Parametrization of the Loewner-Kufarev evolution in Sato's Grassmannian

Alexander Vasil'ev

(joint work with Irina Markina)

University of Bergen, NORWAY

Integrable Structures and Laplacian Growth, Banff 2010 - p.1/40

$\mathcal{F}_0 = \{f : |z| < 1, \ f(z) = z + c_1 z^2 + \dots, \ f$ -univalent, smooth $\}$

Integrable Structures and Laplacian Growth, Banff 2010 - p.2/40

Idea

$\mathcal{F}_0 = \{ f : |z| < 1, \ f(z) = z + c_1 z^2 + \dots, \ f$ -univalent, smooth $\}$

Integrable Structures and Laplacian Growth, Banff 2010 - p.3/40

Idea

$\mathcal{F}_0 = \{ f : |z| < 1, \ f(z) = z + c_1 z^2 + \dots, \ f$ -univalent, smooth $\}$

Integrable Structures and Laplacian Growth, Banff 2010 - p.4/40

In 1981, Mikio and Yasuko Sato intepreted the solutions of the KP-hierarchies as points of an infinite-dimensional Grassmannian manifold:

In 1981, Mikio and Yasuko Sato intepreted the solutions of the KP-hierarchies as points of an infinite-dimensional Grassmannian manifold:

 M. Sato, and Y. Sato, Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold.– Nonlinear Partial Differential Equations in Applied Science Tokyo, 1982, North-Holland Math. Stud. vol. 81, North-Holland, Amsterdam (1983), pp. 259–271.

In 1985, Graeme Segal and George Wilson gave a careful formulation of the work of the Kyoto group (Sato, Date, Jimbo, Kashiwara, Miwa):

In 1985, Graeme Segal and George Wilson gave a careful formulation of the work of the Kyoto group (Sato, Date, Jimbo, Kashiwara, Miwa):

G. Segal, and G. Wilson, *Loop groups and equations of KdV type.*– Publ. IHES, 61 (1985), 5-65.

 $\blacksquare \mathcal{H}$ is a separable Hilbert space;

 $\blacksquare \mathcal{H}$ is a separable Hilbert space;

 $\blacksquare \mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-$ is a polarization of \mathcal{H} ;

 \mathbf{H} is a separable Hilbert space;

 $\blacksquare \mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-$ is a polarization of \mathcal{H} ;

Points of Gr(H) are closed linear subspaces V of H such that
orthogonal projection π₊: V → H₊ is a Fredholm operator;

orthogonal projection π_- : $V \to \mathcal{H}_-$ is a Hilbert-Schmidt operator;

 \mathbf{H} is a separable Hilbert space;

 $\blacksquare \mathcal{H} = \mathcal{H}_+ \oplus \mathcal{H}_-$ is a polarization of \mathcal{H} ;

Reminder:

Fredholm: kernel and cokernel of π₊ are finite-dimensional;
 Hilbert-Schmidt: the norm (Σ_{e_j} ||π₋(e_j)||²)^{1/2} is finite for some orthonormal basis {e_j} in V.

Equivalent definition

■ V ∈ Gr(H) ⇐⇒ ∃ bounded linear operator $ω : H_+ → H$ such that

ω(H₊) = V;
π₊ ∘ ω : H₊ → H₊ is a Fredholm operator;
π₋ ∘ ω : H₊ → H₋ is a Hilbert-Schmidt operator;

Equivalent definition

V ∈ Gr(H) ⇐⇒ ∃ bounded linear operator $ω : H_+ → H$ such that

ω(H₊) = V;
π₊ ∘ ω : H₊ → H₊ is a Fredholm operator;
π₋ ∘ ω : H₊ → H₋ is a Hilbert-Schmidt operator;

One-to-one correspondence between points of $Gr(\mathcal{H})$ and Hilbert-Schmidt operators $\mathcal{L}^2(\mathcal{H}_+ \to \mathcal{H}_-)$.

Neighbourhoods

U_V ⊂ Gr(H) consists of points V_T such that
T ∈ L²(V → V[⊥]);
V_T = (Id + T)V is a graph of T.

Neighbourhoods

Gr(\mathcal{H}) gets the structure of a smooth Hilbert manifold.

Smooth Grassmannian

- Hilbert space $\mathcal{H} = L^2(S^1 \to \mathbb{C})$ with the basis z^k , $k \in \mathbb{Z}$;
- Polarization $\mathcal{H}_+ = \operatorname{span}_{\mathbb{C}} \{z, z^2, \dots\};$
- Index system S such that $S \setminus \mathbb{N}$ and $\mathbb{N} \setminus S$ are finite;

$$\blacksquare \mathcal{H}_{\mathbb{S}} = \operatorname{span}_{\mathbb{C}} \{ z^k, \ k \in \mathbb{S} \}.$$

Any $V \in Gr(\mathcal{H})$ is isomorphic to $\mathcal{H}_{\mathbb{S}}$ for some \mathbb{S} .

Smooth Grassmannian

- **Hi**lbert space $\mathcal{H} = L^2(S^1 \to \mathbb{C})$ with the basis z^k , $k \in \mathbb{Z}$;
- Polarization $\mathcal{H}_+ = \operatorname{span}_{\mathbb{C}} \{z, z^2, \dots\};$
- Index system S such that $S \setminus N$ and $N \setminus S$ are finite;

$$\blacksquare \mathcal{H}_{\mathbb{S}} = \operatorname{span}_{\mathbb{C}} \{ z^k, \ k \in \mathbb{S} \}.$$

- Any $V \in Gr(\mathcal{H})$ is isomorphic to $\mathcal{H}_{\mathbb{S}}$ for some \mathbb{S} .
- *H* we replace by *H* ∩ *C*[∞](*S*¹ → ℂ); *π*₊: *V* → *H*₊ ∩ *C*[∞] is a Fredholm operator; *π*₋: *V* → *H*₋ ∩ *C*[∞] is a compact operator;

Smooth Grassmannian

- **Hi**lbert space $\mathcal{H} = L^2(S^1 \to \mathbb{C})$ with the basis z^k , $k \in \mathbb{Z}$;
- Polarization $\mathcal{H}_+ = \operatorname{span}_{\mathbb{C}} \{z, z^2, \dots\};$
- Index system \mathbb{S} such that $\mathbb{S} \setminus \mathbb{N}$ and $\mathbb{N} \setminus \mathbb{S}$ are finite;

$$\blacksquare \mathcal{H}_{\mathbb{S}} = \operatorname{span}_{\mathbb{C}} \{ z^k, \ k \in \mathbb{S} \}.$$

- Any $V \in Gr(\mathcal{H})$ is isomorphic to $\mathcal{H}_{\mathbb{S}}$ for some \mathbb{S} .
- *H* we replace by *H* ∩ *C*[∞](*S*¹ → ℂ); *π*₊: *V* → *H*₊ ∩ *C*[∞] is a Fredholm operator; *π*₋: *V* → *H*₋ ∩ *C*[∞] is a compact operator;

We obtain a dense submanifold $\operatorname{Gr}_{\infty}$ of $\operatorname{Gr}(\mathcal{H})$.

Virtual dimension separates Gr(*H*) into disconnected components;

virt.dim(V)=index(π_+):=dim(ker(π_+)) – dim(co ker(π_+)).

- Virtual dimension separates Gr(H) into disconnected components;
- virt.dim(V)=index(π_+):=dim(ker(π_+)) dim(co ker(π_+)).

For example:

$$V \ni \operatorname{span}\{z^{-n}, z^{-n+1}, \dots\} \ni \psi = \sum_{k=-n}^{+\infty} \psi_k z^k \Longrightarrow$$

virt.dim $(V) = n + 1$.

The group Diff S^1 of orientation preserving diffeos of the unit circle S^1 ;

The group Diff S^1 of orientation preserving diffeos of the unit circle S^1 ;

Its central extension $Vir = \text{Diff } S^1 \oplus \mathbb{R}$ - Virasoro-Bott group;

- The group Diff S^1 of orientation preserving diffeos of the unit circle S^1 ;
- Its central extension $Vir = \text{Diff } S^1 \oplus \mathbb{R}$ Virasoro-Bott group;
- Its quotient Diff S^1/S^1 Kirillov's manifold;
- Groups Diff S^1 and Vir and the homogeneous manifold Diff S^1/S^1 are modeled on Fréchet spaces.

... and their infinitesimal representations.

The Lie algebra $\operatorname{diff} S^1$ for the group Diff S^1 is isomorphic to the Lie algebra Vect S^1 of smooth vector fields $v = v(\theta) \frac{d}{d\theta}$ on S^1 .

$$Vir = \text{Diff } S^1 \oplus \mathbb{R} \longrightarrow \mathfrak{vir};$$
 $\text{Diff } S^1 \longrightarrow \text{Vect } S^1;$
 $\text{Diff } S^1/S^1 \longrightarrow \text{Vect }_0S^1.$

$$Vir = \text{Diff } S^1 \oplus \mathbb{R} \longrightarrow \mathfrak{vir}$$
$$\text{Diff } S^1 \longrightarrow \text{Vect } S^1;$$
$$\text{Diff } S^1/S^1 \longrightarrow \text{Vect }_0S^1.$$

Complexifcation:

 $\begin{array}{l} \left(Vir, T_{\mathfrak{vir}}^{(1,0)} \right) & T_{\mathfrak{vir}}^{(1,0)} \oplus T_{\mathfrak{vir}}^{(0,1)} = \mathfrak{vir} \otimes \mathbb{C}; \\ \end{array} \\ \left(\begin{array}{l} \text{Diff } S^1, H^{(1,0)} \right) & H^{(1,0)} \oplus H^{(0,1)} = \operatorname{corank}_1(\operatorname{Vect} S^1 \otimes \mathbb{C}); \\ \end{array} \\ \left(\begin{array}{l} \text{Diff } S^1/S^1, T^{(1,0)} \end{array} \right) & T^{(1,0)} \oplus T^{(0,1)} = \operatorname{Vect}_0 S^1 \otimes \mathbb{C}; \end{array} \end{array}$

Relation to analytic functions

F smooth univalent functions in D, f(z) = z(a₀ + a₁z + ...);
F₁⊂ F conformal radius f(D) is 1;
F₀= F∩S, where S normalized univalent functions in D, f(z) = z(1 + c₁z + ...);

Relation to analytic functions

- \mathcal{F} smooth univalent functions in \mathbb{D} , $f(z) = z(a_0 + a_1 z + \dots);$
- $\blacksquare \mathcal{F}_1 \subset \mathcal{F}$ conformal radius $f(\mathbb{D})$ is 1;
- $\mathcal{F}_0 = \mathcal{F} \cap \mathbf{S}$, where **S** normalized univalent functions in \mathbb{D} , $f(z) = z(1 + c_1 z + ...);$

Mappings:

 $(Vir, T_{\mathfrak{vir}}^{(1,0)}) \xrightarrow{Hol} \mathcal{F};$ (Diff $S^1, H^{(1,0)}) \xrightarrow{C-R} \mathcal{F}_1;$ (Diff $S^1/S^1, T^{(1,0)}) \xrightarrow{Hol} \mathcal{F}_0.$

Relation to analytic functions

Mappings: $(Vir, T_{vir}^{(1,0)}) \xrightarrow{Hol} \mathcal{F};$ $(Diff S^1, H^{(1,0)}) \xrightarrow{C-R} \mathcal{F}_1;$ $(Diff S^1/S^1, T^{(1,0)}) \xrightarrow{Hol} \mathcal{F}_0.$

(Diff S¹, H^(1,0)) ^{C-R}→ *F*₁ pseudoconvex hypersurface in *F*.
Lie hull (H^(1,0), H^(0,1)) ⊄ {H^(1,0) ⊕ H^(0,1)}.

Principal bundles

Principal S^1 bundle:

 $U(1) \simeq S^1 \longrightarrow \text{Diff } S^1 \longrightarrow \text{Diff } S^1/S^1;$

Trivial principal \mathbb{C}^* bundle ($\mathbb{C}^* = \mathbb{C} \setminus \{0\}$):

$$\mathbb{C}^* \longrightarrow Vir_{\mathbb{C}} \simeq \mathcal{F} \longrightarrow \text{Diff}_{\mathbb{C}}S^1/S^1 \simeq \mathcal{F}_0.$$

Witt and Virasoro commutation

$$v_n = -ie^{in\theta} \frac{d}{d\theta}$$
 - Fourier basis in Vect $S^1 \otimes \mathbb{C}$;

Witt and Virasoro commutation

$$v_n = -ie^{in\theta} \frac{d}{d\theta}$$
 - Fourier basis in Vect $S^1 \otimes \mathbb{C}$;

$$\bullet [v_n, v_m] = (m-n)v_{n+m};$$

Witt and Virasoro commutation

$$v_n = -ie^{in\theta} \frac{d}{d\theta}$$
 - Fourier basis in Vect $S^1 \otimes \mathbb{C}$;

$$[v_n, v_m] = (m-n)v_{n+m};$$

$$[(v_n, a), (v_m, b)]_{vir} = \left((m-n)v_{n+m}, \frac{c}{12}n(n^2 - 1)\delta_{n, -m}\right).$$

Univalent Functions

Realization Diff S^1/S^1 via conformal welding:

Univalent Functions

Realization Diff S^1/S^1 via conformal welding:

Univalent Functions

Realization Diff S^1/S^1 via conformal welding:

 $\mathbf{P} = f^{-1} \circ g|_{S^1} \in \text{Diff } S^1/S^1, \quad f \in \mathcal{F}_0 \leftrightarrows \gamma \in \text{Diff } S^1/S^1.$

Schaeffer and Spencer linear operator

$$\frac{f^2(\zeta)}{2\pi} \int\limits_{S^1} \left(\frac{wf'(w)}{f(w)}\right)^2 \frac{v(w)dw}{w(f(w) - f(z))},$$

maps Vect $_0S^1 \longrightarrow T_f\mathcal{F}_0$ and Vect $_0S^1 \otimes \mathbb{C} = T^{(1,0)} \oplus T^{(0,1)} \longrightarrow T_f\mathcal{F}_0 \otimes \mathbb{C}.$

Schaeffer and Spencer linear operator

$$\frac{f^2(\zeta)}{2\pi} \int\limits_{S^1} \left(\frac{wf'(w)}{f(w)}\right)^2 \frac{v(w)dw}{w(f(w) - f(z))},$$

maps Vect $_0S^1 \longrightarrow T_f\mathcal{F}_0$ and Vect $_0S^1 \otimes \mathbb{C} = T^{(1,0)} \oplus T^{(0,1)} \longrightarrow T_f\mathcal{F}_0 \otimes \mathbb{C}.$

Taking Fourier basis $v_k = -iz^k$, k = 1, 2, ... for $T^{(1,0)}$, we obtain

$$L_k[f](z) = z^{k+1}f'(z).$$

Schaeffer and Spencer linear operator

$$\frac{f^2(\zeta)}{2\pi} \int\limits_{S^1} \left(\frac{wf'(w)}{f(w)}\right)^2 \frac{v(w)dw}{w(f(w) - f(z))},$$

maps Vect $_0S^1 \longrightarrow T_f\mathcal{F}_0$ and Vect $_0S^1 \otimes \mathbb{C} = T^{(1,0)} \oplus T^{(0,1)} \longrightarrow T_f\mathcal{F}_0 \otimes \mathbb{C}.$

Taking $v_{-k} = -iz^{-k}$, k = 1, 2, ... for $T^{(0,1)}$, we obtain $L_{-k}[f](\zeta) = \text{very difficult expressions.}$

Virasoro commutation relation

$$[L_m, L_n]_{\text{vir}} = (m - n)L_{m+n} + \frac{c}{12}n(n^2 - 1)\delta_{n, -m},$$

 $c \in \mathbb{C}. \ L_0[f](z) = zf'(z) - f(z) \text{ corresponds to rotation.}$
In affine coordinates we get Kirillov's operators for

In affine coordinates we get Kirillov's operators for n = 1, 2, ...:

$$L_n = \partial_n + \sum_{k=1}^{\infty} (k+1)c_k \partial_{n+k}, \quad \partial_k = \partial/\partial c_k,$$

Univalent Functions

Löwner-Kufarev Representation

Any univalent function $f: U \to \Omega$, $f(z) = z + c_1 z^2 + ...$ (from the class **S**) can be represented as the limit

$$f(z) = \lim_{t \to \infty} e^t w(z, t).$$

Löwner-Kufarev Representation

Any univalent function $f: U \to \Omega$, $f(z) = z + c_1 z^2 + ...$ (from the class **S**) can be represented as the limit

$$f(z) = \lim_{t \to \infty} e^t w(z, t).$$

• The function $\zeta = w(z, t)$,

$$w(z,t) = e^{-t}z\left(1 + \sum_{n=1}^{\infty} c_n(t)z^n\right),$$

satisfies $\frac{dw}{dt} = -wp(w, t),$ with the initial condition w(z, 0) = z.

Non-linear contour dynamics

We shall consider functions p(z,t) smooth on S^1 and integrable \Longrightarrow $f \in \mathcal{F}_0$.

Hamiltonian formulation

Consider the Hamiltonian on the cotangent bundle $T^*\mathcal{F}_0$:

$$H(f,\bar{\psi}) = \int_{z\in S^1} f(z,t)(1-p(e^{-t}f(z,t),t))\bar{\psi}(z,t)\frac{dz}{iz},$$

on the unit circle $z \in S^1$, where $\psi(z, t)$ is from $L^2(S^1 \to \mathbb{C})$,

$$\psi(z,t) = \sum_{n \in \mathbb{Z}} \psi_k z^k.$$

Hamiltonian system

The Hamiltonian system becomes

$$\frac{df(z,t)}{dt} = f(1 - p(e^{-t}f,t)) = \frac{\delta H}{\delta \overline{\psi}} = \{f,H\}$$

for the position coordinates and

$$\frac{d\bar{\psi}}{dt} = -(1 - p(e^{-t}f, t) - e^{-t}fp'(e^{-t}f, t))\bar{\psi} = \frac{-\delta H}{\delta f} = \{\bar{\psi}, H\},$$

for the momenta, where $\frac{\sigma}{\delta f}$ and $\frac{\sigma}{\delta \psi}$ are the variational derivatives.

The Poisson structure on the space $T^*\mathcal{F}_0$ with coordinates $(f, \bar{\psi})$ is given by the canonical brackets

$$\{P,Q\} = \frac{\delta P}{\delta f} \frac{\delta Q}{\delta \bar{\psi}} - \frac{\delta P}{\delta \bar{\psi}} \frac{\delta Q}{\delta f},$$

or in affine coordinate form (only ψ_n for $n \ge 1$ are independent)

$$\{p,q\} = \sum_{n=1}^{\infty} \frac{\partial p}{\partial c_n} \frac{\partial q}{\partial \bar{\psi}_n} - \frac{\partial p}{\partial \bar{\psi}_n} \frac{\partial q}{\partial c_n}$$

Generating function

Set up the function $\mathcal{G}(z) := \overline{f'}(z,t)\psi(z,t) \in L^2(S^1 \to \mathbb{C}).$

Let (G(z))_{≤0} mean the 'negative' and (G(z))_{>0} 'positive' part of the Laurent series for G(z),

 $(\mathcal{G}(z))_{>0} = (\psi_1 + 2\bar{c}_1\psi_2 + 3\bar{c}_2\psi_3 + \dots)z + (\psi_2 + 2\bar{c}_1\psi_3 + \dots)z^2 + \dots$

$$=\sum_{k=1}^\infty ar{\mathcal{G}}_k z^k.$$

Proposition. The functions $\mathcal{G}(z)$, $(\mathcal{G}(z))_{\leq 0}$ and $(\mathcal{G}(z))_{>0}$ are time-independent for all $z \in S^1$.

Invertibility

$$\begin{pmatrix} \mathcal{G}_1 \\ \mathcal{G}_2 \\ \mathcal{G}_3 \\ \dots \end{pmatrix} = \begin{pmatrix} 1 & 2c_1 & \dots & nc_{n-1} & \dots \\ 0 & 1 & \dots & (n-1)c_{n-2} & \dots \\ 0 & 0 & \dots & (n-2)c_{n-3} & \dots \\ \dots & \dots & \dots & \dots \end{pmatrix} \begin{pmatrix} \bar{\psi}_1 \\ \bar{\psi}_2 \\ \bar{\psi}_3 \\ \dots \end{pmatrix};$$

Proposition.

$$\mathcal{G} = C\bar{\Psi} \text{ and } \exists \bar{\Psi} = C^{-1}\mathcal{G};$$
$$\bar{\psi}_k = \bar{\psi}_k(\mathcal{G}_k, \mathcal{G}_{k+1}, \dots).$$

■ $\{\mathcal{G}_m, \mathcal{G}_n\} = (n - m)\mathcal{G}_{n+m}$ for $n, m \ge 1$, with respect to our Poisson structurem.

From co-vectors to vectors $\overline{\psi}_k \to \frac{\partial}{\partial c_k} = \partial_k$,

$$\mathcal{G}_n \to L_n = \partial_n + \sum_{k=1}^{\infty} (k+1)c_k \partial_{n+k}.$$

L_n, n = 1, 2, ... are the holomorphic Virasoro generators. In their covariant form, L_n are conserved by the Löwner-Kufarev evolution.

Underlying Hilbert space

$$\mathcal{H} = L^2(S^1 \to \mathbb{C}) \cap C^\infty(S^1 \to \mathbb{C});$$

Underlying Hilbert space

$$\mathcal{H} = L^2(S^1 \to \mathbb{C}) \cap C^\infty(S^1 \to \mathbb{C});$$

Polarization:

$$\mathcal{H}_{+} = \operatorname{span}_{\mathbb{C}} \{ z, z^{2}, z^{3}, \dots \} \cap L^{2} \cap C^{\infty},$$

$$\mathcal{H}_{-} = \operatorname{span}_{\mathbb{C}} \{ 1, z^{-1}, z^{-2}, \dots \} \cap L^{2} \cap C^{\infty}.$$

Integrable Structures and Laplacian Growth, Banff 2010 - p.30/40

- Consider a neighbourhood $U_{\mathcal{H}_+}$ of the element \mathcal{H}_+ ;
- Construct a hierarchy of Hilbert-Schmidt operators

$$T_{-n}: \mathcal{H}_+ \to \mathcal{H}_-:$$

$$T_{-n}(L_1, L_2, \ldots, L_k, \ldots) =$$

$$\begin{cases}
L_0(L_1, L_2, \dots, L_k, \dots) \\
L_{-1}(L_1, L_2, \dots, L_k, \dots) \\
\dots \\
L_{-n}(L_1, L_2, \dots, L_k, \dots)
\end{cases}$$

• Define
$$\bar{\psi}_0^*(L_1,...) = -\sum_{n=1}^{\infty} c_k \bar{\psi}_k(L_1,...)$$
, and

$$L_0 = \mathcal{G}_0 - (\bar{\psi}_0 - \bar{\psi}_0^*)$$

 $\square L_0$ acts on the class \mathcal{F}_0 by $L_0[f](z) = zf'(z) - \overline{f(z)}$.

Define
$$\bar{\psi}_{0}^{*}(L_{1},...) = -\sum_{n=1}^{\infty} c_{k} \bar{\psi}_{k}(L_{1},...)$$
, and
 $L_{0} = \mathcal{G}_{0} - (\bar{\psi}_{0} - \bar{\psi}_{0}^{*})$

• L_0 acts on the class \mathcal{F}_0 by $L_0[f](z) = zf'(z) - f(z)$.

Next define $L_{-1} = \mathcal{G}_{-1} - (\bar{\psi}_{-1} - \bar{\psi}_{-1}^*) - 2c_1(\bar{\psi}_0 - \bar{\psi}_0^*)$, where $\bar{\psi}_{-1}^* = 0$. Then,

$$L_{-1}[f](z) = f'(z) - 2c_1 f(z) - 1$$

Finally,

$$L_{-2} = \mathcal{G}_{-2} - (\bar{\psi}_{-2} - \bar{\psi}_{-2}^*) - 2c_1(\bar{\psi}_{-1} - \bar{\psi}_{-1}^*) - 3c_2(\bar{\psi}_0 - \bar{\psi}_0^*)$$

Graphs in Grassmannian Gr_{∞}

First 3 antiholomorphic Virasoro generators:

$$L_0[f](z) = zf'(z) - f(z);$$

$$L_{-1}[f](z) = f'(z) - 2c_1f(z) - 1;$$

$$L_{-2}[f](z) = \frac{f'(z)}{z} - \frac{1}{f(z)} - 3c_1 + (c_1^2 - 4c_2)f(z).$$

Important fact:

$$L_0 = c_1 \bar{\psi}_1 + 2c_2 \bar{\psi}_2 + \dots,$$
$$L_{-1} = (3c_2 - 2c_1^2) \bar{\psi}_1 + \dots,$$
$$L_{-2} = (5c_3 - 6c_1c_2 + 2c_1^3) \bar{\psi}_1 + \dots,$$

are co-vectors.

Other co-vectors we construct by our Poisson brackets as

$$L_{-n} = \frac{1}{n-2} \{ L_{-n+1}, L_{-1} \}.$$

Other co-vectors we construct by our Poisson brackets as

$$L_{-n} = \frac{1}{n-2} \{ L_{-n+1}, L_{-1} \}.$$

The operator T_{-n} ∈ L²(H₊ → H₋) is Hilbert-Schmidt;
Action of the operator (Id + T_{-n}):

$$(Id + T_{-n})\left(\sum_{k=1}^{\infty} L_k z^k\right) = \sum_{k=-n}^{\infty} L_k z^k;$$

Other co-vectors we construct by our Poisson brackets as

$$L_{-n} = \frac{1}{n-2} \{ L_{-n+1}, L_{-1} \}.$$

The operator $T_{-n} \in \mathcal{L}^2(\mathcal{H}_+ \to \mathcal{H}_-)$ is Hilbert-Schmidt; Action of the operator $(Id + T_{-n})$:

$$(Id + T_{-n})\left(\sum_{k=1}^{\infty} L_k z^k\right) = \sum_{k=-n}^{\infty} L_k z^k;$$

 $\blacksquare W^{(-n)} = (Id + T_{-n})H_+$ is a graph.

The base of $\operatorname{Gr}_{\infty}$ is the Hilbert space $L^2(S^1 \to \mathbb{C}) \cap C^{\infty}$;

The functions $\mathcal{G}(z) = \sum_{k \in \mathbb{Z}} \overline{\mathcal{G}}_k z^k$ at a point $f \in \mathcal{F}_0$ are completely defined by their values at f = id.

• Over each point $f \in \mathcal{F}_0$ we consider the Grassmannian $\operatorname{Gr}_{\infty}$.

• Over each point $f \in \mathcal{F}_0$ we consider the Grassmannian $\operatorname{Gr}_{\infty}$.

In $\operatorname{Gr}_{\infty}$ we consider a hierarchy of connected components $\{U_{\mathcal{H}_{+}}^{(-n)}\}_{n=0}^{\infty}$ of the neighbourhood $U_{\mathcal{H}_{+}}$ of \mathcal{H}_{+} .

• Over each point $f \in \mathcal{F}_0$ we consider the Grassmannian $\operatorname{Gr}_{\infty}$.

In $\operatorname{Gr}_{\infty}$ we consider a hierarchy of connected components $\{U_{\mathcal{H}_{+}}^{(-n)}\}_{n=0}^{\infty}$ of the neighbourhood $U_{\mathcal{H}_{+}}$ of \mathcal{H}_{+} .

In each $U_{\mathcal{H}_+}^{(-n)}$ we construct special points given by graphs $W^{(-n)} = (Id + T_{-n})\mathcal{H}_+.$

• Over each point $f \in \mathcal{F}_0$ we consider the Grassmannian $\operatorname{Gr}_{\infty}$.

In $\operatorname{Gr}_{\infty}$ we consider a hierarchy of connected components $\{U_{\mathcal{H}_{+}}^{(-n)}\}_{n=0}^{\infty}$ of the neighbourhood $U_{\mathcal{H}_{+}}$ of \mathcal{H}_{+} .

In each $U_{\mathcal{H}_+}^{(-n)}$ we construct special points given by graphs $W^{(-n)} = (Id + T_{-n})\mathcal{H}_+.$

These points of Gr_{∞} form a fiber: a countable family $\mathfrak{W} = \{W^{(-n)}\}_{n=0}^{\infty}$ of linear subspaces of \mathcal{H} .

• Over each point $f \in \mathcal{F}_0$ we consider the Grassmannian $\operatorname{Gr}_{\infty}$.

In $\operatorname{Gr}_{\infty}$ we consider a hierarchy of connected components $\{U_{\mathcal{H}_{+}}^{(-n)}\}_{n=0}^{\infty}$ of the neighbourhood $U_{\mathcal{H}_{+}}$ of \mathcal{H}_{+} .

In each $U_{\mathcal{H}_+}^{(-n)}$ we construct special points given by graphs $W^{(-n)} = (Id + T_{-n})\mathcal{H}_+.$

- These points of Gr_{∞} form a fiber: a countable family $\mathfrak{W} = \{W^{(-n)}\}_{n=0}^{\infty}$ of linear subspaces of \mathcal{H} .
- Isomorphism between fibers is given by the Hamiltonian flow \implies principal bundle $\mathfrak{E} = (\mathcal{F}_0, \mathfrak{W})$ over \mathcal{F}_0 with fiber \mathfrak{W} .

We have constructed a bundle $\mathfrak{E} = (\mathcal{F}_0, \mathfrak{W})$ over the base manifold \mathcal{F}_0 of smooth univalent functions.

The fiber \mathfrak{W} consists of special points of Sato's smooth Grassmannian Gr_{∞} ;

- We have constructed a bundle $\mathfrak{E} = (\mathcal{F}_0, \mathfrak{W})$ over the base manifold \mathcal{F}_0 of smooth univalent functions.
- The fiber \mathfrak{W} consists of special points of Sato's smooth Grassmannian Gr_{∞} ;
- It is a principle bundle. Isomorphism between fibers is given by the Hamiltonian flow.

- We have constructed a bundle $\mathfrak{E} = (\mathcal{F}_0, \mathfrak{W})$ over the base manifold \mathcal{F}_0 of smooth univalent functions.
- The fiber 20 consists of special points of Sato's smooth Grassmannian Gr_∞;
- It is a principle bundle. Isomorphism between fibers is given by the Hamiltonian flow.
- The Löwner-Kufarev evolution in \mathcal{F}_0 traces a curve in the principal bundle \mathfrak{E} , which is projected to a curve in each connected component $U_{\mathcal{H}_+}^{(-n)}$ of the neighbourhood $U_{\mathcal{H}_+}$ of the point $\mathcal{H}_+ \in \operatorname{Gr}_\infty$;

The (-n)-th component $U_{\mathcal{H}_+}^{(-n)}$ is defined by its virtual dimension Virt.dim $(U_{\mathcal{H}_+}^{(-n)}) = n + 1$.

The component $U_{\mathcal{H}_+}^{(-n)}$ contains a point of $\operatorname{Gr}_{\infty}$ defined by the graph $W^{(-n)} = (Id + T_{-n})H_+ \in \operatorname{Gr}_{\infty}$.

Löwner-Kufarev traces in Gr_{∞}

Integrable Structures and Laplacian Growth, Banff 2010 - p.39/40

The End

