Random normal matrices by Riemann-Hilbert Problem

Seung Yeop Lee (Caltech)

(Work in progress with Ferenc Balogh, Marco Bertola and Ken McLaughlin)

Banff 2010: Integrable and stochastic Laplacian growth in modern mathematical physics (10w5019)

November 1, 2010

Normal matrices \rightarrow Coulomb gas

The eigenvalues of $n \times n$ normal matrices with the probability distribution

$$
\operatorname{Prob}(M) \mathrm{d} M=\frac{1}{\mathcal{Z}} \mathrm{e}^{-N \operatorname{Tr}\left[M M^{\dagger}+V(M)+V(M)^{\dagger}\right]} \mathrm{d} M
$$

distributes by the probability density

$$
P\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\frac{1}{\mathcal{Z}}\left|\prod_{j<k}^{n}\left(\lambda_{j}-\lambda_{k}\right)\right|^{2} \exp \left(-N \sum_{j=1}^{n} Q\left(\lambda_{j}\right)\right)
$$

where the potential is given by

$$
Q(z)=|z|^{2}+V(z)+\overline{V(z)},
$$

i.e. Gaussian plus harmonic function when V is holomorphic.

Eigenvalues of random normal matrices are Coulomb gas in

 2-dimension.
Continuum limit of Coulomb gas: $n, N \rightarrow \infty$

Define $t=\lim _{n, N \rightarrow \infty} n / N$.
For real analytic Q,

$$
\frac{1}{n} \sum_{j} \delta\left(z-\lambda_{j}\right) \xrightarrow{\text { weak }} \rho(z)+\frac{1}{n} \rho_{1 / 2}(z)+\text { (fluctuation) }
$$

where [Wiegmann-Zabrodin, Ameur-Hedenmalm-Makarov, ...]

$$
\begin{aligned}
& \rho=\frac{\Delta Q}{4 \pi t} \mathbf{1}_{S}, \\
& \rho_{1 / 2}=\frac{2-\theta}{8 \pi \beta} \Delta\left((\log \Delta Q)^{H}+1_{S}\right)=0 .
\end{aligned}
$$

In our case, $\beta=2$ and $\Delta Q=4$.
The density is asymptotically constant on S, and $\operatorname{Area}(S)=\pi t$.
S is determined by the support of σ that minimizes

$$
\int_{\mathbb{C}} Q(w) \sigma(w) \mathrm{d}^{2} w-\frac{n}{N} \iint_{\mathbb{C}^{2}} \sigma(z) \sigma(w) \log |z-w| \mathrm{d}^{2} z \mathrm{~d}^{2} w .
$$

Correspondence to Hele-Shaw flow: S is the domain of non-viscous fluid in ideal Hele-Shaw flow when t is the Hele-Shaw time.

Orthogonal polynomials on \mathbb{C}

(Joint) Probability densities are given by (for $k \leq n$)

$$
P\left(\lambda_{1}, \ldots, \lambda_{k}\right) \propto \operatorname{det}\left(K_{n}\left(\lambda_{i}, \lambda_{j}\right) \mathrm{e}^{-\frac{N}{2}\left(Q\left(\lambda_{i}\right)+Q\left(\lambda_{j}\right)\right)}\right)_{i, j=1}^{k}
$$

where the (reproducing) kernel K_{n} is defined by

$$
K_{n}(z, w)=\sum_{j=0}^{n-1} \frac{p_{j}(z) \overline{p_{j}(w)}}{h_{j}}
$$

and $p_{j}=x^{j}+\ldots$ is a polynomial of degree j defined by

$$
h_{j} \delta_{i j}=\int_{\mathbb{C}} p_{i}(z) \overline{p_{j}(z)} \mathrm{e}^{-N Q(z)} \mathrm{d} A(z) .
$$

Therefore, the kernel K_{n} is the most wanted in our analysis. For example, the density is given by

$$
\rho_{n}(z):=\frac{1}{N} K_{n}(z, z) \mathrm{e}^{-N Q(z)}
$$

Quantized Hele-Shaw flow

Hele-Shaw time t is quantized by n / N. So it is natural to expect

$$
N\left(\rho_{n+1}(z)-\rho_{n}(z)\right)=\frac{\left|p_{n}(z)\right|^{2}}{h_{n}} \mathrm{e}^{-N Q(z)} \sim \mathbf{1}_{\delta S}
$$

where δS is the growing part of S for a small time interval.
Theorem [AHM]: $\left|p_{n}(z)\right|^{2} \mathrm{e}^{-N Q(z)} \mathrm{d} A(z)$ converges to the harmonic measure at ∞ with respect to $\mathbb{C} \backslash S$.

The simplest case: Ginibre ensemble

When $V(z)=0$ the orthogonal polynomials are $p_{k}(z)=z^{k}$. The kernel is explicitly given in terms of Gamma functions.

[Left] $K_{n}(z, z) \mathrm{e}^{-N Q(z)}$ for $n=N=40$.
[Right] $\left|p_{n}(z)\right|^{2} \mathrm{e}^{-N Q(z)}$ for $n=N=20$.

GOAL (AND SOME IMPLICATIONS)

Taking $V(z)=-c \log (z-a)$ where $c>0$, we will obtain the pointwise limit of $p_{n}(z)$ and $K_{n}(z, z)$ using Riemann-Hilbert method (DKMVZ '99).

- There is a topological transition.
- Similar technique may apply for any finite logarithmic singularities.
- RH method can, if necessary, give us an arbitrary order of accuracy in large N expansion.
- RH method effectively handles the singular region (for instance, where the merging transition occurs).

(Asymptotics of $p_{n}(z)$: Elbau-Felder)

Universality

- The kernel in the bulk is heat kernel.
- The kernel at the boundary is written in terms of erf.
- Merging transition is described, in the classical limit, by scaling solution such that $y^{2} \sim x^{2}\left(x^{2}+t\right)$.
- In the merging transition, orthogonal polynomial (and quantum Hele-Shaw) is given by PII parametrix (conjectured by Bettelheim-Lee-Wiegmann, Its-Bleher in 1-matrix model)
- The spectral edges in Hermitian matrix model correspond to the cusp-singularities.

$$
(4 n+1,2) \text { cusp } \Leftrightarrow \text { density that vanishes as } \sim x^{2 n+1 / 2} \text {. }
$$

And the polynomials look like...

The plots of $\left|p_{n}(z)\right|^{2} \mathrm{e}^{-N Q(z)}$ for various n.

- The roots (red dots) are on 1 dimensional curve.
- The peak is on the growing part of the boundary.

The density looks like...

(Summing up to 12th polynomials...)

1ST STEP: Area integral into Contour integral

$$
\begin{aligned}
\lim _{R \rightarrow \infty} & \int_{|z|<R} p_{j}(z)(\bar{z}-a)^{k}|z-a|^{2 N c} \mathrm{e}^{-N z \bar{z}} \mathrm{~d}^{2} z \\
& =\lim _{R \rightarrow \infty} \int_{|z|<R} p_{j}(z)(z-a)^{N c} \frac{\mathrm{~d}}{\mathrm{~d} \bar{z}}\left(\int_{a}^{\bar{z}}(s-a)^{N c+k} \mathrm{e}^{-N z s} d s\right) \frac{\mathrm{d} \bar{z} \wedge \mathrm{~d} z}{2 \mathrm{i}} \\
& =\lim _{R \rightarrow \infty} \oint_{|z|=R} p_{j}(z)(z-a)^{N c}\left(\int_{a}^{\bar{z}}(s-a)^{N c+k} \mathrm{e}^{-N z s} d s\right) \frac{\mathrm{d} z}{2 \mathrm{i}} \\
& \Rightarrow \lim _{R \rightarrow \infty} \frac{\Gamma(N c+k+1)}{2 \mathrm{i}} \oint_{|z|=R} \frac{p_{j}(z)(z-a)^{N c}}{(N z)^{N c+k+1}} \mathrm{e}^{-N a z} d z
\end{aligned}
$$

In the last line, $\lim _{R \rightarrow \infty}$ can be dropped.

$$
\begin{aligned}
0 & =\oint p_{j}(z) \frac{(z-a)^{N c} \mathrm{e}^{-N a z}}{z^{N c+j}} z^{j-k-1} \mathrm{~d} z \quad \text { for } k=0,1, \ldots, j-1 \\
& =\oint p_{j}(z) w_{n}(z) z^{s} d z \quad \text { for } s=0,1, \ldots, j-1, \quad w_{j}(z)=\frac{(z-a)^{N c} \mathrm{e}^{-N a z}}{z^{N c+j}} .
\end{aligned}
$$

$p_{j}(z)$ is the orthogonal polynomial with respect to $w_{j}(z) \mathrm{d} z!$

Riemann-Hilbert problem

$$
Y(z)=\left(\begin{array}{cc}
p_{n}(z) & \frac{1}{2 \pi i} \oint \frac{p_{n}\left(z^{\prime}\right)}{z^{\prime}-z} w_{n}\left(z^{\prime}\right) \mathrm{d} z^{\prime} \\
-2 \pi i Q_{n-1}(z) & -\oint \frac{Q_{n-1}\left(z^{\prime}\right)}{z^{\prime}-z} w_{n}\left(z^{\prime}\right) \mathrm{d} z^{\prime}
\end{array}\right) .
$$

Here $Q_{n-1}(z)$ is the orthogonal polynomial of degree $n-1$ with respect to the measure $w_{n}(z) \mathrm{d} z$.

Then Y satisfies the Riemann-Hilbert problem:

$$
\begin{aligned}
& Y(z) \text { is holomorphic in } \mathbb{C} \backslash \Gamma . \\
& Y_{+}(z)=Y_{-}(z)\left(\begin{array}{cc}
1 & w_{n}(z) \\
0 & 1
\end{array}\right), \quad z \in \Gamma . \\
& Y(z)=\left(I+\mathcal{O}\left(\frac{1}{z}\right)\right) z^{n \sigma_{3}} \quad z \rightarrow \infty .
\end{aligned}
$$

Above, Γ is the contour that goes around the origin.

Eigenvalue support: S

... CAN BE DEFINED BY THE FOLLOWING STEP.

Write a general rational function that maps ∞ and α to ∞.

$$
\begin{aligned}
& f(v):=\rho v+\frac{\kappa}{v-\alpha}+z_{0} . \\
& S(v):=f(1 / v) .
\end{aligned}
$$

Require that

- $S(v) \sim c /(f(v)-a)$ as $v \rightarrow 1 / \alpha$,
- $S(v) \rightarrow(c+t) / f(v)$ as $v \rightarrow \infty$.

This determines $\rho, \kappa, \alpha, z_{0}$.
Now S is given by $f(\partial \mathbb{D})$.
The "inverse" function f^{-1} maps $\mathbb{C} \backslash S$ to the outside of unit disk. $\Rightarrow \log \left|f^{-1}(z)\right|=G(\infty, z) .\left(f^{-1}\right.$ can be extended inside $\left.S.\right)$

RH method gives...

The first column of Y : (in terms of geometric quantity)

$$
\begin{aligned}
& p_{n}(z)=\sqrt{\rho\left(f^{-1}(z)\right)^{\prime}} \mathrm{e}^{n g(z)}\left(1+\mathcal{O}\left(\frac{1}{n}\right)\right), \\
& Q_{n-1}(z)=c_{n} \frac{\sqrt{\rho\left(f^{-1}(z)\right)^{\prime}}}{\rho\left(f^{-1}(z)-\alpha\right)} \mathrm{e}^{n g(z)}\left(1+\mathcal{O}\left(\frac{1}{n}\right)\right) .
\end{aligned}
$$

- $\operatorname{Re} g(z)$ is the logarithmic potential of $\mathbf{1}_{S}$, i.e.

$$
g(z):=\frac{1}{\pi t} \int_{\mathbf{1}_{S}} \log (z-\zeta) \mathrm{d} A(\zeta) .
$$

(g can be analytically extended inside S.)

- $\left|\left(f^{-1}(z)\right)^{\prime}\right|$ gives the harmonic measure.
1_{S} was defined by a potential problem such that

$$
Q(z)-2 t \operatorname{Re} g(z)=|z|^{2}+2 \operatorname{Re}(-c \log (z-a)-t g(z))
$$

gets minimized on S (or on ∂S).

$$
\Rightarrow \quad\left|p_{n}(z)\right|^{2} \mathrm{e}^{-n Q(z)}=\rho\left|\left(f^{-1}(z)\right)^{\prime}\right| \mathrm{e}^{-n(Q(z)-2 t \operatorname{Reg}(\mathrm{z})}\left(1+\mathcal{O}\left(n^{-1}\right)\right)
$$

is peaked on ∂S and the line density proportional to the harmonic measure.

Zero locus and S (ORANGE Dotted Line).

\Rightarrow At the edge of the zero locus, special functions are used to describe the strong asymptotics (Airy function, Painlevé II function, Parabolic cylinder function).

Better approximation

- Parabolic cylinder function.

Christoffel-Darboux identity

When applying "Riemann-Hilbert technique" to 1 matrix model, one obtains the asymptotic expansion of $p_{j}(z)$'s and obtains the kernel by using the identity

$$
\sum_{j=0}^{n-1} \frac{p_{j}(z) p_{j}(w)}{h_{j}} \propto \frac{p_{n}(z) p_{n-1}(w)-p_{n}(w) p_{n-1}(z)}{z-w}
$$

This relates the large sum into a few highest degree polynomials. In normal matrix model ($\in 2$ matrix model) CD identity exists but does not relate to $K_{n}(z, w)$ directly.

CD IDENTITY FOR THE BI-ORTHOGONAL POLYNOMIAL

Let us consider the following (normalized) BOP with polynomial potentials V and W. (Our case: $W(w) \rightarrow \overline{V(\bar{w})} ; w \rightarrow \bar{z}$)

$$
\delta_{n m}=\iint \mathrm{d} z \mathrm{~d} w p_{n}(z) q_{m}(w) \mathrm{e}^{-N(z w+V(z)+W(w))}
$$

Define $\widetilde{p}_{m}(z):=p_{m}(z) \mathrm{e}^{-N V(z)} ; \widetilde{q}_{m}(w):=q_{m}(w) \mathrm{e}^{-N W(w)}$.
Differentiating inside the integral,

$$
\begin{aligned}
0 & =\iint \mathrm{d} z \mathrm{~d} w \frac{\mathrm{~d}}{N \mathrm{~d} w}\left(\widetilde{p}_{n}(z) \widetilde{q}_{m}(w) \mathrm{e}^{-N z w}\right) \\
& =\iint \widetilde{p}_{n}(z) \frac{\mathrm{d} \widetilde{q}_{m}(w)}{N \mathrm{~d} w} \mathrm{e}^{-N z w}-\iint \widetilde{p}_{n}(z) z \widetilde{q}_{m}(w) \mathrm{e}^{-N z w}
\end{aligned}
$$

- Obviously, $z \widetilde{p}_{n}(z)$ is spanned by $\left\{\widetilde{p}_{0}(z), \ldots, \widetilde{p}_{n+1}(z)\right\}$.
- $\frac{\mathrm{d}}{\mathrm{d} z} \widetilde{q}_{m}(z)$ is a linear combination of $\left\{\widetilde{q}_{m+d}(z), \ldots, \widetilde{q}_{0}(z)\right\}$ where d is the degree of $W^{\prime}(z)$.
(This is not true if $W^{\prime}(w)$ is not polynomial.)
(See, "Biorthogonal polynomials for two-matrix models with semiclassical potentials" by Bertola)

We consider the truncated vectors:

$$
\begin{aligned}
\widetilde{\mathbf{p}}_{n}(z) & :=\left(\widetilde{p}_{n-1}(z), \ldots, \widetilde{p}_{0}(z)\right)^{T}, \\
\widetilde{\mathbf{q}}_{n}(w) & :=\left(\widetilde{q}_{n-1}(w), \ldots, \widetilde{q}_{0}(w)\right)^{T} .
\end{aligned}
$$

The kernel is given by $\widetilde{\mathbf{q}}_{n}(w)^{T} \widetilde{\mathbf{p}}_{n}(z)$.

We have,

$$
z \widetilde{\mathbf{p}}_{n}(z)=\left(\iint \mathrm{d} \zeta \mathrm{~d} w \mathrm{e}^{-N \zeta w} \widetilde{\mathbf{p}}_{n}(\zeta) \zeta \widetilde{\mathbf{q}}_{n}(w)^{T}\right) \widetilde{\mathbf{p}}_{n}(z)+a_{n}\left(\widetilde{p}_{n}(z), 0, \ldots, 0\right)^{T}
$$

where the red part is the projection operation into $\left\{\widetilde{p}_{0}, \ldots, \widetilde{p}_{n-1}\right\}$
(The big braket is an $n \times n$ matrix).
Similarly,

$$
\frac{\mathrm{d}}{N \mathrm{~d} w} \widetilde{\mathbf{q}}_{n}(w)^{T}=\widetilde{\mathbf{q}}_{n}(w)^{T}\left(\iint \mathrm{~d} z \mathrm{~d} \zeta \mathrm{e}^{-N z \zeta} \widetilde{\mathbf{p}}_{n}(z) \frac{\mathrm{d} \widetilde{\mathbf{q}}_{n}(\zeta)^{T}}{N \mathrm{~d} \zeta}\right)+(\text { mostly zero vector })
$$

Note that the same $n \times n$ matrix appears.

$$
\begin{aligned}
\widetilde{\mathbf{q}}_{n}(w)^{T} \times(1 \text { st eq. })-(2 \text { nd eq. }) & \times \widetilde{\mathbf{p}}_{n}(z) \text { gives } \\
\left(z-\frac{\mathrm{d}}{N \mathrm{~d} w}\right) \widetilde{\mathbf{q}}_{n}(w)^{T} \widetilde{\mathbf{p}}_{n}(z) & =-\frac{\mathrm{e}^{N z w}}{N} \frac{\mathrm{~d}}{\mathrm{~d} w}\left(\mathrm{e}^{-N z w} \widetilde{\mathbf{q}}_{n}(w)^{T} \widetilde{\mathbf{p}}_{n}(z)\right) \\
& =(\text { involving a few highest degree polynomials }) .
\end{aligned}
$$

LET'S WORK... Remind $w_{n}(z)=(z-a)^{N c} \mathrm{e}^{-N a z} / z^{N c+n}$

We have defined $Q_{n-1}(z)=c_{n} z^{n-1}+\ldots$ such that

$$
\oint Q_{n-1}(z) w_{n}(z) z^{k} \mathrm{~d} z=\delta_{k, n-1} \text { for } k=0, \ldots, n-1 .
$$

We define $\left(p_{n}(z)=z^{n}+b_{n} z^{n-1}+\ldots\right.$ is monic polynomial)

$$
\widetilde{h}_{j}:=\oint p_{n}(z) p_{n}(z) w_{n}(z) \mathrm{d} z .
$$

For $k \leq n-1$, we have

$$
\begin{aligned}
& \int\left(p_{n}(z)-z p_{n-1}(z)\right) w_{n}(z) z^{k} \mathrm{~d} z \\
& =\int p_{n}(z) w_{n}(z) z^{k} \mathrm{~d} z-\int p_{n-1}(z) w_{n-1}(z) z^{k} \mathrm{~d} z=-\widetilde{h}_{n-1} \delta_{k, n-1}
\end{aligned}
$$

Therefore, we have $c_{n}=\left(b_{n-1}-b_{n}\right) / \widetilde{h}_{n-1}$ and

$$
Q_{n-1}(z)=\frac{z p_{n-1}(z)-p_{n}(z)}{\widetilde{h}_{n-1}} .
$$

Similarly, consider the following polynomial of degree $n-1$ for $k \leq n-1$:

$$
\begin{aligned}
& \int w_{n}(z) z^{k}\left(p_{n}(z)-c_{n+1}^{-1} Q_{n}(z)\right) \mathrm{d} z \\
& =\int w_{n}(z) z^{k} p_{n}(z) \mathrm{d} z-c_{n+1}^{-1} \int w_{n}(z) z^{k} Q_{n}(z) \mathrm{d} z \\
& =\frac{-1}{c_{n+1} \widetilde{h}_{n}} \int w_{n}(z) z^{k}\left(z p_{n}(z)-p_{n+1}(z)\right) \mathrm{d} z \\
& =\frac{-1}{c_{n+1} \widetilde{h}_{n}}\left(\int w_{n}(z) z^{k+1} p_{n}(z) \mathrm{d} z-\int w_{n+1}(z) z^{k+1} p_{n+1}(z) \mathrm{d} z\right) \\
& =-c_{n+1}^{-1} \delta_{k, n-1}
\end{aligned}
$$

Therefore,

$$
p_{n}(z)-c_{n+1}^{-1} Q_{n}(z)=-c_{n+1}^{-1} Q_{n-1}(z)
$$

Combined with the previous equation \Rightarrow Three-term recurrence.

Differential relation

Note that $\frac{\mathrm{d}}{\mathrm{d} z} \widetilde{p}_{n}(z)$ is not a linear combination of $\left\{\widetilde{p}_{j}\right\}$, but

$$
\frac{1}{N} \frac{\mathrm{~d}}{\mathrm{~d} z}\left(\widetilde{p}_{n}(z)-\frac{p_{n}(a)}{p_{n+1}(a)} \widetilde{p}_{n+1}(z)\right) \text { is. }
$$

Even more, this is orthogonal to $\left\{\widetilde{p}_{0}, \ldots, \widetilde{p}_{n-2}\right\}$ with respect to the area integral, hence

$$
\frac{1}{N} \frac{\mathrm{~d}}{\mathrm{~d} z}\left(\widetilde{p}_{n}(z)-\frac{p_{n}(a)}{p_{n+1}(a)} \widetilde{p}_{n+1}(z)\right)=\star \widetilde{p}_{n-1}(z)-\frac{p_{n}(a)}{p_{n+1}(a)}\left(c+\frac{n+1}{N}\right) \widetilde{p}_{n}(z) .
$$

\star is obtained after some algebra to be

$$
\star=\frac{P_{n}(a)}{P_{n-1}(a)} \frac{c_{n}}{c_{n+1}} .
$$

Kernel

$$
\begin{array}{r}
\mathrm{e}^{-N z w}\left(z-\frac{1}{N} \frac{d}{\mathrm{~d} w}\right) \sum_{j=0}^{n-1} \frac{\widetilde{p}_{j}(w) \widetilde{p}_{j}(z)}{h_{j}}=-\frac{1}{N} \frac{\mathrm{~d}}{\mathrm{~d} w}\left(\mathrm{e}^{-N z w} \sum_{j=0}^{n-1} \frac{\widetilde{p}_{j}(w) \widetilde{p}_{j}(z)}{h_{j}}\right) \\
=\frac{\mathrm{e}^{-N z w}}{c_{n+1} h_{n}}\left(-\frac{1}{N} \frac{\mathrm{~d}}{\mathrm{~d} w} \widetilde{p}_{n}(w) \widetilde{Q}_{n-1}(z)+\star \widetilde{p}_{n-1}(w) \widetilde{Q}_{n}(z)\right)
\end{array}
$$

The kernel is obtained by the antiderivative. Especially the density $\rho_{n}(z)=\mathrm{e}^{-N|z|^{2}} K_{n}(z, z)$ can be obtained by integrating

$$
\partial_{z} \rho_{n}(z)=\frac{\mathrm{e}^{-N|z|^{2}}}{c_{n+1} h_{n}}\left(-\frac{1}{N} \partial_{z} \widetilde{p}_{n}(z) \widetilde{Q}_{n-1}(\bar{z})+\star \widetilde{p}_{n-1}(z) \widetilde{Q}_{n}(\bar{z})\right) .
$$

This quantity converges to " $\partial_{z} \mathbf{1}_{S}$ ".

