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Part I: Computation of Hele-Shaw flows near obstacles
(see McDonald, Theor. Comp. Fluid Dyn. 2010)

Hele-Shaw free boundary problem

Q
2∆

p=0, n.  p=−v

∆

p=0

n

z=g(z,t)

(t)Ω

The Baiocchi transform.

Define the real-valued function on Ω
(e.g. Cummings et al. 1999):

u(z , z̄ , t) =
1

4

(
zz̄ − h(z , t)− h(z , t)

)
,

where g(z , t) = h′(z , t).
=⇒ ∇2u = 1 in Ω and uz = uz̄ = 0
on ∂Ω.
Also, ∂u/∂t = p.
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Hele-Shaw problem

→ 2∆

∆

Ω

u=1

u=n.  u=0

Γ=−Qt

Baiocchi (“vortical”) problem
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Example: circular blob with source at the origin

Hele-Shaw problem:

Q

R(t)

Vortical problem:

Γ

R

u−iv=0

p = − Q
2π log |z | =⇒

R(t) =
√

Qt/π

(Note: zero net circulation)

U−iV =

{
− i

2(z̄ − R2/z) if z ∈ Ω

0 if z /∈ Ω,

=⇒ Γ = −πR2 = −Qt.
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Hele-Shaw free boundary flows near obstacles

Previous work:

(i) Exact solutions (infinite walls, wedges, corners, etc.): e.g.
Richardson (JFM 1981, EJAM 2001), Cummings (EJAM 1999),
Gustafsson & Vasil’ev (2006).

(ii) Numerical solutions e.g. Bogoyavlenskiy & Cotts (Phys. Rev.
E 2004)–random walk method.
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Hele-Shaw flows near obstacles: Baiocchi formulation

Task: seek steady vortex patch enclosing a point vortex (with zero
net circulation) such that tangential ‘velocity’ vanishes on the
obstacle boundary =⇒ contour dynamics.

• Contour dynamics with boundaries e.g. Johnson & McDonald
Proc. Roy. Soc. (2004), JFM (2005); Crowdy & Surana JFM
(2007).

• Contour dynamics: computation of steady solutions e.g.
Deem & Zabusky PRL (1978), McDonald Phys. Fluids 2005.
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Infinite straight wall

unknowns: ri , i = 1,N
equations |ui − ivi | = 0, i = 1,N
Solve by Newton’s method.

cf. Richardson’s explicit solution,
JFM 1981.
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Circular boundary

exterior source interior source

Part I: Computation of Hele-Shaw flows near obstacles



Finite plate
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Circular disk encountering an infinite free boundary
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II: Generalized Hele-Shaw flows: a Schwarz function
approach

(see McDonald, submitted to Eur. J. Appl. Math.)

Hele-Shaw flows subject to an external potential Ψ(x , y)
(generalized Hele-Shaw flows) satisfy the free boundary problem
(see Entov & Etingof, Eur. J. Appl. Math. 2007)

∇2φ =
N∑

j=1

Qjδ(x − xj , y − yj), (xj , yj) ∈ Ω,

φ = Ψ(x , y), (x , y) ∈ ∂Ω,

vn =
∂φ

∂n
, (x , y) ∈ ∂Ω,

Qj are the hydrodynamic source strengths and vn is the normal
velocity of the boundary.
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Previous studies

(i) centrifugal potential (Ψ = ωr2/2)

• Entov, Etingof & Kleinbock 1995 (moment based method)

• Magdaleno, Rocco & Casademunt 2000 (modified
Polubarinova-Galin eq.)

• Crowdy 2002 (Cauchy transform)

(ii) centrifugal potential, uniform gravity, ‘point charges’, etc.

• Entov & Etingof 2007 (moments, conformal mapping; steady
solutions)
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Derivation of the Schwarz function equation

Let z̄ = g(z , t) on ∂Ω

v̄ = v
∂g

∂z
+

∂g

∂t
on ∂Ω. (v = U + iV )

Since φ = Ψ(z , z̄) = Ψ(z , g(z , t)) on ∂Ω, then tangent to ∂Ω

<
[
v̄

∂z

∂s

]
=

1

2

[
v̄

∂z

∂s
+ v

∂z̄

∂s

]
=

∂Ψ

∂s
. (1)

Using (Davis 1974)

∂z

∂s
=

(√
∂g

∂z

)−1

,
∂z̄

∂s
=

√
∂g

∂z
,

(1) becomes

v̄ + v
∂g

∂z
= 2

√
∂g

∂z

∂Ψ

∂s
. (2)
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Derivation of the Schwarz function equation (cont.)

On ∂Ω z̄ = g(z , t) and hence (2) gives

v̄ + v
∂g

∂z
=2

√
∂g

∂z

[
∂Ψ

∂z

∂z

∂s
+

∂Ψ

∂z̄

∂z̄

∂s

]
,

=2
∂Ψ

∂z
+ 2

∂g

∂z

∂Ψ

∂z̄

=2
∂

∂z
Ψ(z , g(z , t)). (3)

Adding (1) and (3)

2v̄ =
∂g

∂t
+ 2

∂Ψ

∂z
. (4)

Finally, using v̄ = ∂w/∂z (w ≡ complex potential) in (4) gives on
∂Ω

∂w

∂z
=

1

2

∂g

∂t
+

∂Ψ

∂z
(5)
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Example 1: Evolution of a blob in a centrifugal potential
(see Crowdy, SIAM J. Appl. Math. 2002)

Here Ψ = ω|z |2/2 = ωzg/2 (ω ≡ const.) and the governing
equation becomes

2
∂w

∂z
=

∂g

∂t
+ ω

∂

∂z
(zg). (6)

Consider the conformal map from the unit ζ-disk to Ω(t)

z =
Rζ

ζ2 − a2
, (7)

where R(t) and a(t), |a(t)| > 1, are real functions to be found.
Note

g(z , t) =− Rζ/a2

ζ2 − a−2

=− R

2a2

(
1

ζ − a−1
+

1

ζ + a−1

)
, (8)

has simple poles at ζ = ±a−1. Let z(a−1) = z0(t) = Ra/(1− a4).
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Example 1: Blob in a centrifugal potential (cont.)

As ζ → a−1 :
1

ζ − a−1
=

zζ(a
−1)

z − z0
+

zζζ(a
−1)

2zζ(a−1)
+ O(z − z0),

and finding the Laurent expansion of (6) about z = z0 (∂zw is
regular since there are no hydrodynamic singularities) gives

R2(1 + a4)

(1− a4)2
= const,

ż0(t) = ωz0(t), (9)

(c.f. Crowdy 2002).

(generalisation: z = Rζ/(ζN − aN) etc.)
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Example 2: Taylor-Saffman bubble

What is the shape and speed of an air bubble in an infinite
Hele-Shaw cell?

• steady bubble with speed U in positive <z direction

• fluid speed at infinity is unity

• in bubble frame: w → (1− U)z as z →∞
• Ψ = −Ux = −U(z + g)/2 (c.f. uniform ‘gravitational’ field)

Schwarz function equation becomes:

2(1− U) = −U

(
1 +

∂g

∂z

)
. (10)

Note g(z) → (U − 2)z/U as z →∞ =⇒ ∂Ω is an ellipse (Millar
1990).
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Example 2: Taylor-Saffman bubble (cont.)

Map from the unit ζ-disk to outside of elliptical bubble

z =
a

ζ
+ bζ, (11)

where a > b > 0 are real constants; ellipse aspect ratio is
(a− b)/(a + b). The Schwarz function of the ellipse is

g(z , t) =
b

a
z +

a2 − b2

a
ζ. (12)

Equating (12) with the behaviour g(z) → (U − 2)z/U as z →∞
gives b/a = (U − 2)/U c.f. Taylor & Saffman (1959).
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Example 3: Hydrodynamic dipole with two electric
‘charges’

• steady flow

• hydrodynamic dipole of strength µ at z = 0

• point charges with strengths E at z = a (a ∈ <, a > 0) and
−E at z = −a

Ψ =
E

4π
log

(z − a)(g − a)

(z + a)(g + a)
. (13)

As z → 0, 2∂zw = ġ + 2∂zΨ becomes

E

4π
log

[
g − a

g + a

]
=

µ

2πz
+ const. (14)

Let z(ζ) be the map from the unit ζ-disk to Ω s.t. as z → 0,
z = zζ(0)ζ + O(ζ2)
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Example 3: Dipole with two electric ‘charges’ (cont.)

Hence
g − a

g + a
= k exp

(
2µ

Ezζ(0)ζ

)
, (15)

where k is a constant. Taking the complex conjugate of (15) and
using z̄ = g and ζ̄ = ζ−1 on ∂Ω gives

z = −a tanh

(√
−µ

aE
ζ

)
. (16)

Note sgn(µE ) < 0.
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Example 3: Dipole with two electric ‘charges’ (cont.)

Free boundary shapes given by

z = −a tanh
(√

−µ/aEζ
)

for a

hydrodynamic dipole of strength µ at
z = 0 and electric point sources of
strength ±E at z = a, for µ/E = −1
and a = 0.48 (largest), 0.59 and 0.76
(smallest).
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Example 4: Elliptical bubble in strain and centrifugal
potential

• w → −Mz2/2π as z →∞
• Ψ = ωzg/2

• Recall z = a/ζ + bζ =⇒ g = bz/a + (a2 − b2)ζ/a, where
a(t) > b(t).

Thus as z →∞, ∂zw = ġ/2 + ∂zΨ becomes

d

dt

(
b

a

)
+ 2ω

b

a
= −2M

π
, (17)

which has solution

b

a
= − M

πω
+

(
M

πω
+

b(0)

a(0)

)
exp(−2ωt). (18)
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Example 4: Elliptical bubble in strain and centrifugal
potential (cont.)

Collapse of an elliptical bubble in a centrifugal potential field with
ω = 1 and strain field of strength M. The bubble is initially
circular with unit radius. On the left M = −π/2 and the times
shown are t = 0, 0.5 and ∞. On the right M = −3π/2 and the
bubble is shown for times t = 0, 0.24 and 0.44. In this case the
bubble collapses in finite time t ≈ 0.55.
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Moments and the Schwarz function equation

For finite Ω the moments Mk , k = 0, 1, 2, · · · , are

Mk =

∫∫
Ω

zkdA =
1

2i

∮
∂Ω

zkg(z , t)dz . (19)

Differentiating (19) w.r.t. time and using ∂zw = ġ/2 + ∂zΨ

dMk

dt
=

1

2i

∮
∂Ω

zk ∂g

∂t
dz ,

=
1

i

∮
∂Ω

zk

(
∂w

∂z
− ∂Ψ

∂z

)
dz ,

=
N∑

j=1

Qjz
k
j +

k

i

∮
∂Ω

zk−1Ψdz . (20)
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Moments and the Schwarz function equation (cont.)

For the centrifugal potential, Ψ = ωzg/2 on ∂Ω and (20) becomes

dMk

dt
=

N∑
j=1

Qjz
k
j +

ωk

2i

∮
∂Ω

zkgdz ,

=
N∑

j=1

Qjz
k
j + ωkMk . (21)

For a uniform gravitational field, Ψ = U(z + g)/2 on ∂Ω, and (20)
becomes

dMk

dt
=

N∑
j=1

Qjz
k
j + UkMk−1, (22)

(see Entov, Etingof & Kleinbock, EJAM, 1995).
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Remarks

Part I: Computation of Hele-Shaw flows near obstacles

• Compare Baiocchi (“vortical”) formulation with direct
boundary integral method.

• Two fluids?

• Non-Laplacian growth near obstacles e.g. ocean flows =⇒
Helmholtz equation.

Part II: Generalized Hele-Shaw flows

• Further exact solutions and other background fields e.g.
inverse square law.

• Applications e.g. tumour growth, nano/micro fluidics.

• Two fluids?
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