuple
(Mo, m, @, Co, ¢, A)

such that :

o d1mm1 = dim dJ1.

@ A € g and my is a maximally isotropic subalgebra of go
w.r.t. the skew symmetric form Q, (X, Y) = A([X, Y]).

@ (Co, ¢) is a Heisenberg-Clifford super Lie group such that
dim CO =1.

@ O : (Mp, m) — (Co, ¢) is an epimorphism.

@ my Nkerd = my N ker A.




Proposition  (everything is induced)

@ Every irreducible rep (mt, p™, H) of (G, g) is induced from a
polarizing system (Mo, m, @, Co, ¢, A), i.e.,

(m, p", H) = Indﬁ”g) (0 0 @, p?°®, K)

0,1m)

where for every W € mg, p?°®(W) = p?(D(W)) = A(W).




Proposition  (everything is induced)

@ Every irreducible rep (mt, p™, H) of (G, g) is induced from a
polarizing system (Mo, m, @, Co, ¢, A), i.e.,
(m, p", H) = Indﬁ”g) (0 0 @, p?°®, K)

0,1m)

where for every W € mg, p?°®(W) = p?(D(W)) = A(W).

(Mo, m) — (Co, ¢) --> (g, p°, K)
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Proposition  (everything is induced)

@ Every irreducible rep (mt, p™, H) of (G, g) is induced from a
polarizing system (Mo, m, @, Co, ¢, A), i.e.,

(m, p", H) = Indﬁ”g) (0 0 @, p?°®, K)

0,1m)

where for every W € mg, p?°®(W) = p?(D(W)) = A(W).

(Mo, 1) = (Co, ©) = (0, p°, K)
@ Moreover, if (1, p™, H) is induced from two different
polarizing systems
(MOI m, cD/ CO/ ¢ /\) and (M, s m,/ cD/ Cé/ c,/ A,)

then

Q (Co,0) = (Cj, o)
Q )V = Ad'(g)(A) for some g € Go.




Nonnegativity condition

@ Suppose (7, p", H) = Indgfffgo (0 0 @, p°°®, K).
From A(W) = p° o ®(W) and properties of Clifford modules

we have :

for every X € gy,
BA(X, X) = A[X, X]) p? o O([X, X])

[p? 0 B(X), p? 0 B(X)] 2 0
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Nonnegativity condition

@ Suppose (7, p", H) = Indgfffgo (0 0 @, p°°®, K).
From A(W) = p° o ®(W) and properties of Clifford modules

we have :

for every X € gy,
BA(X, X) = A[X, X]) p? o O([X, X])

[p? 0 B(X), p? 0 B(X)] 2 0

which implies that A € g;.
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Nonnegativity condition

@ Suppose (7, p", H) = Indgfffgo (0 0 @, p°°®, K).
From A(W) = p° o ®(W) and properties of Clifford modules

we have :

for every X € gy,
BA(X, X) = A[X, X]) p? o O([X, X])

[p? 0 B(X), p? 0 B(X)] 2 0

which implies that A € g;.

@ Conversely, we should show that every A € g fits into a
polarizing system (Mo, m, Co, ¢, @, A).
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Proposition

For every A € g there exists a polarizing system

(MOI m, cI)/ CO/ ¢, /\)
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Proposition

For every A € g there exists a polarizing system
(MOI m, cI)/ CO/ ¢, /\)

The proof is based on the following lemma :

LetA e gg. Then there exists a subalgebra py C g such that :

@ pp is a maximal isotropic subalgebra for the skew
symmetric form Q,,

@ po D [a1,01]
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Proof of the lemma

There exists a subalgebra py C gy such that :
@ 1 is a maximal isotropic subalgebra for the skew symmetric form Q,

@ po D [g1, 31l
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Proof of the lemma

There exists a subalgebra py C gy such that :
@ 1 is a maximal isotropic subalgebra for the skew symmetric form Q,

@ po D [g1, 31l

© i =[g1,91] is an ideal of go, hence there exists a sequence

s5+1

=ilcitci?c---cif=icitlc...ci' =g

of ideals such that dim (i*/#*"1) = 1 for every k > 1.
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Proof of the lemma

There exists a subalgebra py C gy such that :
@ 1 is a maximal isotropic subalgebra for the skew symmetric form Q,

@ po D [g1, 31l

© i =[g1,91] is an ideal of go, hence there exists a sequence

y=icitci?c---ci*=ici'!

c---ci' =g
of ideals such that dim (i*/#*"1) = 1 for every k > 1.

© (M. Vergne) Define py to be

r

Po = Z rad(Q ixir)-

k=1
Then py is a maximal isotropic subalgebra for Q.
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Proof of the lemma

There exists a subalgebra py C gy such that :
@ 1 is a maximal isotropic subalgebra for the skew symmetric form Q,

@ po D [g1, 31l

© i =[g1,91] is an ideal of go, hence there exists a sequence

=ilcitci?c---cif=icitlc...ci' =g

of ideals such that dim (i*/#*"1) = 1 for every k > 1.
© (M. Vergne) Define py to be

r

Po = Z rad(Q ixir)-

k=1
Then py is a maximal isotropic subalgebra for Q.

© One can show that Q,([a1, 81], [81, 91]) = 0, which implies that
[a1,91] C Po. 94/107



Irreducibility

If a unitary representation (7, p™, H) is induced from a
polarizing system, then it is irreducibe.
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Irreducibility

Proposition

If a unitary representation (7, p™, H) is induced from a
polarizing system, then it is irreducibe.

Proof. By induction on dim g.

Case I : g is not reduced, or g is reduced and Z(g) N ker A # {0}.
Induction hypothesis.
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Irreducibility

Proposition

If a unitary representation (7, p™, H) is induced from a
polarizing system, then it is irreducibe.

Proof. By induction on dim g.

Case I : g is not reduced, or g is reduced and Z(g) N ker A # {0}.
Induction hypothesis.

Case Il : g is reduced and Z(g) N ker A # {0}. Find a 3-dimensional
Heisenberg subgroup and use explicit formulas for its action.
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An observation

For every unitary representation (1, p™, H) of (G, g) we have
p™([a1,[81, 811]) = 0.

Proof. Get deep into the proof of classification!
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An observation

For every unitary representation (1, p™, H) of (G, g) we have
p™([a1,[81, 811]) = 0.

Proof. Get deep into the proof of classification!

Observation (Neeb) :

@ Suppose that ﬂ ker (m, p™, H) = {0}.
(mp™H)

@ ¢°:=[a1, 5] ®a1.

@ C,:= closed convex cone in gj generated by { [X, X] | X € g1 }.
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An observation (cont.)

@ (,is Gp-invariant, generating, and pointed.
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An observation (cont.)

@ (,is Gp-invariant, generating, and pointed.

o It follows that g has a compactly embedded Cartan
subalgebra t.
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An observation (cont.)

@ (,is Gp-invariant, generating, and pointed.

o It follows that g has a compactly embedded Cartan
subalgebra t.

@ tacts semisimply and nilpotently on g%; hence [t, g°] = {0}.
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An observation (cont.)

@ (,is Gp-invariant, generating, and pointed.

o It follows that g has a compactly embedded Cartan
subalgebra t.

@ tacts semisimply and nilpotently on g%; hence [t, g°] = {0}.

@ It follows that [gg, a‘] = {0}; in particular [a1, [91, 81]] = {0}.

4
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An observation (cont.)

@ (,is Gp-invariant, generating, and pointed.

o It follows that g has a compactly embedded Cartan
subalgebra t.

@ tacts semisimply and nilpotently on g%; hence [t, g°] = {0}.

@ It follows that [gg, a‘] = {0}; in particular [a1, [91, 81]] = {0}.

Problem. Classify solvable Lie superalgebras g = go ® g for
which Cy is pointed.
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Restriction of (t, p™, H) to Gy

Let (t, p™, H) be an irr. unitary rep. of (Go, g) corresponding to
0}\ = Go - A. Then

(", H)g, =ma ® -+ - ® 1y
e
2! time

where 7, is the irreducible unitary representation of Gy
corresponding to O,.




Restriction of (1, p™, H) to Go

Let (t, p™, H) be an irr. unitary rep. of (Go, g) corresponding to
OA = Go - A. Then

(0, p", H)ig, =A@ - - - D 1y
———

2! time

where 7, is the irreducible unitary representation of Gy
corresponding to O,.

A\

When (7, p™, H) = (1, p™, ""H)?

If (, p™, ‘H) is induced form a polarizing system

(MOI m, CO/ ¢, q)/ /\)
then

! if (1, p™, H) = (7, p™, '1H)
dim.c = { 2l +1 otherwise.



Thank you !



