## INTERFACE GROWTH IN TWO DIMENSIONS: A LOEWNER-EQUATION APPROACH

Miguel A. Durán and Giovani L. Vasconcelos

Physics Department
Federal University of Pernambuco
Recife, Brazil


Banff, Canada, November 03, 2010

## Outline

- The Loewner Equation
- Laplacian Growth as a Loewner Evolution
- Fingered Growth in the Upper Half-Plane and in the Channel Geometry
- Interface Growth Model in the Upper HalfPlane and in the Channel
- Future Directions and Conclusions


## Loewner Equation

$z$-plane
"physical plane"

$w$-plane
"mathematical plane"

- Simple curve:
- Loewner function: $g_{t}: \mathbb{H} \backslash \Gamma_{t} \rightarrow \mathbb{H}$
- Hydrodynamic b.c.: $\quad g_{t}(z)=z+O\left(\frac{1}{|z|}\right), \quad z \rightarrow \infty$
- Initial condition: $\quad g_{0}(z)=z$
$a(t)=g(\gamma(t))$ : driving function
$d(t)$ : growth factor (related to the hull capacity; $d(t)=2$, w.l.g.)


## Stochastic Loewner Evolution

- Random driving function: $a(t)=\sqrt{\kappa} W(t)$
- Scaling limit of 2D statistical mechanics models
- Connections with conformal field theory

Schram (2000) and many others

## Laplacian Growth as a Loewner Evolution

$$
\nabla^{2} \phi=0
$$

- Complex potential: $w=\psi+i \phi$
- Loewner function is the complex potential: $w=g_{t}(z)$
- Uniform 'flow' at infinity: $w(z) \approx z, \quad z \rightarrow \infty$
- Tip grows along gradient field lines: $\quad v \sim|\vec{\nabla} \phi|^{\eta}$


## Loewner Equation for a Single Curve



- Slit mapping: $\quad w=F(\zeta)$
- Iterated maps: $g_{t}=F\left(g_{t+\tau}\right)$
- In the limit $\tau \rightarrow 0: \quad \dot{g}_{t}(z)=\frac{d(t)}{g_{t}(z)-a(t)}, \quad \dot{a}(t)=0$
- Growth factor: $d(t)=\left|f_{t}^{\prime \prime}(a(t))\right|^{-\eta / 2-1}, \quad f_{t}(w)=g_{t}^{-1}(w)$


## Fingered Growth

Carleson \& Makarov 2002, Selander 1999


- Loewner equation: $\quad \dot{g}_{t}=\sum_{i=1}^{n} \frac{d_{i}(t)}{g_{t}-a_{i}(t)}$
- Dynamics of singularities: $\quad \dot{a}_{i}(t)=\sum_{j \neq i} \frac{d_{j}(t)}{a_{i}(t)-a_{j}(t)}$
- Exact solutions for 2 and 3 symmetric fingers:



Durán \& GLV, 2010

## Fingered Growth in the Channel Geometry



- Loewner equation: $\quad \dot{\tilde{g}}_{t}=\frac{\pi^{2}}{4}\left(1-\tilde{g}_{t}^{2}\right) \sum_{i=1}^{n} \frac{d_{i}(t)}{\tilde{g}_{t}-\tilde{a}_{i}(t)}$
where

$$
\begin{aligned}
& \dot{\tilde{a}}_{i}=-\frac{\pi^{2}}{8} d_{i}(t) \tilde{a}_{i}+\frac{\pi^{2}}{4}\left(1-\tilde{a}_{i}^{2}\right) \sum_{\substack{j=1 \\
j \neq i}}^{n} \frac{d_{i}(t)}{\tilde{a}_{i}-\tilde{a}_{j}} \\
& \tilde{g}_{t}=\sin \left(\frac{\pi}{9} g_{t}\right)
\end{aligned}
$$

## Fingered Growth in the Channel Geometry



Gubiec \& Szymczak, 2008


- Loewner equation: $\quad \dot{\tilde{g}}_{t}=\frac{\pi^{2}}{4}\left(1-\tilde{g}_{t}^{2}\right) \sum_{i=1}^{n} \frac{d_{i}(t)}{\tilde{g}_{t}-\tilde{a}_{i}(t)}$
where

$$
\begin{aligned}
& \dot{\tilde{a}}_{i}=-\frac{\pi^{2}}{8} d_{i}(t) \tilde{a}_{i}+\frac{\pi^{2}}{4}\left(1-\tilde{a}_{i}^{2}\right) \sum_{\substack{j=1 \\
j \neq i}}^{n} \frac{d_{i}(t)}{\tilde{a}_{i}-\tilde{a}_{j}} \\
& \tilde{a}_{t}=\sin \left(\frac{\pi}{-} g_{t}\right)
\end{aligned}
$$

## Fingered Growth in the Channel Geometry




- Loewner equation: $\quad \dot{\tilde{g}}_{t}=\frac{\pi^{2}}{4}\left(1-\tilde{g}_{t}^{2}\right) \sum_{i=1}^{n} \frac{d_{i}(t)}{\tilde{g}_{t}-\tilde{a}_{i}(t)}$
where

$$
\begin{aligned}
& \dot{\tilde{a}}_{i}=-\frac{\pi^{2}}{8} d_{i}(t) \tilde{a}_{i}+\frac{\pi^{2}}{4}\left(1-\tilde{a}_{i}^{2}\right) \sum_{\substack{j=1 \\
j \neq i}}^{n} \frac{d_{i}(t)}{\tilde{a}_{i}-\tilde{a}_{j}} \\
& \tilde{g}_{t}=\sin \left(\frac{\pi}{-g_{t}}\right)
\end{aligned}
$$

## Fingered Growth in the Channel Geometry

symmetrical configurations



$$
d_{1}=d_{2}=d_{3}=1
$$

asymmetric configuration


$$
d_{1}=d_{2}=1, d_{3}=0.5
$$



Fingering in combustion, Zik \& Moses, 2008

## Loewner Chains



- $K_{t}$ : family of growing hulls in $\mathbb{H}$
- Loewner function: $g_{t}: \mathbb{H} \backslash K_{t} \rightarrow \mathbb{H}$
- Loewner equation: $\dot{g}_{t}(z)=\int \frac{\rho_{t}(x) d x}{g_{t}(z)-x}$
- Density $\rho_{t}(x)$ : 'local growth rate'
- Laplacian growth: $\rho(x)_{t}=\left|f_{t}^{\prime}(x)\right|^{-\eta-1}, \quad f_{t}(w)=g_{t}^{-1}(w)$


## Interface Growth Model

Durán \& GLV, PRE, 2010
$z$-plane


- Growing domain (hull) $K_{t}$ delimited by interface $\Gamma_{t}$
- Loewner function: $\quad g_{t}: \mathbb{H} \backslash K_{t} \rightarrow \mathbb{H}$
- Endpoints, $z= \pm 1$, remain fixed
- Tips and troughs grow along gradient field lines
- Infinitesimal accrued domain mapped to a polygon


## Loewner Equation for Interface Growth



- Iterated maps: $\quad g_{t}=F\left(g_{t+\tau}\right)$
- Schwarz-Christoffel formula:

$$
g_{t}=\int_{a_{i}(t+\tau)}^{g_{t+\tau}} \prod_{i=1}^{N}\left[\zeta-a_{i}(t+\tau)\right]^{-\alpha_{i}} d \zeta+a_{i}(t)+i h_{i}
$$

- Expand integrand in first order of $\alpha_{i}$ :

$$
g_{t} \approx \int_{a_{i}(t+\tau)}^{g_{t+\tau}}\left\{1-\sum_{i=1}^{N} \alpha_{i} \ln \left[\zeta-a_{i}(t+\tau)\right]\right\} d \zeta+a_{i}(t)+i h_{i}
$$

## Loewner Equation for Interface Growth



- Loewner equation:

$$
\dot{g}_{t}(z)=\sum_{i=1}^{N} d_{i}(t)\left[g_{t}-a_{i}(t)\right] \ln \left[g_{t}-a_{i}(t)\right]
$$

- Dynamics of singularities:

$$
\dot{a}_{i}=\sum_{j \neq i} d_{j}(t)\left(a_{i}-a_{j}\right) \ln \left|a_{i}-a_{j}\right|
$$

- Growth factors:

$$
d_{i}(t)=\lim _{\tau \rightarrow 0} \frac{\alpha_{i}}{\tau} \quad \sum_{i=1}^{N} d_{i}=0, \quad \sum_{i=1}^{N} a_{i} d_{i}=0
$$

## Examples: Single Tip

- Symmetrical interface: $a_{2}(t)=0, \quad a_{2}(t)=-a_{1}(t)=a(t)$
- Loewner equation:

$$
\dot{g}_{t}(z)=d(t)\left\{\left[g_{t}+a(t)\right] \ln \left[g_{t}+a(t)\right]+\left[g_{t}-a(t)\right] \ln \left[g_{t}-a(t)\right]-2 g_{t} \ln g_{t}\right\}
$$

- Evolution of $a(t)$ : $\quad \dot{a}(t)=(\ln 4) d(t) a(t) \Rightarrow a(t)=a_{0} 4 \int_{0}^{t} d\left(t^{\prime}\right) t^{\prime}$



## Examples: Single Tip

- Asymmetric interface:

- Asymmetry persists: tip approaches inclined straight line


## Examples: Two Tips

- Symmetrical interface:

- Trajectories of tips and trough resemble three-finger case


## Examples: Two Tips

- Asymmetric interfaces:

- "Screening effect": faster tip ‘screens’ slower tip


## Multiple Interfaces



- Same Loewner equation:

$$
\dot{g}_{t}(z)=\sum_{i=1}^{N} d_{i}(t)\left[g_{t}-a_{i}(t)\right] \ln \left[g_{t}-a_{i}(t)\right]
$$

$N$ : total number of vertices

## Examples: Two Interfaces

symmetric interfaces

asymmetric interfaces

same 'growth factors' for both interfaces in both cases

## Broken symmetry $\Rightarrow$ "Screening effect"

## Interface Growth in the Channel Geometry



## Loewner Equation in the Channel Geometry



- Loewner equation:

$$
\dot{\tilde{g}}_{t}(z)=\sum_{i=1}^{N} \tilde{d}_{i}(t)\left\{\left[\tilde{g}_{t}-\tilde{a}_{i}(t)\right] \ln \left[\tilde{g}_{t}-\tilde{a}_{i}(t)\right]-A_{i}^{+}(t) \tilde{g}_{t}+A_{i}^{-}(t)\right\}
$$

where

$$
\begin{aligned}
& A_{i}^{ \pm}=\frac{1}{2}\left\{\left[1+\tilde{a}_{i}(t)\right] \ln \left[1+\tilde{a}_{i}(t)\right] \pm\left[1-\tilde{a}_{i}(t)\right] \ln \left[1-\tilde{a}_{i}(t)\right]\right\} \\
& \tilde{g}_{t}=\sin \left(\frac{\pi}{2} g_{t}\right)
\end{aligned}
$$

## Examples: Single Tip

## symmetrical



asymmetric



## Examples: Two Tips

symmetrical interface

partial screening

total screening


## Examples: Multiple Interfaces

symmetrical

asymmetric


## Loewner Domains



- Loewner equation: $\quad \dot{g}_{t}(z)=\int_{a(t)}^{b(t)} \kappa_{t}(x)\left[g_{t}(z)-x\right] \ln \left[g_{t}(z)-x\right] d x$ where $\kappa_{t}(x)=h_{t}^{\prime \prime}(x)$
- More generally: $\quad \dot{g}_{t}(z)=\int_{\mathbb{R}}\left[g_{t}(z)-x\right] \ln \left[g_{t}(z)-x\right] d \mu_{t}(x)$ where $\mu(x)$ is a signed measure with

$$
\int_{\mathbb{R}} d \mu_{t}(x)=0, \quad \int_{\mathbb{R}} x d \mu_{t}(x)=0
$$

## Future Directions

- Can describe HS-like viscous fingering?

- Extension to radial geometry?

- Can generate random interfaces?

dissolving rock fractures

rough surface (KPZ, etc)


DLA-like pattern

## Conclusions

- Interface growth model as a Loewner evolution.
- Loewner equation obtained for both upper halfplane and channel geometry.
- Interesting dynamical features: finger competition, screening, etc.
- Generalized model: Loewner domains

Thank you.

