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Hele-Shaw flows

Ω(0): initial domain
c1, . . . , cl ∈ Ω(0): injection points
α1, . . . , αl > 0: injection rates
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Hele-Shaw flows


(1) −∆p =

∑l
j=1 αjδcj in Ω(t)

(2) p = 0 on ∂Ω(t)
(3) −∂np = vn on ∂Ω(t)

p(z, t): pressure of fluid
Ω(t): fluid domain at time t ≥ 0
δcj : the Dirac measure

V = −∇p: velocity field
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Hele-Shaw flows


(1) −∆p =

∑l
j=1 αjδcj in Ω(t)

(2) p = 0 on ∂Ω(t)
(3) −∂np = vn on ∂Ω(t)

(1), (2) ⇒ p(z, t) =
l∑

j=1

αjGcj ,Ω(t)(z)

(Gcj ,Ω(t): Green’s function for −∆)
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Hele-Shaw flows


(1) −∆p =

∑l
j=1 αjδcj in Ω(t)

(2) p = 0 on ∂Ω(t)
(3) −∂np = vn on ∂Ω(t)

(1), (2) ⇒ p(z, t) =

l∑
j=1

αjGcj ,Ω(t)(z)

Find {Ω(t)}t>0 s.t.

−
l∑

j=1

αj

∂Gcj ,Ω(t)

∂n
= vn on ∂Ω(t).
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Weak solutions

Assume −
l∑

j=1

αj

∂Gcj ,Ω(t)

∂n
= vn on ∂Ω(t).

For any s ∈ SL1(Ω(t)) (subharmonic and L1),∫
Ω(t)\Ω(0)

s(z) dm

=

∫ t

0

∫
∂Ω(τ)

s(z) · vn dσ dτ

=
l∑

j=1

αj

∫ t

0

∫
∂Ω(τ)

s(z) ·
(
−

∂Gcj ,Ω(τ)

∂n

)
dσ dτ

≥
l∑

j=1

αj

∫ t

0
s(cj) dτ = t

l∑
j=1

αjs(cj).
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Weak solutions

Weak solution

Quadrature Domain of t
∑

αjδcj

For each t > 0, find Ω(t) s.t.

(∗)



∫
Ω(0)

s dm + t

l∑
j=1

αjs(cj) ≤
∫
Ω(t)

s dm(
∀s ∈ SL1(Ω(t))

)
,

m(Ω(t)) < ∞.

Quadrature domain (求積領域)

For a measure ν, a domain Ω satisfying ν(Ωc) = 0 and
∫

s dν ≤
∫
Ω
s dm

(
∀s ∈ SL1(Ω)

)
,

m(Ω) < ∞

is called a quadrature domain of ν for SL1.
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Weak solutions

Weak solution

Quadrature Domain of t
∑

αjδcj

For each t > 0, find Ω(t) s.t.

(∗)



∫
Ω(0)

s dm + t
l∑

j=1

αjs(cj) ≤
∫
Ω(t)

s dm(
∀s ∈ SL1(Ω(t))

)
,

m(Ω(t)) < ∞.

s = ±1 ⇒ m(Ω(t)) = m(Ω(0)) + t

l∑
j=1

αj

s = ±z ⇒
∫
Ω(t)

z dm =

∫
Ω(0)

z dm + t

l∑
j=1

αjcj
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Weak solutions

Weak solution

Quadrature Domain of t
∑

αjδcj

For each t > 0, find Ω(t) s.t.

(∗)



∫
Ω(0)

s dm + t

l∑
j=1

αjs(cj) ≤
∫
Ω(t)

s dm(
∀s ∈ SL1(Ω(t))

)
,

m(Ω(t)) < ∞.

existence of weak solution [Sakai (1982)]

Let Ω(0) be a domain with m(Ω(0)) < ∞.
Then, there exists a domain Ω(t) satisfying (∗).

uniqueness of weak solution [Sakai (1982)]

If Ω(t) and Ω(t)′ satisfy (∗), then χΩ(t) = χΩ(t)′ m-a.e.
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Known result [Sakai (1998)]

Let Ω(0) ⊂ D(c, r) and m(Ω(0)) + t
∑l

j=1 αj ≥ 4πr2.
Then,

D(c, R̃(t) − r) ⊂ Ω(t) ⊂ D(c, R̃(t) + r)

holds, where R̃(t) :=

√
1

π

(
m(Ω(0)) + t

∑l
j=1 αj

)
.
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Theorem

Let Ω(0) ⊂ D(c, r). Then, for sufficiently large t > 0,

D
(
wl, R(t) − ε−l (t)

)
⊂ Ω(t) ⊂ D

(
wl, R(t) + ε+l (t)

)
holds, where

wl :=

∑l
j=1 αjcj∑l
j=1 αj

, R(t) :=

√√√√ t

π

l∑
j=1

αj,

ε
−
l (t) :=

√
π∑l

k=1 αk

 l∑
j=2

αj
∑j−1

k=1 αk(∑j
k=1 αk

)2

∣∣wj−1 − cj
∣∣2
 t−1/2 + O(t−1),

ε
+
l (t) :=

√
π∑l

k=1 αk

 l∑
j=2

αj
∑j−1

k=1 αk(∑j
k=1 αk

)2

∣∣wj−1 − cj
∣∣2 +

r2

2

 t−1/2

+ O(t−1).
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Outline of Proof

Recall the Hele-Shaw problem: Find Ω(t) s.t.∫
Ω(0)

s dm+t

l∑
j=1

αjs(cj) ≤
∫
Ω(t)

s dm
(
∀s ∈ SL1(Ω(t))

)
.
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Outline of Proof

the Schwarz function the Schwarz function of ∂Ω0(t).

If we have a holomorphic func. in a nb’d of ∂Ω0(t) satisfying

(i) S(z) = z on ∂Ω0(t);

(ii) S is meromorphic in Ω0(t) and has simple poles at
c1, . . . , cl with respective residues tα1/π, . . . , tαl/π,

then, ∀f : holomorphic in a nb’d of Ω0(t),∫
Ω0(t)

f dm =
1

2i

∫
∂Ω0(t)

f(z)z dz

=
1

2i

∫
∂Ω0(t)

f(z)S(z) dz = t
l∑

j=1

αjf(cj).

Hence, Ω0(t) is expected to be the desired q. d.
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Outline of Proof

.

. .
1 Case l = 2

⇒ c1 = i, c2 = −i, α1 = 1

(a) construction of Ω0(t) and its estimate
(b) holomorphic class → SL1

.

.

.

2 Case l ≥ 3

(c) semi-group property of q. d. :

Ω

 l∑
j=1

νj

 = Ω

(
χ

Ω
(∑l−1

j=1 νj

) + νl

)

(d) induction on l
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(a) construction of Ω0(t) and its estimate

Example. (the Schwarz function of ∂D(0, 1))

S(z) :=
1

z
.

Note that R(z) := S(z) = z/|z|2 is the reflection associated to
the unit circle ∂D(0, 1).
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(a) construction of Ω0(t) and its estimate

We define

Ω0(t) := ϕ (D(0, 1)) ,

S := ϕ ◦ R ◦ ϕ−1,

where

ϕ(z) :=
ab(z − ic)

z2 + b2
+ ibc, R(z) = 1/z.

(a(t), b(t), c(t) : parameters)
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(a) construction of Ω0(t) and its estimate

We define

Ω0(t) := ϕ (D(0, 1)) , S := ϕ ◦ R ◦ ϕ−1,

where

ϕ(z) :=
ab(z − ic)

z2 + b2
+ ibc, R(z) = 1/z.

(a(t), b(t), c(t) : parameters)

⇒ • S is the Schwarz function of ∂Ω0(t), i.e., S satisfies (i).

• Choose a, b, c, appropriately so that S satisfies (ii).
• a(t) = a1t + a2 + · · · ,

b(t) = b1t
1/2 + b2t

−1/2 + · · · ,
c(t) = c1t

1/2 + c2t
−1/2 + · · · .

• Estimate |ϕ(z) − wl|, z ∈ ∂D(0, 1).

Michiaki Onodera Asymptotics of Laplacian growth with multiple point sources



Asymptotic shape of the free boundary
Stability of the free boundary

Hele-Shaw flows
Weak solutions and Quadrature domains
Main result and its proof

.

.

(a) construction of Ω0(t) and its estimate

We define

Ω0(t) := ϕ (D(0, 1)) , S := ϕ ◦ R ◦ ϕ−1,

where

ϕ(z) :=
ab(z − ic)

z2 + b2
+ ibc, R(z) = 1/z.

(a(t), b(t), c(t) : parameters)

⇒ • S is the Schwarz function of ∂Ω0(t), i.e., S satisfies (i).
• Choose a, b, c, appropriately so that S satisfies (ii).

• a(t) = a1t + a2 + · · · ,
b(t) = b1t

1/2 + b2t
−1/2 + · · · ,

c(t) = c1t
1/2 + c2t

−1/2 + · · · .
• Estimate |ϕ(z) − wl|, z ∈ ∂D(0, 1).

Michiaki Onodera Asymptotics of Laplacian growth with multiple point sources



Asymptotic shape of the free boundary
Stability of the free boundary

Hele-Shaw flows
Weak solutions and Quadrature domains
Main result and its proof

.

.

(a) construction of Ω0(t) and its estimate

We define

Ω0(t) := ϕ (D(0, 1)) , S := ϕ ◦ R ◦ ϕ−1,

where

ϕ(z) :=
ab(z − ic)

z2 + b2
+ ibc, R(z) = 1/z.

(a(t), b(t), c(t) : parameters)

⇒ • S is the Schwarz function of ∂Ω0(t), i.e., S satisfies (i).
• Choose a, b, c, appropriately so that S satisfies (ii).
• a(t) = a1t + a2 + · · · ,

b(t) = b1t
1/2 + b2t

−1/2 + · · · ,
c(t) = c1t

1/2 + c2t
−1/2 + · · · .

• Estimate |ϕ(z) − wl|, z ∈ ∂D(0, 1).

Michiaki Onodera Asymptotics of Laplacian growth with multiple point sources



Asymptotic shape of the free boundary
Stability of the free boundary

Hele-Shaw flows
Weak solutions and Quadrature domains
Main result and its proof

.

.

(a) construction of Ω0(t) and its estimate

We define

Ω0(t) := ϕ (D(0, 1)) , S := ϕ ◦ R ◦ ϕ−1,

where

ϕ(z) :=
ab(z − ic)

z2 + b2
+ ibc, R(z) = 1/z.

(a(t), b(t), c(t) : parameters)

⇒ • S is the Schwarz function of ∂Ω0(t), i.e., S satisfies (i).
• Choose a, b, c, appropriately so that S satisfies (ii).
• a(t) = a1t + a2 + · · · ,

b(t) = b1t
1/2 + b2t

−1/2 + · · · ,
c(t) = c1t

1/2 + c2t
−1/2 + · · · .

• Estimate |ϕ(z) − wl|, z ∈ ∂D(0, 1).

Michiaki Onodera Asymptotics of Laplacian growth with multiple point sources



Asymptotic shape of the free boundary
Stability of the free boundary

Hele-Shaw flows
Weak solutions and Quadrature domains
Main result and its proof

.

.

Outline of Proof

.

. .
1 Case l = 2

(a) construction of Ω0(t) and its estimate
(b) holomorphic class → SL1

.

.

.

2 Case l ≥ 3

(c) semi-group property of q. d. :

Ω

 l∑
j=1

νj

 = Ω

(
χ

Ω
(∑l−1

j=1 νj

) + νl

)

(d) induction on l
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(d) induction on l

Ω

t

3∑
j=1

αjδcj


= Ω

(
χΩ(t(α1δc1+α2δc2))

+ tα3δc3

)

≈ Ω

(
χ
D

(
α1c1+α2c2

α1+α2
,
√

t
π
(α1+α2)

) + tα3δc3

)
= Ω

(
t(α1 + α2)δα1c1+α2c2

α1+α2

+ tα3δc3

)

≈ D

α1c1 + α2c2 + α3c3

α1 + α2 + α3
,

√√√√√ t

π

 3∑
j=1

αj



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Derivation of an evolution equation


(1) −∆p = α1δi + α2δ−i in Ω(t)
(2) p = 0 on ∂Ω(t)
(3) −∂np = vn on ∂Ω(t)

Exact solution

ϕt(z) :=
ab(z − ic)

z2 + b2
+ ibc,

Ω0(t) := ϕt(D),

{Ω0(t)}t>t0 : classical solution.

Q. What if the initial domain Ω(t0) is close enough to Ω0(t0)?
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Derivation of an evolution equation


(1) −∆p = α1δi + α2δ−i in Ω(t)
(2) p = 0 on ∂Ω(t)
(3) −∂np = vn on ∂Ω(t)

Framework

For r ∈ C(∂D), set
∂Dr :=

{
(1 + r(ξ))ξ | ξ ∈ ∂D

}
.

• (p, {Ω(t)})
↓

Assume Ω(t) = ϕt(Dr(·,t)).
↓

• r : a non-local evolution equation
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Derivation of an evolution equation

∂tr =
−〈∇p ◦ ϕ, (Dwϕ)n〉 − 〈∂tϕ, (Dwϕ)n〉

det(Dwϕ) · 〈ξ, n〉
=: F(r(t), t)

Framework

For r ∈ C(∂D), set
∂Dr :=

{
(1 + r(ξ))ξ | ξ ∈ ∂D

}
.

• (p, {Ω(t)})
↓

Assume Ω(t) = ϕt(Dr(·,t)).
↓

• r : a non-local evolution equation
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∂tr =
−〈∇p ◦ ϕ, (Dwϕ)n〉 − 〈∂tϕ, (Dwϕ)n〉

det(Dwϕ) · 〈ξ, n〉
=: F(r(t), t)

Framework

For r ∈ C(∂D), set
∂Dr :=

{
(1 + r(ξ))ξ | ξ ∈ ∂D

}
.

• (p, {Ω(t)})
↓

Assume Ω(t) = ϕt(Dr(·,t)).
↓

• r : a non-local evolution equation • r ≡ 0 ⇔ {Ω0(t)}t>t0 .
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Theorem

Evolution equation in h1,γ(∂D){
r′ = F(r, t), t > t0,
r(t0) = r0 ∈ h2,γ(∂D),

where F(·, t) : h2,γ(∂D) → h1,γ(∂D), F(0, t) = 0.

The little Hölder space

hk,γ(∂D) := C∞(∂D)
Ck,γ(∂D)

.

Note that for 0 < γ < γ′ < 1,

Ck,γ′ ⊂ hk,γ ⊂ Ck,γ .
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.

Theorem

Evolution equation in h1,γ(∂D){
r′ = F(r, t), t > t0,
r(t0) = r0 ∈ h2,γ(∂D),

where F(·, t) : h2,γ(∂D) → h1,γ(∂D), F(0, t) = 0.

Theorem
Suppose t0 is sufficiently large. For ε > 0, there are δ,M > 0
s.t. if ‖r0‖h2,γ < δ, then there exists a unique solution
r ∈ C([t0,∞);h2,γ) ∩ C1([t0,∞);h1,γ) satisfying

‖r(t)‖h2,γ + t‖r′(t)‖h1,γ ≤ Mt−1+ε‖r0‖h2,γ .
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Outline of Proof

Evolution equation in h1,γ{
r′ = F(r, t), t > t0, F(·, t) : h2,γ → h1,γ ,
r(t0) = r0 ∈ h2,γ , F(0, t) = 0.

Lemma 1 t · DrF(r, t) → A as t → ∞, r → 0.

Lemma 2 A : sectorial in h1,γ , sup{Reλ | λ ∈ σ(A)} = −1.

Set τ := log(t/t0) and r̃(τ ) := r(t), then
(P) r̃′(τ ) = t · r′(t) = t · F(r, t) = Ar̃ + G(r̃, τ ),

where G(0, τ ) = 0, Dr̃G(r̃, τ ) → 0 as t → ∞, r̃ → 0.

A : h2,γ → h1,γ , G(·, τ ) : h2,γ → h1,γ .

r̃ ∈ C([0,∞);h2,γ) ⇒ G(r̃, τ ) ∈ C([0,∞);h1,γ)
⇒ r̃ ∈ C([0,∞);h2,γ)

? • Known: G = G(r̃), Dr̃G(0) = 0

(∵ maximal regularity in hk,γ (’79 Da Prato & Grisvard)).
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r(t0) = r0 ∈ h2,γ , F(0, t) = 0.

Lemma 1 t · DrF(r, t) → A as t → ∞, r → 0.

Lemma 2 A : sectorial in h1,γ , sup{Reλ | λ ∈ σ(A)} = −1.

Set τ := log(t/t0) and r̃(τ ) := r(t), then
(P) r̃′(τ ) = t · r′(t) = t · F(r, t) = Ar̃ + G(r̃, τ ),

where G(0, τ ) = 0, Dr̃G(r̃, τ ) → 0 as t → ∞, r̃ → 0.

A : h2,γ → h1,γ , G(·, τ ) : h2,γ → h1,γ .
r̃ ∈ C([0,∞);h2,γ) ⇒ G(r̃, τ ) ∈ C([0,∞);h1,γ)
⇒ r̃ ∈ C([0,∞);h2,γ)

?

• Known: G = G(r̃), Dr̃G(0) = 0
(∵ maximal regularity in hk,γ (’79 Da Prato & Grisvard)).
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Lemma 3 ‖r0‖h2,γ < δ ⇒ ∃r̃: solution of (P) satisfying
‖r̃(τ )‖h2,γ + ‖r̃′(τ )‖h1,γ ≤ M ′e(−1+ε)τ‖r0‖h2,γ .

∴ ‖r(t)‖h2,γ + t‖r′(t)‖h1,γ ≤ Mt−1+ε‖r0‖h2,γ .
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