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Double foliation in 3 dimensions
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Symmetries?

[X,Y ] = ∂

∂z
≡ Z [X,Z] = 0 [Y,Z] = 0
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Symmetries of this geometry
[X,Y ] = Z [X,Z] = 0 [Y,Z] = 0

Vector fieldK such that

● LKX ∝X

● LKY ∝ Y
i.e.

● [X,K]∝X

● [Y,K]∝ Y

Write K = f+Y − f−X + gZ. Then
● Xg + f+ = 0 & Xf+ = 0

● Y g + f− = 0 & Y f− = 0

Hence

X2g = 0 & Y 2g = 0
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Warm-up exercise
Xg = 0 & Y g = 0 ⇒ Zg = 0 ⇒ g is constant

X2g = 0 & Y g = 0

Introducef andp by Xg + f = 0 andZg − p = 0.
Recall [X,Y ] = Z [X,Z] = 0 [Y,Z] = 0.
Conclude(prolongation)

∇
⎡⎢⎢⎢⎢⎢⎣

g

f

p

⎤⎥⎥⎥⎥⎥⎦
≡
⎡⎢⎢⎢⎢⎢⎣

Xg + f Y g Zg − p

Xf Y f − p Zf

Xp Y p Zp

⎤⎥⎥⎥⎥⎥⎦
= 0

flat connection ⇒ {g s.t.X2g = 0 = Y g} ≅ R3
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Symmetries cont’d
X2g = 0 & Y 2g = 0 ↝↝prolongation↝↝

∇

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

g

f+ f−
p+, p−

r− r+
a

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Xg + f+ Y g + f− Zg − p+ − p−

Xf+ Y f+ − p+ Zf+ − r+ ∗ ∗ ∗

Xp+ − r+ ∗ ∗ , ∗ ∗ Zp− − a

Xr− + a Y f− Zr− ∗ ∗ ∗

Xa Y a Za

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

π+

K+ K̄0

π0, η

K0 K−

π−
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Eightfold way
The story so far

● {g s.t.Xg = 0 = Y g} ≅ R

● {g s.t.X2g = 0 = Y g} ≅ R3

● {g s.t.X2g = 0 = Y 2g} ≅ R8 Symmetries

More generally,

{g s.t.Xp+1g = 0 = Y q+1g} ≅ R(p+1)(q+1)(p+q+2)/2

In fact,
● {Symmetries} ≅ sl(3,R)
● {g s.t.Xp+1g = 0 = Y q+1g} ≅ ● ●p q

Explain?
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A2 root system

●i ●●

●●

●●

● ●

●i ●●

●●

●●

g2

g1

g0

g−1

g−2
sl(3,R) = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p
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Flag manifold

SL(3,R)/P = SL(3,R)/
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

∗ ∗ ∗
0 ∗ ∗
0 0 ∗

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= F1,2(R3)

sl(3,R) = g−2 + g−1´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
sl(3,R)/p

+g0 + g1 + g2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p

● ●1 1 = × ×1 1 + × ×
−1 2

⊕
× ×2 −1

+ × ×
0 0

⊕
× ×0 0

+ × ×
−2 1

⊕
× ×1 −2

+ × ×−1 −1

☇ P -module

Tangent Bundle
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Curved geometry

Flat
Model

F1,2(R3)

F1(R3) F2(R3)
�

�	
@

@R

⊃ R3 (affine patch)
where we started this talk

Curved Version
● M is a smooth real3-manifold
● Line subbundlesH+ ⊕H− ⊂ TM

● [H+,H−] = TM (i.e.H ≡H+ ⊕H− is contact)

Theorem(Lie 1888, Tresse 1896,≃Cartan 1924)
● dim{local symmetries ofM} ≤ 8

● with equality iff locally flat
y′′ = f(x, y, y′)
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Another curved geometry
Rephrase previous geometry on3-dimensionalM :–
● H ⊂ TM a contact structure
● J ∶H →H s.t.J2 = Id and J /= ±Id

and now change a sign to define CR geometry
● H ⊂ TM a contact structure
● J ∶H →H s.t.J2 = −Id (complex structure)

Theorem(Poincaré 1907, Segre 1931, Cartan 1932)
● dim{local symmetries ofM} ≤ 8

● with equality iff locally flat

Flat Model SU(2,1)/P = S3 ⊂ C2.
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Existence of G2
Theorem(Engel 1893, Cartan 1893)

Killing’s 1888 Lie algebra G2 exists.

Proof(Engel) G2≡ symmetries of
dz

dx
= (d2y

dx2
)

2

◻

R5 ∋ (x, y, p, q, z) with 2-plane distributiondefined by

dy − pdx dp − q dx dz − q2 dx

Curved geometry
● M is a smooth real5-manifold
● rank2 subbundleH ⊂ TM

● [H, [H,H]] = TM
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Uniqueness of G2
Theorem(Cartan 1910 ‘five variables’)

ForH ⊂ TM a geometry as above
● dim{local symmetries ofM} ≤ 14

● with equality iff locally flat. . .
● in which case{symmetries} ≅ G2.

Proofis by rather difficultprolongation to obtain a

Cartan connection

Nowadays use Kostant’s Bott-Borel-Weil Theorem

6
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G2 root system

●i ●●

●●

●●

●●
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●i ●●

●●

●●

●●
●●

●

●
g−3

g−2

g−1

g0

g1

g2

g3 ⎫⎪⎪⎪⎬⎪⎪⎪⎭
p

}H ⊂ [H,H] ⊂ [H, [H,H]] = TM

× ●<
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G2 via contact geometry

●i ●●

●●

●●

●●
●●

●

●

g2

g1

g0

g−1

g−2
G2= g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p

● ×<

● ●<0 1 = ● ×<0 1 + ● ×<3 −1+ ● ×<
2 −1

⊕
● ×<0 0

+ ● ×<3 −2+ ● ×<3 −2

Curved geometry ● 5-dimensional contact manifold,
● reduction of structure group toGL(2,R).
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Contact parabolic geometry
● contact structureH ⊂ TM

● reduction of structure groupof H to. . .

G2 F4 E6 E7 E8
dimM 5 15 21 33 57

A1 C3 A5 D6 E7

Construction of representations

● ●<a b = ker ● ×<a b ∇b+1

ÐÐ→ ● ×<a + b + 1 −b − 2

● Verma modules
● Bernstein-Gelfand-Gelfand resolution
● Jantzen-Zuckerman translation principle
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Further reading
● D.N. Arnold, N. Douglas, and R.S. Falk,Finite element exterior

calculus: from Hodge theory to numerical stability, Bull.

AMS 47 (2010) 281–354.

● A. Čap, M.G. Cowling, M.G. Eastwood, F. De Mari and

R. McCallum,The Heisenberg group, SL(3,R), and rigidity,

Harmonic Analysis, . . . in Honour of Roger Howe, Lect. Notes

IMS Vol. 12, National University of Singapore 2007, pp. 41–52.

● M.G. Eastwood and A.R. Gover,Prolongations on contact

manifolds, arXiv:0910.5519

● P. Nurowski and G.A.J. Sparling,Three-dimensional

Cauchy-Riemann structures and second-order ordinary

differential equations, Class. Quant. Grav.20 (2003) 4995–5016.

● A. Čap and J. Slovák,Parabolic Geometries 1, AMS 2009.
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THANK YOU

THE END
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