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Hele-Shaw flows
A solutions and Quadrature domains
n result and its proof

Asymptotic shape of the free boundary

Hele-Shaw flows

%Q’g s
Q(0): initial domain Q(O%/
€1,y ..., ¢ € 2(0): injection points N :
a1, ..., ap > 0: injection rates ¢ e

/
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Hele-Shaw flows
Neak solutions and Quadrature domains

Asymptotic shape of the free boundary
Main result and its proof

Hele-Shaw flows

(1) —Ap=Y',a;0, in€Q(t)
(2) p=20 on 90Q(t)
(3) —Oup=1vn on 92(t)

p(z,t): pressure of fluid p—

Q(t): fluid domain at time t > 0
5ch the Dirac measure

V = —Vp: velocity field
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Hele-Shaw flows
Neak solutions and Quadrature domains
Main result and its proof

Asymptotic shape of the free boundary

Hele-Shaw flows

(1) —Ap=3'_ 56, inQ(t)
(2) p=0 on 90Q(t)
(3) —Oup=vn on AN(t)

l
(1),(2) = p(z,t) = > 0;Ge; ) (2)
j=1

(Ge; () Green's function for —A)
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Hele-Shaw flows
Weak solutions and Quadrature domains
Main result and its proof

Asymptotic shape of the free boundary

Hele-Shaw flows

1) —Ap=Y}_, a6, inQ()
(2) p=20 on 90(t)
(3) —Oup=1vn on 992(t)

l
(1),(2) = p(z,t) = D> @jGej 0 (2)
j=1

Find {Q(t)}t>0 s.t.

l
_ Z 8Gc”ﬂ(t) = v, on 9N(t).
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Hele-Sha
Weak solutions and Quadrature domains
Main result and its proof

Asymptotic shape of the free boundary

Weak solutions

l

G o)
A e — E —— = vy, o0(t).
ssum 2 o v, on 0S2(t)

For any s € SL(Q(t)) (subharmonic and L1),

/ s(z)dm
Q2(t)\2(0)
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Hele-Shav VS
Weak solutions and Quadrature domains
Main result and its proof

Asymptotic shape of the free boundary

Weak solutions

l

G o)
A e — E —— = vy, o0(t).
ssum 2 o v, on 0S2(t)

For any s € SL(Q(t)) (subharmonic and L1),

t
/ s(z)dm = / / s(z) - vpdodr
Q((t)\22(0) 0 JaQ(T)
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Hele-Shaw flows
Weak solutions and Quadrature domains
Main result and its proof

Asymptotic shape of the free boundary

Weak solutions

l

G o)
A e — e N 00 (t).
ssum j;ag O v, on (t)

For any s € SL(Q(t)) (subharmonic and L1),

t
/ s(z)dm = / / s(z) - vy dodr
Q(t)\2(0) 0 JoQ(r)

L t 8G.. a(r
= Z aj/ / s(z) - <—5’Q()> do dr
j=1 0 JoQ(r) n
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Asymptotic shape of the free boundary enitd) @uedlEiue degEis

Main result and its proof

Weak solutions

l G, o)
Assume — Z ajaji’ = v, on 0S(t).
n

i=1

For any s € SL(2(t)) (subharmonic and L1),

t
/ s(z)dm = / / s(z) - v, dodr
Q(t)\2(0) o0Q(T)
0G.; a(r
/ / s(z) - ( gkl )> do drt
o0(r) on

l t
> Z aj/ s(cj)dr
=1 70
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Asymptotic shape of the free boundary Weak solu enitd) @uedlEiue degEis

Main result and its proof

Weak solutions

l G, o)
Assume — Z ajaji’ = v, on 0S(t).
n

i=1

For any s € SL(2(t)) (subharmonic and L1),

t
/ s(z)dm = / / s(z) - v, dodr
Q(t)\2(0) o0Q(T)
0G.; a(r
/ / s(z) - ( gkl )> do drt
o0(r) on

l t
> Zaj/ s(cj)dr :tZajs(Cj).
j=1 0 j=1
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Hele-Sha
Weak solutions and Quadrature domains
Main result and its proof

Asymptotic shape of the free boundary

Weak solutions

l
/ sdm—|—t2ajs(0j) S/ sdm
Q(0) =1 Q(t)

) (Vs € SLL(Q(t))),

m(Q(t)) < oco.
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Hele-Shaw flows
Weak solutions and Quadrature domains
Main result and its proof

Asymptotic shape of the free boundary

Weak solutions

’Weak solution ‘
For each t > 0, find Q(¢) s.t.

l
/ sdm—l—tZajs(cj) S/ sdm
Q2(0) =1 Q(t)

(Vs € SLY(Q(1))),

(*)

m(Q(t)) < oo.
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Hele-Shaw flows
Weak solutions and Quadrature domains
Main result and its proof

Asymptotic shape of the free boundary

Weak solutions

’Weak solution ‘
For each t > 0, find Q(¢) s.t.

l
/ sdm—l—tZajs(cj) S/ sdm
2(0) =1 Q(t)

(Vs € SLY(Q(t))),

(*)

m(Q(t)) < oo.

’existence of weak solution [Sakai (1982)]‘

Let ©(0) be a domain with m(2(0)) < oo.
Then, there exists a domain Q(t) satisfying ().

’uniqueness of weak solution [Sakai (1982)] ‘

If Q(t) and Q(t)’ satisfy (*), then xq) = Xa@t) Mm-a.e.
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Hele-Shaw flows
Weak solutions and Quadrature domains
Main result and its proof

Asymptotic shape of the free boundary

Weak solutions

’Weak solution‘ Quadrature Domain of ¢ a;d;
For each t > 0, find Q(¢) s.t.

l
/ sdm—l—tZajs(cj) S/ sdm
2(0) =1 Q(t)

(Vs € SLY(Q(t))),

(*)

m(Q(t)) < oo.

’existence of weak solution [Sakai (1982)]‘

Let ©(0) be a domain with m(2(0)) < oo.
Then, there exists a domain Q(t) satisfying ().

’uniqueness of weak solution [Sakai (1982)] ‘

If Q(t) and Q(t)’ satisfy (*), then xq) = Xa@t) Mm-a.e.
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Hele NS
Weak solutions and Quadrature domains
Main result and its proof

Asymptotic shape of the free boundary

Known result [Sakai (1998)]

Let ©2(0) C D(c,7) and m(2(0)) + ¢ 2;21 aj > 4nr?.
Then,

D(c,R(t) — ) C Q(t) C D(c, R(t) +7)

holds, where R(t) := \/ jr (m(n(())) +eyl aj).

0Q)
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Hele-Shaw /s
Weak solu and Quadrature domains
Main result and its proof

Asymptotic shape of the free boundary

Theorem

Let Q(0) C D(c,r). Then, for sufficiently large t > 0,
D (wl,R(t) ~ el_(t)) C Q) CD (wl,R(t) + sf(t))
holds, where
l
ijl a;Cj
1
Zj:l Qg

» R(t) :=

wy 1=
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Asymptotic shape of the free boundary

s
o ons and Quadrature domains
Main result and its proof

Theorem

Let Q(0) C D(c,r). Then, for sufficiently large t > 0,
D (wl,R(t) - el_(t)) c Q) c D (wl,R(t) + sf(t))

holds, where

wy 1=

1 i—1
— ™ (6 % _1 O _ _
g (t) := - > _Z"—l S wi—r —e)? [ tTY2 oY),
V5o \ 5 (ot )
+ ™ : o Zi;ll o 2 72 —1/2
e (t):= I > : 3 [wi—1— " + 2|t
k=19 \ 2 (Zi‘:l ak)

+o@™ 1.
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Asymptotic shape of the free boundary

s and Quadrature domains
nd its proof

Theorem
Let ©(0) C D(c,r). Then, for sufficiently larget > 0,
D (wl,R(t) ~ el_(t)) C Q) CD (wl, R(t) + sl"'(t))

holds, where
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Hele-Shav
Weak solutic nd Quadrature domains
Main result and its proof

Asymptotic shape of the free boundary

Outline of Proof

Recall the Hele-Shaw problem: Find (%) s.t.

l
i S(Cj sam S 1 .
/ﬂ(o)sdm—FtZa] (¢;) g/ dm (Vs € SLY(Q(t)))

j=1 Q(t)
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Asymptotic shape of the free boundary ) EuedtEie demeis

Maln result and its proof

Outline of Proof

Recall the Hele-Shaw problem: Find €2(t) s.t.

1
/Q(o) sdm+t Z ajs(cj) < /Q(t) sdm (Vs € SL'(Q(¢))) .
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Hele-Shav
Weak solutic nd Quadrature domains
Main result and its proof

Asymptotic shape of the free boundary

Outline of Proof

’the Schwarz function‘ the Schwarz function of 8Qg(t).
If we have a holomorphic func. in a nb'd of 9€20(t) satisfying

(i) S(z) =z on 0(1);
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Hele-Shaw /s
Weak solu and Quadrature domains
Main result and its proof

Asymptotic shape of the free boundary

Outline of Proof

’the Schwarz function‘ the Schwarz function of 8Qg(t).
If we have a holomorphic func. in a nb'd of 9Q¢(t) satisfying
(i) S(z) =z on 8N (1);
(i) S is meromorphic in Q¢(t) and has simple poles at
C1,...,cp with respective residues tay /7, ..., tay/m,
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Hel
We. and Quadrature domains
Main result and its proof

Asymptotic shape of the free boundary

Outline of Proof

’the Schwarz function‘ the Schwarz function of 8Qg(t).
If we have a holomorphic func. in a nb'd of 9Q¢(t) satisfying
(i) S(z) =z on 8N (1);
(i) S is meromorphic in Q¢(t) and has simple poles at
C1,...,cp with respective residues tay /7, ..., tay/m,

then, Vf: holomorphic in a nb'd of Q¢(t),

1
/ fdm = — f(z)zdz
Qo(t) 21 Jaqu(t)
1 l
= — z2)S(z)dz =t o f(cq).
2t o TS 82 = Y 05
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. Hele-Sha
Asymptotic shape of the free boundary Weak and Quadrature domains

Main result and its proof

Outline of Proof

’the Schwarz function‘ the Schwarz function of 8Qg(t).
If we have a holomorphic func. in a nb'd of 9Q¢(t) satisfying
(i) S(z) =z on 8N (1);
(i) S is meromorphic in Q¢(t) and has simple poles at
C1,...,cp with respective residues tay /7, ..., tay/m,

then, Vf: holomorphic in a nb'd of Q¢(t),

1
/ fdm = — f(z)zdz
Qo(t) 21 Jaqu(t)

l
_ ! F(2)S(2)dz =t ajf(e)).
i=1

2i ()

Hence, Qo(t) is expected to be the desired q. d.
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Asymptotic shape of the free boundary ) EuedtEie demeis

Maln result and its proof

Outline of Proof

Q Casel =2

(a) construction of Q¢(t) and its estimate
(b) holomorphic class — SL?!

Q Casel >3
(c) semi-group property of q. d. :

l
v =Q(x -1 +Vz)
) =2 (xa(zizi)

(d) induction on 1
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Asymptotic shape of the free boundary ) EuedtEie demeis

Maln result and its proof

Outline of Proof

Q@ Casel =2 = ec1=1,ca=—1 a1 =1
(a) construction of Q¢(t) and its estimate
(b) holomorphic class — SL?!

Q Casel >3
(c) semi-group property of q. d. :

l
v =Q(x -1 +Vz)
) =2 (xa(zizi)

(d) induction on 1
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Hel
We. and Quadrature domains
Main result and its proof

Asymptotic shape of the free boundary

(a) construction of €24(t) and its estimate

Example. (the Schwarz function of 8D(0,1))

S(z) := i

Note that R(z) := S(z) = z/|z|? is the reflection associated to
the unit circle 8D (0, 1).

R

Do, 1)
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ele-Sha
Weak 1 Quadrature domains
Main result and its proof

Asymptotic shape of the free boundary

(a) construction of €24(t) and its estimate

We define

QU(t) =Y (D(()’ 1)) ’
where

ab(z —ic) . _
p(z) := T +ibe, R(z) =1/Z.

(a(t), b(t), c(t) : parameters)

!

—>

D@1
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ele-Sha
Weak 1 Quadrature domains
Main result and its proof

Asymptotic shape of the free boundary

(a) construction of €24(t) and its estimate

We define
Qo(t) := ¢ (D(0,1)), S:=poRop 1,

where

ab(z —ic) . _
p(z) := T +ibe, R(z) =1/Z.

(a(t), b(t), c(t) : parameters)

!

—>

D@1
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ele-Sha
Weak 1 Quadrature domains
Main result and its proof

Asymptotic shape of the free boundary

(a) construction of €24(t) and its estimate

We define
Qo(t) := ¢ (D(0,1)), S:=poRop

where

ab(z —ic) . -
p(z) := ST +ibe, R(z) =1/Z.

(a(t), b(t), c(t) : parameters)

= e S is the Schwarz function of Q¢ (t), i.e., S satisfies (i).
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ele-Sha
Weak and Quadrature domains
Main result and its proof

Asymptotic shape of the free boundary

(a) construction of €24(t) and its estimate

We define
Qo(t) := ¢ (D(0,1)), S:=poRop

where

ab(z —ic) . -
p(z) := ST +ibe, R(z) =1/Z.

(a(t), b(t), c(t) : parameters)

= e S is the Schwarz function of Q¢ (t), i.e., S satisfies (i).
e Choose a, b, ¢, appropriately so that S satisfies (ii).

Michiaki Onodera Asymptotics of Laplacian growth with multiple point sources



ele-Sha
Weak and Quadrature domains
Main result and its proof

Asymptotic shape of the free boundary

(a) construction of €24(t) and its estimate

We define
Qo(t) := ¢ (D(0,1)), S:=poRop

where

ab(z —ic) . -
p(z) := ST +ibe, R(z) =1/Z.

(a(t), b(t), c(t) : parameters)

= e S is the Schwarz function of Q¢ (t), i.e., S satisfies (i).
e Choose a, b, ¢, appropriately so that S satisfies (ii).
ea(t)=ait+az+---,

b(t) = byt"/2 4 bot= /2 4 ... |
c(t) = c1tt/2 4 egt™V2 ...,

Michiaki Onodera Asymptotics of Laplacian growth with multiple point sources



Asymptotic shape of the free boundary Wea s and Quadrature domains

Main result and its proof

(a) construction of €24(t) and its estimate

We define
Qo(t) := ¢ (D(0,1)), S:=poRop

where

ab(z —ic) . -
p(z) := ST +ibe, R(z) =1/Z.

(a(t), b(t), c(t) : parameters)

= e S is the Schwarz function of Q¢ (t), i.e., S satisfies (i).
e Choose a, b, ¢, appropriately so that S satisfies (ii).
ea(t)=ait+az+---,

b(t) = byt"/2 4 bot= /2 4 ... |
c(t) = ertt/? 4 cot=/2 4.0,
e Estimate |¢(z) — wi|, =z € 8D(0,1).



Asymptotic shape of the free boundary ) EuedtEie demeis

Maln result and its proof

Outline of Proof

Q Casel =2

(a) construction of Q¢(t) and its estimate
(b) holomorphic class — SL?!

Q Casel >3
(c) semi-group property of q. d. :

l
v =Q(x -1 +Vz)
) =2 (xa(zizi)

(d) induction on 1
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Asymptotic shape of the free boundary ttons ) GuERlETE demElis

Main result and its proof

(d) induction on 1

3
Q1lt Z aj5cj
Jj=1

=0 (Xﬂ(t(a15c1+a25C2)) + ta35c3>
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Hele-Sh s
Weak solutions and Quadrature domains
Main result and its proof

Asymptotic shape of the free boundary

(d) induction on 1

3
Q1lt Z ajécj
i=t
=0 (Xﬂ(t(a15c1+025c2)) + ta35c3>

@ Xp(muatea, fHaran) T 1080

Q

Michiaki Onodera Asymptotics of Laplacian growth with multiple point sources



Asymptotic shape of the free boundary ) EuedtEie demeis

Maln result and its proof

(d) induction on 1

3
t:g:(1j5
=1
= XQ(t(a15c1+a25c )) + ta3603>

= tagd
< a1‘;211—§§cz, /%(a1+a2)) + 3 03>

= Q (t(al + a2)6a1c1+a2c2 + ta36c3>

aj+tag
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Hele-Shav
Weak solutic nd Quadrature domains
Main result and its proof

Asymptotic shape of the free boundary

(d) induction on 1

3
t Z aj5
=
Xﬂ(t(a15c1+a25c ) + ta3603>

( p(eetezes [1(a, yay)) T ta3503>

t(ar + a2)daje;+age, + ta3503>

aj+tag

Q

~ D

o1 + a2 + as

(0161 + azce + ages
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Derivation of an evolution equation

Stability of the free boundary Main result and its proof

Stability of the free boundary
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Derivation of an evolution equation
Stability of the free boundary Main result and its proof

Derivation of an evolution equation

(1) —Ap = o16; + a20_; in Q(t)

(2) p=0 on 90(t)
(3) —0Onp=w, on 90(t)
ab(z —ic) . Pt
pi(z) == ERe + ibe, (jl
Qo(t) := oy(D), e,

{Q0(t) }+>t,: classical solution.

Q. What if the initial domain €2(%¢) is close enough to Q(to)?
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Derivation of an evolution equation
Stability of the free boundary Main result and its proof

Derivation of an evolution equation

(1) —Ap = o16; + a20_; in Q(t)

(2) p=0 on 90(t)
(3) —Omp =, on A0(t)
ab(z — ic) Pt
pi(z) == 2 + ibe, (jl D,
Q(t) == (D), 2,

{Q0(t) }+>t,: classical solution.

Q. What if the initial domain €2(%¢) is close enough to Q(to)?
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Derivation of an evolution equation
Stability of the free boundary Main result and its proof

Derivation of an evolution equation

(1) —Ap = a16; + azd_; in Q(t)

(2) p=20 on 90(t)
(3) —0Onwp=v, on 90(t)
I
For r € C(8D), set Oy
0D, := {(1+r(£))€| £ € OD}. — VB
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Derivation of an evolution equation
Stability of the free boundary Main result and its proof

Derivation of an evolution equation

(1) —Ap = a16; + azd_; in Q(t)

(2) p=20 on 90(t)
(3) —0Onwp=v, on 90(t)
I
For r € C(8D), set Oy
0D, := {(1+r(£))€| £ € OD}. — VB

* (7 (20D
Assume Q(t) = @¢(Dy(.p))-

! N

e 7 : a non-local evolution equation
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Derivation of an evolution equation
Stability of the free boundary Main result and its proof

Derivation of an evolution equation

Oyr = _<VP o @, (chp)n) — <8t80, (chp)n)
det(Dpr) : (57 n)

=: F(r(t),t)

9

For r € C(8D), set Oy
8D, := {(1+r(§))¢ | £ € 9D} — D

* (20D
Assume Q(t) = @i(Dy(. 1)) D
4 t \ /

e 7 : a non-local evolution equation
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Derivation of an evolution equation
Stability of the free boundary Main result and its proof

Derivation of an evolution equation

o — —(VPO ¢ (Dup)n) — (B, (Dwip)n)
t det(Duep) - (6,1)

=: F(r(t),t)

Framework

For r € C(8D), set ‘ Oy
oD, :={(1+7r(£))¢| € € OD}. — B

. (, {2(5)})
1

Assume Q(t) = @¢(Dy(.1))- D
+ t \ —

e 7 : a non-local evolution equation e r =0 < {Qo(t) }r>t,-
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Derivation of an evolution equation
Stability of the free boundary Main result and its proof

Evolution equation in A1 (8D)

r' = F(r,t), t> to,
’I"(to) =1Tg € h2’7(¢9D),

where F(-,t) : h27(8D) — h1Y(8D), F(0,t) = 0.
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Derivation of an evolution equation
Stability of the free boundary Main result and its proof

Evolution equation in A1 (8D)

r' = F(r,t), t> to,
’I"(to) =1Tg € h2’7(¢9D),

where F(-,t) : h27(8D) — h1Y(8D), F(0,t) = 0.

The little Holder space

-k,
hk (D) := C=(@D) ¢ P,

Michiaki Onodera Asymptotics of Laplacian growth with multiple point sources



Derivation of an evolution equation
Stability of the free boundary Main result and its proof

Evolution equation in A1 (8D)

r' = F(r,t), t> to,
’I"(to) =179 € h2”7(¢9D),

where F(-,t) : h27(8D) — h1Y(8D), F(0,t) = 0.

Suppose tq is sufficiently large. For e > 0, there are §, M > 0
s.t. if ||ro||p2.y < 6, then there exists a unique solution
r € C([to, o0); h%7) N C*([te, 00); K1) satisfying

17 (@) lh2er + 7 (@) lln1n < M2 |[ro] p2.y
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Derivation of an evolution equation
Stability of the free boundary Main result and its proof

Outline of Proof

’ Evolution equation in h1:Y ‘

r’ = F(r,t), t>to, F(,t) : RZY - B,
r(to) = ro € h27, F(0,t) = 0.

[Lemma 1]¢- D, F(r,t) - A ast — oo, r — 0.
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Derivation of an evolution equation
Stability of the free boundary Main result and its proof

Outline of Proof

’ Evolution equation in h1:Y ‘

{ v’ = F(r,t), t>to, F(-st) : B> — 17,

r(to) = ro € h?7, F(0,t) = 0.

[Lemma 1]¢- D, F(r,t) - A ast — oo, r — 0.
A : sectorial in h17, sup{ReX | A € 0(A)} = —1.

('97 Escher & Simonett, '09 Vondenhoff)
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Derivation of an evolution equation
Stability of the free boundary Main result and its proof

Outline of Proof

’ Evolution equation in h1:Y ‘

r’ = F(r,t), t>to, F(,t) : RZY - B,
r(to) = ro € h27, F(0,t) = 0.

[Lemma 1]¢- D, F(r,t) - A ast — oo, r — 0.
A : sectorial in b7, sup{ReX | A € 0(A)} = —1.

Set T := log(t/to) and 7(7) := r(t), then
Py #(r)=t-7'(t) =t -F(r,t) = A7 + G(¥,T),
where G(0,7) =0, DzG(¥,7) > 0ast — oo, 7 — 0.
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Derivation of an evolution equation
Stability of the free boundary Main result and its proof

Outline of Proof

’ Evolution equation in h1:Y ‘

r’ = F(r,t), t>to, F(,t) : RZY - B,
r(to) = ro € h27, F(0,t) = 0.

[Lemma 1]¢- D, F(r,t) - A ast — oo, r — 0.
A : sectorial in b7, sup{ReX | A € 0(A)} = —1.

Set T := log(t/to) and 7(7) := r(t), then
Py #(r)=t-7'(t) =t -F(r,t) = A7 + G(¥,T),
where G(0,7) =0, DzG(¥,7) > 0ast — oo, 7 — 0.

A h27 — hYY, G(-,7) : h37 — 1.
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Derivation of an evolution equation
Stability of the free boundary Main result and its proof

Outline of Proof

’ Evolution equation in h1:Y ‘

r’ = F(r,t), t>to, F(,t) : RZY - B,
r(to) = ro € h27, F(0,t) = 0.

[Lemma 1]¢- D, F(r,t) - A ast — oo, r — 0.
A : sectorial in b7, sup{ReX | A € 0(A)} = —1.

Set T := log(t/to) and 7(7) := r(t), then

Py #(r)=t-7'(t) =t -F(r,t) = A7 + G(7, 1),
where G(0,7) =0, DzG(¥,7) = 0ast — oo, 7 — 0.
A:h?Y — A, G(,7) : A7 — R,
7 € C([0,00);h27)
= 7 € C([0, 00); h27)?
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Derivation of an evolution equation
Stability of the free boundary Main result and its proof

Outline of Proof

’ Evolution equation in h1:Y ‘

r’ = F(r,t), t>to, F(,t) : RZY - B,
r(to) = ro € h27, F(0,t) = 0.

[Lemma 1]¢- D, F(r,t) - A ast — oo, r — 0.
A : sectorial in b7, sup{ReX | A € 0(A)} = —1.

Set T := log(t/to) and 7(7) := r(t), then

Py #(r)y=t-7'(t) =t -F(r,t) = A7 + G(7, 1),
where G(0,7) =0, DzG(¥,7) = 0ast — oo, 7 — 0.
A:h?Y — A, G(,7) : A7 — R,
7 € C([0,00); R*7) = G(7,7) € C([0, 00); ')
= 7 € C([0, 00); h27)?
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Derivation of an evolution equation
Stability of the free boundary Main result and its proof

Outline of Proof

’ Evolution equation in h1:Y ‘

r’ = F(r,t), t>to, F(,t) : RZY - B,
r(to) = ro € h27, F(0,t) = 0.

[Lemma 1]¢- D, F(r,t) - A ast — oo, r — 0.
A : sectorial in b7, sup{ReX | A € 0(A)} = —1.

Set T := log(t/to) and 7(7) := r(t), then

Py #(r)y=t-7'(t) =t -F(r,t) = A7 + G(7, 1),
where G(0,7) =0, DzG(¥,7) = 0ast — oo, 7 — 0.
A h?7 — b7, G(-,7) : k%7 — b7,
T € C([o, OO);h2"7) = G(7, 1) € C([0, 00); hl"y)
= 7 € C([0, 00); h*7)
(.- maximal regularity in h*" ('79 Da Prato & Grisvard)).
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Derivation of an evolution equation
Stability of the free boundary Main result and its proof

Outline of Proof

’ Evolution equation in h1:Y ‘

r’ = F(r,t), t>to, F(,t) : RZY - B,
r(to) = ro € h27, F(0,t) = 0.

[Lemma 1]¢- D, F(r,t) - A ast — oo, r — 0.
A : sectorial in b7, sup{ReX | A € 0(A)} = —1.

Set T := log(t/to) and 7(7) := r(t), then

Py #(r)y=t-7'(t) =t -F(r,t) = A7 + G(7, 1),
where G(0,7) =0, DzG(¥,7) = 0ast — oo, 7 — 0.
A:h?Y — A, G(,7) : A7 — R,
7 € C([0,00); R*7) = G(7,7) € C([0,00); ')
= 7 € C([0,00); A%7) e Known: G = G(7), D7G(0) = 0
(.- maximal regularity in h*" ('79 Da Prato & Grisvard)).
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Derivation of an evolution equation
Stability of the free boundary Main result and its proof

Outline of Proof

’ Evolution equation in h1»Y ‘

r’ = F(r,t), t>to, F(-t) : K27 — B,
r(to) = ro € h?7, F(0,t) = 0.

t-D,,,.’F(r,t) — A ast— oo, r — 0.
A : sectorial in b7, sup{ReA | A € 6(A)} = —1.

Set T := log(t/to) and 7(7) := 7(t), then
Py #(r)=t-7'(t) =t -F(r,t) = A7 + G(7, 1),
where G(0,7) =0, DzG(7#,7) > 0ast — oo, 7 — 0.

llro||p2~» < & = 37: solution of (P) satisfying

17(T) In2r + 17 (7) ln1r < M7 e |7 | 2.0
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Derivation of an evolution equation
Stability of the free boundary Main result and its proof

Outline of Proof

’ Evolution equation in h1»Y ‘

r’ = F(r,t), t>to, F(-t) : K27 — B,
r(to) = ro € h?7, F(0,t) = 0.

t-D,,,.’F(r,t) — A ast— oo, r — 0.
A : sectorial in b7, sup{ReA | A € 6(A)} = —1.

Set T := log(t/to) and 7(7) := 7(t), then
Py #(r)=t-7'(t) =t -F(r,t) = A7 + G(7, 1),
where G(0,7) =0, DzG(7#,7) > 0ast — oo, 7 — 0.

llro||p2~» < & = 37: solution of (P) satisfying

17(T) In2r + 17 (7) ln1r < M7 e |7 | 2.0
2@ llza 4 e (@)llpry < METHEIro]|pa..
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