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Population dynamics

time

A and B are two possible behaviors,
fenotypes or strategies of each individual



Matching of individuals

everybody interacts with everybody

random pairing of individuals

space — structured populations



Main Goals

Equilibrium selection in case of multiple Nash equilibria

Evolutionary stability of cooperation

Dependence of the long-run behavior of population on
- its size
- mutation level

- topology of interactions

Equilibrium transitions



Stochastic dynamics of finite unstructured populations

n - # of individuals
z, - # of individuals playing A at time t
Q ={0,...,n} - state space

selection

Z..1 > Z, If ,average payoff’ of A > ,average payoff’ of B

mutation

each individual may mutate and switch to the other strategy
with a probability €



Markov chain with n+1 states
and a unique stationary state p&,

Definition

Z < (1 is stochastically stable if lim,_q pyj,(Z) =

extinctions

fixations

another approach. fixation probabilities
In systems with absorbing states

0



Previous results

Playing against the field, Kandori-Mailath-Rob 1993

A B (A,A) and (B,B) are Nash equilibria
A a b
B ¢ d A is an efficient strategy

B is a risk-dominant strategy

a>c, d>b, a>d,
a+b<c+d T O S N S
%l = 2 0f malz) > 7TB(2)
alzy — 1)+ bln — z)

Talze) = — o1 < 2 1f malz) < me(2)
R . ) ner = 2 if Ta(x) = Ta(2)
Ngl<t) = , 1
1 =2 if z=0o0r z=n
Theorem

For sufficiently large n, strategy B is stochastically stable, that is

lim 417, (0) = 1



Random matching of players, Robson - Vega Redondo, 1996

p, # of crosspairings

alz — pe) + bpy

TalZ, Pe) = -

2
cpe +din — zp — pe)

1t

Bz, o) =

-

Theorem

For sufficiently large n, strategy A is stochastically stable, that is

li_ué;ffi_[-n.j =1



Our results, JIM J. Theor. Biol, 2005

so far n was fixed and ¢ — 0

now ¢ is fixed and n — ~

Theorem  (random matching model)



Spatial games with local interactions

AT Zd * — — — — — *« - — — — — * — — — — — * — — — — — .
S=11,...k} — setof strategies
Oy =S —  set of population states
N;  — neighbourhood of the i — th player
[F:5=x5—=R — payoff matriz
Let X € Q. then (X)) = Z U(X;, X;) — payoffofthei—th player
JEN;
Definition

X €y is a Nash configuration if for everyv i € A and Y; € S,

v XNa X)) = (Y X))



Deterministic dynamics

the best-response rule

imitatibn



Stochastic dynamics

a) perturbed best response

with the probability 1-€, a player chooses the best response
with the probability €  a player makes a mistake

b) log-linear rule or Boltzmann updating

1 iyvi4l 4t o
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Example 1 Jw™m, J. Phys. A 2004

square lattice with nearest-neighbour interactions, log-linear rule

A B C

A 15 0 1

U= B 0 2 1
¢ o1 1 2

XA, XB | XC Nash configurations

1 v
oE E'i‘_‘:l UXeXy)

> 720 ot 2 1U(Z1.2Z5)
Sl

pi (X)) =

lillé;fi'fﬁk'k:' =1/2 k=B.C
(LA

. P . - 2
lim p5(X) =0 for every X € Q= 5%
2 | :



Gibbs states

A B C
A1 0O 1
1]11%21“ .”f‘.. — IHE I = B i 2001
' 1 1 2
Theorem
Proof

j:‘El:_ff‘ﬁ.rg _ {-.t:l — 1 — .f?lfr-':l counting lowest cost excitations
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Examp|e 2 IM, J. Phys. A 2004

A B C
A 0 0.1 1 without A B is stochastically stable
B I A is a dominated strategy
C 1.1 1.1 2

with A

where a>0

v



stochastic stability

number of players fixed, noise 2> 0

ensemble stability

noise fixed, number of players -



Snow Drift  with Agata Powatka and Christoph Hauert

b - prize

C - (I:Z)OSt C D
C b-c/2 b-C

= c/(2b-c) b b 0

replicator dynamics
dx/dt = 2/(c-2b) x(1-x) (x — (1-r))

X =1-r Is the mixed Nash equlibrium
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Spatial structure often inhibits
the evolution of cooperation
in the snowdrift game

Christoph Hauert & Michael Doeheli

Departments of Zoology and Mathematics, University of British Columbia,
22 70 University Boulevard, Vancouver, British Columbia V&T 124, Canada

pairwise comparisons

randomly chosen players imitate randomly chosen neighbors
with probability proportional to the difference of payoffs



Frequancy of cooperation @

Frequency of cooperation O
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Figure 1 Frequency of cooperators as a function of the cost-to-benafit ratio r =

cf2h — ¢} in the snowdrift game for different lattice geometries. a, Triangular lattice,
neighbourhood size N = 3; b, square lattice, N= 4; ¢, hexagonal lattice, N = &

d, square lattice, N = 8. For small r;, spatial structure promaotes cooperation; however, far



C C .
random matching model

C D
¢ ° C b-c/2 b-c
D Db 0
E(C)=b—cH+ (k=1){z(b—¢/2)+ (1 —z)(b—¢)).
E(D)=b+ (k—1)zb.
From E(C) = E(D) it follows that
E4+1 extinction threshold for cooperation
rzl—r}_l k1

r = k+1



If the neighborhood of imitation is idependent
of the neighborhood of interaction, then

EC)=kxb—e/2)+ (1 —=x)(b—2¢)).

E(D) = kxb.

and E(C) = E(D)
gives the replicator dynamic coexistence

X=1-r



Prisoner’s Dilemma on random graphs

joint work with Bartosz Sutkowski
and Jakub tacki

C D
cC 3 0
D 5 1

(D,D) is the only Nash equilibrium



Erdos — Renyi random graphs

Each pair of vrtices is joint by an edge with probability €

Distribution of vertex degrees is Poissonian

Scale-free graphs of Barabasi-Albert

Preferential linking

Distribution of vertex degrees ~ k-



iImitation dynamic

C
e D

c—

C D C D
cC 3 O cC 2 -1
D 5 1 D 4 0)
left players earn 3 left players earn 2
middle player 6 middle player 3
right player 5 right player 4

D changes into C middle C changes into D



spatial game with linking cost Matsuda 2007

C D
¢ Db C 1lv v
c 1 o) D Ty -y
D T 0
Y - linking cost

imitation dynamic

a random player imitates the best strategy in the neighborhood
with theprobability 1 — €

makes a mistake with the probability ¢



level of cooperation

T=15
1 ¥ 1
\
075 — \ nlsso
\ ¥ Bambasl
- L Albert
= I
. |I
0,5 — |I
i
WL
|| Y
|
5 — |
0,25 A I
0 | | |
-5 0 0.5 1 1.5

time series

2 =040
WIHW 1|‘ I W"'ll” HWUH
R Al

phase transition ?



That'’s it for today



