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Sato’'s Grassmannian

In 1981, Mikio and Yasuko Sato intepreted the solutions ef th
KP-hierarchies as points of an infinite-dimensional Grassman
manifold:
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Sato’'s Grassmannian

In 1981, Mikio and Yasuko Sato intepreted the solutions ef th

KP-hierarchies as points of an infinite-dimensional Gragsman
manifold:

m M. Sato, and Y. Satd&oliton equations as dynamical systems
on infinite-dimensional Grassmann manifeldNonlinear
Partial Differential Equations in Applied Science Toky8g82,
North-Holland Math. Stud. vol. 81, North-Holland,
Amsterdam (1983), pp. 259-271.
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Sato’'s Grassmannian

In 1985, Graeme Segal and George Wilson gave a careful
formulation of the work of the Kyoto group (Sato, Date, Jimbo
Kashiwara, Miwa):
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Sato’'s Grassmannian

In 1985, Graeme Segal and George Wilson gave a careful
formulation of the work of the Kyoto group (Sato, Date, Jimbo
Kashiwara, Miwa):

m G. Segal, and G. Wilso,oop groups and equations of KdV
type— Publ. IHES, 61 (1985), 5-65.
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Sato’'s Grassmannian

m H Is a separable Hilbert space;
®w H ="H, & H_is a polarization of;

» Points ofGr('H) are closed linear subspacé=f H such that

m orthogonal projectiom,. : V — ‘H_ Is a Fredholm
operator;

m orthogonal projection_ : V — ‘H_ Is a Hilbert-Schmidt
operator;
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Sato’'s Grassmannian

m H Is a separable Hilbert space;

w H="H, ®H_is apolarization of+;

Reminder:

» Fredholm:kernel and cokernel af. are finite-dimensional,;

1/2
® Hilbert-Schmidt:the norm(zej H7r_(ej)H2) IS finite for
some orthonormal basig, } in V.
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Equivalent definition

m V € Gr(H) < dbounded linear operatar: H, — H
such that

] W(H_|_) — V;
Wy ow: Hy — HyisakFredholm operator;
mr_ow: Hi — H_IsaHilbert-Schmidt operator;
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Equivalent definition

m V € Gr(H) < dbounded linear operatar: H, — H
such that

] CU(H_|_) — V1
Wy ow: Hy — HyisakFredholm operator;
mr_ow: Hi — H_IsaHilbert-Schmidt operator;

= One-to-one correspondence betweemts of Gr(7) and
Hilbert-Schmidt operators?(H, — H_).
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bourhoods

C Gr(H) consists of point$/ such that
T e L>(V — V1),
Vir = (Id+T)V is a graph off".



Nelghbourhoods

m Uy C Gr('H) consists of point$/- such that
mTelL)(V—-Vh;
wVr=(Id+T)Visagraph off.

w Gr(H) gets the structure of a smooth Hilbert manifold.
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Smooth Grassmannian

m Hilbert spaceH = L*(S* — C) with the basis:”, k € Z;
m PolarizationH . = span.{z, 2?,... };

® Index systen® such thaS \ N andN \ S are finite;

m Hs = span.{z*, k € S}.

m Any V € Gr(H) is isomorphic toHs for somes.
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Smooth Grassmannian

m Hilbert spaceH = L*(S* — C) with the basis:”, k € Z;
m PolarizationH . = span.{z, 2?,... };

® Index systen® such thaS \ N andN \ S are finite;

m Hs = span.{z*, k € S}.

m Any V € Gr(H) is isomorphic toHs for somes.

m 'H we replace by N C>*(S! — C);
wmr,: V—"H.NnC>Iis aFredholm operator;
wmra_: V—"H_NC>™Isacompact operator;
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Smooth Grassmannian

m Hilbert spaceH = L*(S* — C) with the basis:”, k € Z;
m PolarizationH . = span.{z, 2?,... };

® Index systen® such thaS \ N andN \ S are finite;

m Hs = span.{z*, k € S}.

m Any V € Gr(H) is isomorphic toHs for somes.

m H we replace by N C>®(S! — C);
wmra,.: V—-"H,NnC>®IisaFredholm operator;
wra_: V —-"H_NC>Iis acompact operator,

We obtain a dense submanifdlét, of Gr(H).
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Virtual dimension

® Virtual dimension separatésr(H) into disconnected
components;

w virt.dim(V)=indeX 7 ):=dim(ker(7, )) — dim(co ker(7, )).
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Virtual dimension

® Virtual dimension separatésr(H) into disconnected
components;

w virt.dim(V)=indeX 7 ):=dim(ker(7, )) — dim(co ker(7, )).
For example:

+00
mVospa{z ",z " . 3= Y Yt =

k=—n

virt.dim(V') = n + 1.
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0ro group and algebra

e groupDiff S* of orientation preserving diffeos of the unit
cle St;



Virasoro group and algebra

m The groupDiff S* of orientation preserving diffeos of the unit
circle S*;

m Its central extensiofivir = Diff S @& R— Virasoro-Bott group;
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Virasoro group and algebra

m The groupDiff S* of orientation preserving diffeos of the unit
circle S*;

m Its central extensiofivir = Diff S @& R— Virasoro-Bott group;

m Its quotientDiff S*/S'— Kirillov's manifold;

m Groups Diff S* andVir and the homogeneous manifold
Diff S*/S! are modeled on Fréchet spaces.

.. and their infinitesimal representations.
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Virasoro group and algebra

m The Lie algebraiff S* for the group DiffS! is isomorphic to
the Lie algebra/ect S* of smooth vector fields = v(6) <% on
a'f
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Oro group and algebra

r = Diff ' &R — vir;
St — Vect St:

St/S8t — VectyS*.



Virasoro group and algebra

®m Vir = Diff S' &R — vir;
m Diff S' — Vect S*;
m Diff S'/S' — VectS™.
Complexifcation:
m (Vir, T'5) T8O ¢ 70D — pir @ C;

m (Diff 5', H(10) H9 ¢ HOY = corank (Vect S' @ C);

m (Diff 5'/St, T10) 710 @ 7O = Vect,S' @ C;
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Relation to analytic functions

mF smooth univalent functions I,
f(z) = z(ap + a1z +...);
mFCF conformal radiusf (D) is 1;

mFo=F(S  whereSnormalized univalent functions ih,
f(z)=z2z(1+crz+...);
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Relation to analytic functions

mr smooth univalent functions I,
f(z) = z(ap + a1z +...);

mFCF conformal radiusf (D) is 1;

mFo=F(S  whereSnormalized univalent functions ih,
f(z)=z2z(1+crz+...);

Mappings:

(Vir, Téilt’o)) — F;

(Diff S*, HL0) Z=E, 7.
(Diff 51/st, 710y 224, 7
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Relation to analytic functions

Mappings:
(Vir, T,,.”) —— F;

(Diff S*, H10) =&, 7.
(Diff 5*/5, 700y 1L, 7.
" (Diff 51, H19) =f, r, pseudoconvex hypersurfacein

® Lie hull (0 Oy ¢ A0 ¢ O,
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Ipal bundles

incipal S! bundle:

U(l) ~ S* —— Diff S* —— Diff §*/S*;

vial principal C* bundle C* = C \ {0}):

C* —— Vire ~ F —— Diff ¢S'/St ~ F.



\nd Virasoro commutation

_ —ie’“w%— Fourier basis in Vec$! @ C:



\nd Virasoro commutation

_ —ie’“w%— Fourier basis in Vec$! @ C:

7vm] — (m — n)vn+m;




Witt and Virasoro commutation

® v, = —ie"?%— Fourier basis in Vec$'! @ C;
& [Una U'm] — (m o n)vn—l—m;

® (v,,a), (v,,b) € vite;
a,b,c € C,
c Is a constant in the co-cycle,

[(’Um a)’ (U’fm b)]bit — ((m — n)vn—l—my %

n(n®* —1)d, m).
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lent Functions

alization DiffS* /S* via conformal welding:



Univalent Functions

m Realization DiffS* /S via conformal welding:

n Y

gl z=f)=C+cal®+...
r
T
0
Q
z=g(¢) =ai(+ao+a_ 1C+
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Univalent Functions

m Realization DiffS* /S via conformal welding:

gl z=f)=C+cal®+...
r
T
0
Q
z=g(¢) =ai(+ao+a_ 1C+

my=f"'og|s € Diff S/S', [ e Fy, = ~eDiff St/S1.
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Kirillov’'s vector fields

Schaeffer and Spencer linear operator

0 (59 e

Sl

maps Vecy St — Ty Fy and
VeCtOS1 ® C = T1:0) S, T Tffo ® C.
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Kirillov’'s vector fields

Schaeffer and Spencer linear operator

0 (59 e

Sl

maps Vecy St — Ty Fy and
VeCtOS1 ® C = T1:0) S, T Tff() ® C.

m Taking Fourier basis, = —iz*, k= 1,2,... for 710 we
obtain

Le[f1(2) = 271 f'(2).
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Kirillov’'s vector fields

Schaeffer and Spencer linear operator

0 (59 e

Sl

maps Vecy St — Ty Fy and
VeCtOS1 ® C = T1:0) S, T Tff() ® C.

m Takingy , = —iz7% k=1,2,... for T®1 we obtain

L_;|f](¢) = very difficult expressions
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Kirillov’'s vector fields

» Virasoro commutation relation

Lins LuJoie = (m = 1) Ly + 550(n% = 1),

c € C. Ly|f|(z) = zf'(z) — f(z) corresponds to rotation.

® In affine coordinates we get Kirillov’'s operators for
n=12...:

Z Clcan—Hca Ok = 3/8%,
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Univalent Functions

n
gl z = f(¢)
dh r
& x
1 0)
W “

ClassS.
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Lowner-Kufarev Representation

® Any univalent functionf : U — Q, f(2) = 2+ c12* + ...
(from the classS) can be represented as the limit

f(z) = lim e‘w(z,1t).

t—00
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Lowner-Kufarev Representation

® Any univalent functionf : U — Q, f(2) = 2+ c12* + ...
(from the classS) can be represented as the limit

f(z) = lim e‘w(z,1t).

t—00

® The function( = w(z, 1),

w(z,t) =e "2 (1 + Z Cn(t)zn> :

satisfies dw
dt
with the initial conditionw(z, 0) = z.

= —wp(w, 1),
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Non-linear contour dynamics

We shall consider functions z, t) smooth onS! and integrable—-
feFo.
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Hamiltonian formulation

m Consider the Hamiltonian on the cotangent buridié:

H(D) = [ 100 = ple 10,0000

on the unit circlez € S*, wherey(z,t) is from L?(S!' — C),

P(z,t) = Z V2.
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Hamiltonian system

® The Hamiltonian system becomes

df (z,t) » 0"
for the position coordinateand
dap . _§H  _
d_?f — _(1_p(€_tf7 t)_e_tfp/(e—tfa t)ﬁb — W — {¢7H}7

) ) o
for the momentawhereﬁ andﬁ are the variational
derivatives.
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PoISSon structure

= The Poisson structure on the sp&cer, with coordinates
(f, gZ) IS given by the canonical brackets

0P o) 0P oQ
P — - - == - - = -
or in affine coordinate form (onhy,, for n > 1 are

Independent)

2 =, Jp Oq Op 0Oq
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Generating function

= Set up the functio (z) := f'(z,t)¥(z,t) € L?(S* — C).

m Let (G(2))<o mean the ‘negative’ andj(z))-o ‘positive’ part
of the Laurent series fay(z),

(g(Z))>0 — (¢1‘|‘251¢2+352¢3‘|‘ . . )Z+(¢2—|—251¢3—|— . . )22—|— ..
k=1

Proposition.The functionsg(z), (G(z))<o and(G(z))so are
time-independent for alt ¢ S*.
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Invertibility

/ gl \ ( 1 201 S ncp—1 ... \ ( ?7;1 \
gz 0 1 ... (TL — 1)Cn—2 5o ’QDQ
g3 0 0 ... (TL — Q)Cn_g 0 o o ¢3

U U o\

Proposition.
mGg=CVand3iv =C"'G:
by, = (ks Ghtt, - - )
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Kirillov’'s vector fields

w{G, 6.} =(n—m)G,., forn m > 1, with respect to our
Poisson structurem.

_ 0
® From co-vectors to vectors, — B Ok,
Ck

Qn — Ln = 8n + Z (]C + 1)Ckan+k.
k=1

mL,,n=1,2 ... arethe holomorphic Virasoro generators. In
their covariant form/,, are conserved by the Lowner-Kufarev
evolution.
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S In GrassmannianGr.,

derlying Hilbert space

H = L*(S' — C) N C%(S* — C);



S In GrassmannianGr.,

derlying Hilbert space

H = L}(S* — C) N C=(S' — C);

larization:

Hy
H_

span{z,z°,2°,... } N L*NC*>,
span{1,27", 2 ,...}mL2mC°°.




Graphs in GrassmannianGr,

m Consider a neighbourhodd,,, of the element{,;

m Construct a hierarchy of Hilbert-Schmidt operators
T—n : H_|_ — H_:

,
Lo(Li, Ly, ..., L, ...)

L (L, Lo, ..., Ly, ...
T—n(Ll,LQ,...7Lk7.,,):< 1( 1 2 k )

Low(Li, Lo, ... Ly,...)

N
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S In GrassmannianGr.,

fineys(Ly,...) = —> o0, abe(Ly,...), and

Lo = Go — (o — ¥p)
acts on the clasg, by Ly|f](z) = 2f'(2) — f(2).



Graphs in GrassmannianGr,

» Defineyy(Ly,...) = =22 cxtbp(Ly,. .. ), and

Lo = Go — (Yo — ¥¢)
W L, acts on the clas$, by Ly|f](z) = zf'(2) — f(2).

= Next defineL_1 — Q_l — (w—l — ¢i1) — 201(?7;0 — ?758), where
*, = 0. Then,

L1[f](2) = f'(2) = 2e1f(2) — 1

= Finally,

Loo=G 5~ (Yo —9%y) = 2c1(tp—1 — PZ1) — Bea(tho — )
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Graphs in GrassmannianGr,

First 3 antiholomorphic Virasoro generators:
- Lo[f](Z) = zf'(z) = f(2);
1lf](2) = f'(2) = 2a1f(2) -
L;(f1(2) = 52 — 7L - 3y +< — 4c5) f(2).

® Important fact:

Lo = c191 + 2¢909 + . . .

L_1 — (302 — 20%)?;1 = oo ]
L_y = (5cg — 6cieg +2¢3 )y + . . .,

are co-vectors.
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S In GrassmannianGr.,

her co-vectors we construct by our Poisson brackets as

1

L, = Lo, L iV
n—2{ +1, L1}




Graphs in GrassmannianGr,

m Other co-vectors we construct by our Poisson brackets as

1
L—n — {L—n—|—17L—1}-

n— 2

m The operatof”_,, € L*(H,. — H_) is Hilbert-Schmidt;
= Action of the operato(/d +T_,,):

(Id +T., (ZLkz ) = i Ly,2";

k=—n
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Graphs in GrassmannianGr,

m Other co-vectors we construct by our Poisson brackets as

1
L—n — {L—n—|—17L—1}-

n— 2

m The operatof”_,, € L*(H,. — H_) is Hilbert-Schmidt;
= Action of the operato(/d +T_,,):

(Id +T., (ZLkz ) = i Ly,2";

k=—n
m W = (Id+T_,)H, is a graph.
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Principal bundle over F;

® The base ofsr, is the Hilbert spacé.?(S' — C) N C*;

® The functionsG(z) = >, _, Gr2" at a pointf € F;, are
completely defined by their values At= id.
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Ipal bundle over F;

er each poinf € F, we consider the Grassmanniam...



Principal bundle over F;

®m Over each poinf € F, we consider the Grassmanniamn,..

® In Gr,, we consider a hierarchy of connected components
{U&;”)};;O:O of the neighbourhood’;,, of H...
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Principal bundle over F;

®m Over each poinf € F, we consider the Grassmanniamn,..

® In Gr,, we consider a hierarchy of connected components
{U&;”)};;O:O of the neighbourhood’;,, of H...

" In eachU7([+”) we construct special points given by graphs
W = (Id+ T_,)H..
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Principal bundle over F;

®m Over each poinf € F, we consider the Grassmanniamn,..

® In Gr,, we consider a hierarchy of connected components
{U&;”)};;O:O of the neighbourhood’;,, of H...

" In eachU}i_j) we construct special points given by graphs
W) = (Id + T_,)H.

» These points ofsr., form a fiber: a countable family
2 = {1 of linear subspaces 6{.
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Principal bundle over F;

®m Over each poinf € F, we consider the Grassmanniamn,..

® In Gr,, we consider a hierarchy of connected components
{U&;”)};;O:O of the neighbourhood’;,, of H...

" In eachU}i_j) we construct special points given by graphs
W) = (Id + T_,)H.

» These points ofsr., form a fiber: a countable family
2 = {1 of linear subspaces 6{.

= Isomorphism between fibers is given by the Hamiltonian flow
— principal bundle¢ = (Fy, 20) over F, with fiber 20.
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conclusions

» We have constructed a bundie over the base
manifold F, of smooth univalent functions.

® The fiberlj consists of special points of Sato’s smooth
Grassmanniafir._;
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conclusions

= We have constructed a bundfe— (7, 217) over the base
manifold F, of smooth univalent functions.

® The fiberlj consists of special points of Sato’s smooth
Grassmanniah:r._;

m It is a principle bundle. Isomorphism between fibers is given
by the Hamiltonian flow.
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conclusions

» We have constructed a bundie over the base
manifold F, of smooth univalent functions.

® The fiberlj consists of special points of Sato’s smooth
Grassmanniafir._;

m It is a principle bundle. Isomorphism between fibers is given
by the Hamiltonian flow.

m The Lowner-Kufarev evolutionn F; traces a curve In the
principal bundle&, which is projected to aurvein each
connected component,,  of the neighbourhood’;;, of the
point H. € Grg;
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conclusions

® The (—n)-th componenU&”) IS defined by its virtual
dimensionVirt.dim(U&;”)): n+ 1.

= The componenlt@i”) contains a point ofzr,, defined by the
graphW " = (Id +T_,,)H, € Gr.
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er-Kufarev traces in Gr

WO



The End
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