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Part I: Computation of Hele-Shaw flows near obstacles
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Hele-Shaw free boundary problem The Baiocchi transform.

Part I: Computation of Hele-Shaw flows near obstacles

Define the real-valued function on Q
(e.g. Cummings et al. 1999):

| =

u(z,z,t) = (zz — h(z,t) — h(z, t))
where g(z,t) = H(z,t).

— V2u=1inQand u, =u; =0
on 0NQ.

Also, Ou/0t = p.
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Hele-Shaw problem Baiocchi (“vortical") problem
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Example: circular blob with source at the origin

Hele-Shaw problem: Vortical problem:

—iv=C

(Note: zero net circulation)

p=—p;loglz| = _ —(z-R?/z) if z€Q
R(t) = \/Qt/m U_IV:{ i if z¢Q

— = —7R%2=—Qt.

Part I: Computation of Hele-Shaw flows near obstacles



Hele-Shaw free boundary flows near obstacles

Previous work:

(i) Exact solutions (infinite walls, wedges, corners, etc.): e.g.
Richardson (JFM 1981, EJAM 2001), Cummings (EJAM 1999),
Gustafsson & Vasil'ev (2006).

(ii) Numerical solutions e.g. Bogoyavlenskiy & Cotts (Phys. Rev.
E 2004)-random walk method.
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Hele-Shaw flows near obstacles: Baiocchi formulation

an

Task: seek steady vortex patch enclosing a point vortex (with zero
net circulation) such that tangential ‘velocity’ vanishes on the
obstacle boundary = contour dynamics.

e Contour dynamics with boundaries e.g. Johnson & McDonald

Proc. Roy. Soc. (2004), JFM (2005); Crowdy & Surana JFM
(2007).

e Contour dynamics: computation of steady solutions e.g.
Deem & Zabusky PRL (1978), McDonald Phys. Fluids 2005.
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Infinite straight wall

unknowns: r;, i =1, N

equations |u; — iv;| =0, i =1, N cf. Richardson’s explicit solution,
Solve by Newton's method. JFM 1981.
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Circular boundary

exterior source interior source
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Finite plate
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Circular disk encountering an infinite free boundary
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[I: Generalized Hele-Shaw flows: a Schwarz function

approach
(see McDonald, submitted to Eur. J. Appl. Math.)

Hele-Shaw flows subject to an external potential W(x, y)
(generalized Hele-Shaw flows) satisfy the free boundary problem

(see Entov & Etingof, Eur. J. Appl. Math. 2007)
N
V2¢:ZQ16(X_XJ:.V_)/J)7 (vayj)eQ)
j=1

gb:\U(X,y), (X7y)68§27

_ 09
Vn—%a (X,y)E@Q,

Q; are the hydrodynamic source strengths and v, is the normal

velocity of the boundary.
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Previous studies

(i) centrifugal potential (V = wr?/2)

e Entov, Etingof & Kleinbock 1995 (moment based method)

e Magdaleno, Rocco & Casademunt 2000 (modified
Polubarinova-Galin eq.)

e Crowdy 2002 (Cauchy transform)

(i) centrifugal potential, uniform gravity, ‘point charges’, etc.

e Entov & Etingof 2007 (moments, conformal mapping; steady
solutions)
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Derivation of the Schwarz function equation

Let z = g(z,t) on 0Q

__ Og  Og B .
V_v82+8t on 9Q. (v=U+1iV)
Since ¢ = V(z,z) = V(z,g(z,t)) on 01, then tangent to I
_0z 1[_0z 0z ov

Using (Davis 1974)

-1
0z og 0z  |og
ds ’ N

(1) becomes
U8 _ o[98 0" @

v+v— =

0z 0z Os '
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Derivation of the Schwarz function equation (cont.)

On 0Q z = g(z, t) and hence (2) gives

08y [ [0voz ovos
0z N Oz |0zds 0z 0s|’

LoV _0gov

:288201(2, g(z,t)).

Adding (1) and (3)

(3)

(4)

Finally, using v = 0w/Jz (w = complex potential) in (4) gives on

02

ow _10g 0%
dz 20t Oz
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Example 1: Evolution of a blob in a centrifugal potential
(see Crowdy, SIAM J. Appl. Math. 2002)

Here W = w|z|?/2 = wzg/2 (w = const.) and the governing
equation becomes

ow  Og 0
Consider the conformal map from the unit (-disk to Q(t)
R¢
z= ﬂa (7)

where R(t) and a(t), |a(t)| > 1, are real functions to be found.
Note

R¢/a?
2_a2

R 1 1
=— 8
222 (C—a_1+C+a_1)’ ()
has simple poles at ( = +a71. Let z(a™!) = z(t) = Ra/(1 — a*).
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Example 1: Blob in a centrifugal potential (cont.)

1 z(ah) N zee(a™)

As ¢=a: (—al z-—2z 2z(al)

+ O(z — z),

and finding the Laurent expansion of (6) about z = zy (0, w is
regular since there are no hydrodynamic singularities) gives

R2(1 + a*)
Aoae const,
7(t) = wzo(t), (9)

(c.f. Crowdy 2002).

(generalisation: z = R(¢/(¢N — aN) etc.)
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Example 2: Taylor-Saffman bubble

What is the shape and speed of an air bubble in an infinite
Hele-Shaw cell?

e steady bubble with speed U in positive Rz direction

e fluid speed at infinity is unity

e in bubble frame: w — (1 — U)z as z — oo

e UV =—Ux=—-U(z+ g)/2 (cf. uniform ‘gravitational’ field)
Schwarz function equation becomes:

2(1—U):—U<1+2§). (10)

Note g(z) — (U —2)z/U as z — oo = 0N is an ellipse (Millar
1990).
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Example 2: Taylor-Saffman bubble (cont.)

Map from the unit (-disk to outside of elliptical bubble

z= g + bC, (11)

where a > b > 0 are real constants; ellipse aspect ratio is
(a—b)/(a+ b). The Schwarz function of the ellipse is

a% — b?

a

g(z,t) = gz + C. (12)

Equating (12) with the behaviour g(z) — (U —2)z/U as z — oo
gives b/a = (U — 2)/U c.f. Taylor & Saffman (1959).
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Example 3: Hydrodynamic dipole with two electric
‘charges’

e steady flow
e hydrodynamic dipole of strength 1 at z=10

e point charges with strengths E at z=a (a € ®, a > 0) and
—Eatz=-a

v E e lz=a)e—a)

o . 13

a7 (27 a)lg 1 2) 3
As z — 0, 20,w = g + 20,V becomes
E g—a n

— | = — t. 14

4 8 [g + a} 21z +cons (14)

Let z(¢) be the map from the unit (-disk to Q s.t. as z — 0,
z = z;(0)¢ +O(¢?)
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Example 3: Dipole with two electric ‘charges’ (cont.)

Hence

§—2a_ 24
FEr i (Ez<(0)4> | 1)

where k is a constant. Taking the complex conjugate of (15) and
using Z = g and { = (™! on 09 gives

z=—atanh ( ;[’:fg) . (16)

Note sgn(uE) < 0.
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Example 3: Dipole with two electric ‘charges’ (cont.)

/ N
/ \\
Free boundary shapes given by / TN \J
z = —a tanh (\/ —u/aE¢ ) for a ‘\\ / 7 ’J'\\\y\\ //‘
hydrodynamic dipole of strength p at \\kf w
z = 0 and electric point sources of ‘ S\ P
strength £F at z = a, for u/E = —1 ; // \if
and a = 0.48 (largest), 0.59 and 0.76 //( )\\
(smallest). / k-\ |/
k N 2 )
\ /
/
AN S/
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Example 4: Elliptical bubble in strain and centrifugal
potential

o w— —Mz?/2m as z — 0

o UV =uwzg/2
e Recall z=a/C + b{ = g = bz/a+ (a®> — b*)(/a, where
a(t) > b(t).
Thus as z — o0, O,w = g/2 + 0,V becomes
d (b b 2M
— (= Q- = ——— 17
dt <a> Ty T’ (17)
which has solution
b M M b(0)
A (A —2uwt). 1
a w * <7rw + a(O)) exp(—2wt) (18)
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Example 4: Elliptical bubble in strain and centrifugal
potential (cont.)

O ==

Collapse of an elliptical bubble in a centrifugal potential field with
w =1 and strain field of strength M. The bubble is initially
circular with unit radius. On the left M = —7 /2 and the times
shown are t =0, 0.5 and co. On the right M = —37/2 and the
bubble is shown for times t = 0, 0.24 and 0.44. In this case the
bubble collapses in finite time t ~ 0.55.
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Moments and the Schwarz function equation

For finite 2 the moments M,, k=0,1,2,---, are
k 1 k
My = Z"dA = — z"g(z,t)dz. (19)
2i Joq
Q

Differentiating (19) w.r.t. time and using d,w = g/2 4+ 0,V

de 1 kag
—— K=

dt  2i Jo o Ot
i?igz <8z 8z>dz7

A k
=>"Qzf + - f Zdz. (20)
=1 I'Joa

dz,
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Moments and the Schwarz function equation (cont.)

For the centrifugal potential, ¥ = wzg/2 on 02 and (20) becomes

N
dl\/l
=k Z QJka + — z kgdz,
j=1

N
= Qizf + wkMj. (21)
j=1
For a uniform gravitational field, ¥ = U(z + g)/2 on 0%, and (20)

becomes

dM
—= Za,z + UkMc_1, (22)

(see Entov, Etingof & Kleinbock, EJAM, 1995).
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Remarks

Part I: Computation of Hele-Shaw flows near obstacles

o Compare Baiocchi (“vortical") formulation with direct
boundary integral method.

e Two fluids?

e Non-Laplacian growth near obstacles e.g. ocean flows —
Helmholtz equation.

Part Il: Generalized Hele-Shaw flows

e Further exact solutions and other background fields e.g.
inverse square law.

e Applications e.g. tumour growth, nano/micro fluidics.
e Two fluids?

II: Generalized Hele-Shaw flows: a Schwarz function approach



