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F0 = {f : |z| < 1, f(z) = z + c1z
2 + . . . , f -univalent, smooth}
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Sato’s Grassmannian

In 1981, Mikio and Yasuko Sato intepreted the solutions of the

KP-hierarchies as points of an infinite-dimensional Grassmannian

manifold:
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Sato’s Grassmannian

In 1981, Mikio and Yasuko Sato intepreted the solutions of the

KP-hierarchies as points of an infinite-dimensional Grassmannian

manifold:

M. Sato, and Y. Sato,Soliton equations as dynamical systems

on infinite-dimensional Grassmann manifold.– Nonlinear

Partial Differential Equations in Applied Science Tokyo, 1982,

North-Holland Math. Stud. vol. 81, North-Holland,

Amsterdam (1983), pp. 259–271.
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Sato’s Grassmannian

In 1985, Graeme Segal and George Wilson gave a careful

formulation of the work of the Kyoto group (Sato, Date, Jimbo,

Kashiwara, Miwa):
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Sato’s Grassmannian

In 1985, Graeme Segal and George Wilson gave a careful

formulation of the work of the Kyoto group (Sato, Date, Jimbo,

Kashiwara, Miwa):

G. Segal, and G. Wilson,Loop groups and equations of KdV

type.– Publ. IHES, 61 (1985), 5-65.
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Sato’s Grassmannian

H is a separable Hilbert space;
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Sato’s Grassmannian

H is a separable Hilbert space;

H = H+ ⊕H− is a polarization ofH;

Points ofGr(H) are closed linear subspacesV of H such that

orthogonal projectionπ+ : V → H+ is a Fredholm

operator;

orthogonal projectionπ− : V → H− is a Hilbert-Schmidt

operator;
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Sato’s Grassmannian

H is a separable Hilbert space;

H = H+ ⊕H− is a polarization ofH;

Reminder:

Fredholm:kernel and cokernel ofπ+ are finite-dimensional;

Hilbert-Schmidt:the norm
(

∑

ej
‖π−(ej)‖

2
)1/2

is finite for

some orthonormal basis{ej} in V .
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Equivalent definition

V ∈ Gr(H) ⇐⇒ ∃ bounded linear operatorω : H+ → H

such that

ω(H+) = V ;

π+ ◦ ω : H+ → H+ is a Fredholm operator;

π− ◦ ω : H+ → H− is a Hilbert-Schmidt operator;
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Equivalent definition

V ∈ Gr(H) ⇐⇒ ∃ bounded linear operatorω : H+ → H

such that

ω(H+) = V ;

π+ ◦ ω : H+ → H+ is a Fredholm operator;

π− ◦ ω : H+ → H− is a Hilbert-Schmidt operator;

One-to-one correspondence betweenpoints ofGr(H) and

Hilbert-Schmidt operatorsL2(H+ → H−).
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Neighbourhoods

UV ⊂ Gr(H) consists of pointsVT such that

T ∈ L2(V → V ⊥);

VT = (Id+ T )V is a graph ofT .
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Neighbourhoods

UV ⊂ Gr(H) consists of pointsVT such that

T ∈ L2(V → V ⊥);

VT = (Id+ T )V is a graph ofT .

Gr(H) gets the structure of a smooth Hilbert manifold.
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Smooth Grassmannian

Hilbert spaceH = L2(S1 → C) with the basiszk, k ∈ Z;

PolarizationH+ = span
C
{z, z2, . . . };

Index systemS such thatS \ N andN \ S are finite;

HS = span
C
{zk, k ∈ S}.

Any V ∈ Gr(H) is isomorphic toHS for someS.

Integrable Structures and Laplacian Growth, Banff 2010– p.10/40



Smooth Grassmannian

Hilbert spaceH = L2(S1 → C) with the basiszk, k ∈ Z;

PolarizationH+ = span
C
{z, z2, . . . };

Index systemS such thatS \ N andN \ S are finite;

HS = span
C
{zk, k ∈ S}.

Any V ∈ Gr(H) is isomorphic toHS for someS.

H we replace byH ∩ C∞(S1 → C);
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Smooth Grassmannian

Hilbert spaceH = L2(S1 → C) with the basiszk, k ∈ Z;

PolarizationH+ = span
C
{z, z2, . . . };

Index systemS such thatS \ N andN \ S are finite;

HS = span
C
{zk, k ∈ S}.

Any V ∈ Gr(H) is isomorphic toHS for someS.

H we replace byH ∩ C∞(S1 → C);

π+ : V → H+ ∩ C∞ is a Fredholm operator;

π− : V → H− ∩ C∞ is a compact operator;

We obtain a dense submanifoldGr∞ of Gr(H).
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Virtual dimension

Virtual dimension separatesGr(H) into disconnected

components;

virt.dim(V )=index(π+):=dim(ker(π+)) − dim(co ker(π+)).
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Virtual dimension

Virtual dimension separatesGr(H) into disconnected

components;

virt.dim(V )=index(π+):=dim(ker(π+)) − dim(co ker(π+)).

For example:

V ∋ span{z−n, z−n+1, . . . } ∋ ψ =
+∞
∑

k=−n

ψkz
k =⇒

virt.dim(V ) = n+ 1.
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Virasoro group and algebra

The groupDiff S1 of orientation preserving diffeos of the unit

circleS1;

Integrable Structures and Laplacian Growth, Banff 2010– p.12/40



Virasoro group and algebra

The groupDiff S1 of orientation preserving diffeos of the unit

circleS1;

Its central extensionV ir = Diff S1 ⊕ R– Virasoro-Bott group;
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Virasoro group and algebra

The groupDiff S1 of orientation preserving diffeos of the unit

circleS1;

Its central extensionV ir = Diff S1 ⊕ R– Virasoro-Bott group;

Its quotientDiff S1/S1– Kirillov’s manifold;

Groups DiffS1 andV ir and the homogeneous manifold

Diff S1/S1 are modeled on Fréchet spaces.

... and their infinitesimal representations.
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Virasoro group and algebra

The Lie algebradiffS1 for the group DiffS1 is isomorphic to

the Lie algebraVectS1 of smooth vector fieldsv = v(θ) d
dθ

on

S1.
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Virasoro group and algebra

V ir = Diff S1 ⊕ R −→ vir;

Diff S1 −→ VectS1;

Diff S1/S1 −→ Vect 0S
1.
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Virasoro group and algebra

V ir = Diff S1 ⊕ R −→ vir;

Diff S1 −→ VectS1;

Diff S1/S1 −→ Vect 0S
1.

Complexifcation:

(V ir, T
(1,0)
vir

) T
(1,0)
vir

⊕ T
(0,1)
vir

= vir ⊗ C;

(Diff S1, H(1,0)) H(1,0) ⊕H(0,1) = corank1(VectS1 ⊗ C);

(Diff S1/S1, T (1,0)) T (1,0) ⊕ T (0,1) = Vect 0S
1 ⊗ C;
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Relation to analytic functions

F smooth univalent functions inD,

f(z) = z(a0 + a1z + . . . );

F1⊂ F conformal radiusf(D) is 1;

F0= F
⋂

S, whereSnormalized univalent functions inD,

f(z) = z(1 + c1z + . . . );
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Relation to analytic functions

F smooth univalent functions inD,

f(z) = z(a0 + a1z + . . . );

F1⊂ F conformal radiusf(D) is 1;

F0= F
⋂

S, whereSnormalized univalent functions inD,

f(z) = z(1 + c1z + . . . );

Mappings:

(V ir, T
(1,0)
vir

)
Hol

−−−→ F ;

(Diff S1, H(1,0))
C−R
−−−→ F1;

(Diff S1/S1, T (1,0))
Hol

−−−→ F0.
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Relation to analytic functions

Mappings:

(V ir, T
(1,0)
vir

)
Hol

−−−→ F ;

(Diff S1, H(1,0))
C−R
−−−→ F1;

(Diff S1/S1, T (1,0))
Hol

−−−→ F0.

(Diff S1, H(1,0))
C−R
−−−→ F1

pseudoconvex hypersurface inF .

Lie hull (H(1,0), H(0,1)) 6⊂ {H(1,0) ⊕H(0,1)}.
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Principal bundles

PrincipalS1 bundle:

U(1) ≃ S1 −−−→ Diff S1 −−−→ Diff S1/S1;

Trivial principalC∗ bundle (C∗ = C \ {0}):

C
∗ −−−→ V irC ≃ F −−−→ Diff CS

1/S1 ≃ F0.
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Witt and Virasoro commutation

vn = −ieinθ d
dθ

– Fourier basis in VectS1 ⊗ C;
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Witt and Virasoro commutation

vn = −ieinθ d
dθ

– Fourier basis in VectS1 ⊗ C;

[vn, vm] = (m− n)vn+m;
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Witt and Virasoro commutation

vn = −ieinθ d
dθ

– Fourier basis in VectS1 ⊗ C;

[vn, vm] = (m− n)vn+m;

(vn, a), (vm, b) ∈ virC;

a, b, c ∈ C,

c is a constant in the co-cycle,

[(vn, a), (vm, b)]vir =
(

(m− n)vn+m,
c

12
n(n2 − 1)δn,−m

)

.
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Univalent Functions

Realization DiffS1/S1 via conformal welding:
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Univalent Functions

Realization DiffS1/S1 via conformal welding:

0

η

ξ

U

S1

1 0

y

x

Ω

Γ

z = f(ζ) = ζ + c1ζ
2 + . . .

z = g(ζ) = a1ζ + a0 + a−1
1
ζ

+ . . .
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Univalent Functions

Realization DiffS1/S1 via conformal welding:

0

η

ξ

U

S1

1 0

y

x

Ω

Γ

z = f(ζ) = ζ + c1ζ
2 + . . .

z = g(ζ) = a1ζ + a0 + a−1
1
ζ

+ . . .

γ = f−1 ◦ g|S1 ∈ Diff S1/S1, f ∈ F0 ⇆ γ ∈ Diff S1/S1.
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Kirillov’s vector fields

Schaeffer and Spencer linear operator

f 2(ζ)

2π

∫

S1

(

wf ′(w)

f(w)

)2
v(w)dw

w(f(w) − f(z))
,

maps Vect0S1 −→ TfF0 and

Vect 0S
1 ⊗ C = T (1,0) ⊕ T (0,1) −→ TfF0 ⊗ C.
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Kirillov’s vector fields

Schaeffer and Spencer linear operator

f 2(ζ)

2π

∫

S1

(

wf ′(w)

f(w)

)2
v(w)dw

w(f(w) − f(z))
,

maps Vect0S1 −→ TfF0 and

Vect 0S
1 ⊗ C = T (1,0) ⊕ T (0,1) −→ TfF0 ⊗ C.

Taking Fourier basisvk = −izk, k = 1, 2, . . . for T (1,0), we

obtain
Lk[f ](z) = zk+1f ′(z).
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Kirillov’s vector fields

Schaeffer and Spencer linear operator

f 2(ζ)

2π

∫

S1

(

wf ′(w)

f(w)

)2
v(w)dw

w(f(w) − f(z))
,

maps Vect0S1 −→ TfF0 and

Vect 0S
1 ⊗ C = T (1,0) ⊕ T (0,1) −→ TfF0 ⊗ C.

Takingv−k = −iz−k, k = 1, 2, . . . for T (0,1), we obtain

L−k[f ](ζ) = very difficult expressions.

Integrable Structures and Laplacian Growth, Banff 2010– p.19/40



Kirillov’s vector fields

Virasoro commutation relation

[Lm, Ln]vir = (m− n)Lm+n +
c

12
n(n2 − 1)δn,−m,

c ∈ C. L0[f ](z) = zf ′(z) − f(z) corresponds to rotation.

In affine coordinates we get Kirillov’s operators for

n = 1, 2, . . . :

Ln = ∂n +
∞
∑

k=1

(k + 1)ck∂n+k, ∂k = ∂/∂ck,
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Univalent Functions

0

η

ξ

U

S1

1 0

y

x

Ω

Γ

z = f(ζ)

ClassS.

Integrable Structures and Laplacian Growth, Banff 2010– p.21/40



Löwner-Kufarev Representation

Any univalent functionf : U → Ω, f(z) = z + c1z
2 + . . .

(from the classS) can be represented as the limit

f(z) = lim
t→∞

etw(z, t).
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Löwner-Kufarev Representation

Any univalent functionf : U → Ω, f(z) = z + c1z
2 + . . .

(from the classS) can be represented as the limit

f(z) = lim
t→∞

etw(z, t).

The functionζ = w(z, t),

w(z, t) = e−tz

(

1 +
∞
∑

n=1

cn(t)zn

)

,

satisfies dw

dt
= −wp(w, t),

with the initial conditionw(z, 0) = z.
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Non-linear contour dynamics

0

η

ξ

U

S1

1 0

y

x

Ω

Γ

ζ = f(z, t) = etw(z, t) ∈ S

et

We shall consider functionsp(z, t) smooth onS1 and integrable=⇒

f ∈ F0.
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Hamiltonian formulation

Consider the Hamiltonian on the cotangent bundleT ∗F0:

H(f, ψ̄) =

∫

z∈S1

f(z, t)(1 − p(e−tf(z, t), t))ψ̄(z, t)
dz

iz
,

on the unit circlez ∈ S1, whereψ(z, t) is fromL2(S1 → C),

ψ(z, t) =
∑

n∈Z

ψkz
k.
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Hamiltonian system

The Hamiltonian system becomes

df(z, t)

dt
= f(1 − p(e−tf, t)) =

δH

δψ
= {f,H}

for theposition coordinatesand

dψ̄

dt
= −(1−p(e−tf, t)−e−tfp′(e−tf, t))ψ̄ =

−δH

δf
= {ψ,H},

for themomenta, where
δ

δf
and

δ

δψ
are the variational

derivatives.
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Poisson structure

The Poisson structure on the spaceT ∗F0 with coordinates

(f, ψ̄) is given by the canonical brackets

{P,Q} =
δP

δf

δQ

δψ̄
−
δP

δψ̄

δQ

δf
,

or in affine coordinate form (onlyψn for n ≥ 1 are

independent)

{p, q} =
∞
∑

n=1

∂p

∂cn

∂q

∂ψ̄n

−
∂p

∂ψ̄n

∂q

∂cn
.
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Generating function

Set up the functionG(z) := f̄ ′(z, t)ψ(z, t) ∈ L2(S1 → C).

Let (G(z))≤0 mean the ‘negative’ and(G(z))>0 ‘positive’ part

of the Laurent series forG(z),

(G(z))>0 = (ψ1+2c̄1ψ2+3c̄2ψ3+. . . )z+(ψ2+2c̄1ψ3+. . . )z
2+. . .

=
∞
∑

k=1

Ḡkz
k.

Proposition.The functionsG(z), (G(z))≤0 and(G(z))>0 are

time-independent for allz ∈ S1.
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Invertibility















G1

G2

G3

. . .















=















1 2c1 . . . ncn−1 . . .

0 1 . . . (n− 1)cn−2 . . .

0 0 . . . (n− 2)cn−3 . . .

. . . . . . . . . . . . . . .





























ψ̄1

ψ̄2

ψ̄3

. . .















;

Proposition.

G = CΨ̄ and∃ Ψ̄ = C−1G;

ψ̄k = ψ̄k(Gk,Gk+1, . . . ).
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Kirillov’s vector fields

{Gm,Gn} = (n−m)Gn+m for n,m ≥ 1, with respect to our

Poisson structurem.

From co-vectors to vectors̄ψk →
∂

∂ck
= ∂k,

Gn → Ln = ∂n +
∞
∑

k=1

(k + 1)ck∂n+k.

Ln, n = 1, 2, . . . are the holomorphic Virasoro generators. In

their covariant form,Ln are conserved by the Löwner-Kufarev

evolution.
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Graphs in GrassmannianGr∞

Underlying Hilbert space

H = L2(S1 → C) ∩ C∞(S1 → C);

Integrable Structures and Laplacian Growth, Banff 2010– p.30/40



Graphs in GrassmannianGr∞

Underlying Hilbert space

H = L2(S1 → C) ∩ C∞(S1 → C);

Polarization:

H+ = span
C
{z, z2, z3, . . . } ∩ L2 ∩ C∞,

H− = span
C
{1, z−1, z−2, . . . } ∩ L2 ∩ C∞.
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Graphs in GrassmannianGr∞

Consider a neighbourhoodUH+
of the elementH+;

Construct a hierarchy of Hilbert-Schmidt operators

T−n : H+ → H−:

T−n(L1, L2, . . . , Lk, . . . ) =



























L0(L1, L2, . . . , Lk, . . . )

L−1(L1, L2, . . . , Lk, . . . )

. . .

L−n(L1, L2, . . . , Lk, . . . )
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Graphs in GrassmannianGr∞

Defineψ̄∗
0(L1, . . . ) = −

∑∞

n=1 ckψ̄k(L1, . . . ), and

L0 = G0 − (ψ̄0 − ψ̄∗
0)

L0 acts on the classF0 byL0[f ](z) = zf ′(z) − f(z).
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Graphs in GrassmannianGr∞

Defineψ̄∗
0(L1, . . . ) = −

∑∞

n=1 ckψ̄k(L1, . . . ), and

L0 = G0 − (ψ̄0 − ψ̄∗
0)

L0 acts on the classF0 byL0[f ](z) = zf ′(z) − f(z).

Next defineL−1 = G−1 − (ψ̄−1 − ψ̄∗
−1) − 2c1(ψ̄0 − ψ̄∗

0), where

ψ̄∗
−1 = 0. Then,

L−1[f ](z) = f ′(z) − 2c1f(z) − 1

Finally,

L−2 = G−2 − (ψ̄−2 − ψ̄∗
−2) − 2c1(ψ̄−1 − ψ̄∗

−1) − 3c2(ψ̄0 − ψ̄∗
0)
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Graphs in GrassmannianGr∞

First 3 antiholomorphic Virasoro generators:

L0[f ](z) = zf ′(z) − f(z);

L−1[f ](z) = f ′(z) − 2c1f(z) − 1;

L−2[f ](z) = f ′(z)
z

− 1
f(z)

− 3c1 + (c21 − 4c2)f(z).

Important fact:

L0 = c1ψ̄1 + 2c2ψ̄2 + . . . ,

L−1 = (3c2 − 2c21)ψ̄1 + . . . ,

L−2 = (5c3 − 6c1c2 + 2c31)ψ̄1 + . . . ,

are co-vectors.

Integrable Structures and Laplacian Growth, Banff 2010– p.33/40



Graphs in GrassmannianGr∞

Other co-vectors we construct by our Poisson brackets as

L−n =
1

n− 2
{L−n+1, L−1}.
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Graphs in GrassmannianGr∞

Other co-vectors we construct by our Poisson brackets as

L−n =
1

n− 2
{L−n+1, L−1}.

The operatorT−n ∈ L2(H+ → H−) is Hilbert-Schmidt;

Action of the operator(Id+ T−n):

(Id+ T−n)

(

∞
∑

k=1

Lkz
k

)

=
∞
∑

k=−n

Lkz
k;
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Graphs in GrassmannianGr∞

Other co-vectors we construct by our Poisson brackets as

L−n =
1

n− 2
{L−n+1, L−1}.

The operatorT−n ∈ L2(H+ → H−) is Hilbert-Schmidt;

Action of the operator(Id+ T−n):

(Id+ T−n)

(

∞
∑

k=1

Lkz
k

)

=
∞
∑

k=−n

Lkz
k;

W (−n) = (Id+ T−n)H+ is a graph.
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Principal bundle over F0

The base ofGr∞ is the Hilbert spaceL2(S1 → C) ∩ C∞;

The functionsG(z) =
∑

k∈Z
Ḡkz

k at a pointf ∈ F0 are

completely defined by their values atf = id.
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Principal bundle over F0

Over each pointf ∈ F0 we consider the GrassmannianGr∞.
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Principal bundle over F0

Over each pointf ∈ F0 we consider the GrassmannianGr∞.

In Gr∞ we consider a hierarchy of connected components

{U
(−n)
H+

}∞n=0 of the neighbourhoodUH+
of H+.

In eachU (−n)
H+

we construct special points given by graphs

W (−n) = (Id+ T−n)H+.

These points ofGr∞ form a fiber: a countable family

W = {W (−n)}∞n=0 of linear subspaces ofH.

Isomorphism between fibers is given by the Hamiltonian flow

=⇒ principal bundleE = (F0,W) overF0 with fiberW.
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Conclusions

We have constructed a bundleE = (F0,W) over the base

manifoldF0 of smooth univalent functions.

The fiberW consists of special points of Sato’s smooth

GrassmannianGr∞;
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Conclusions

We have constructed a bundleE = (F0,W) over the base

manifoldF0 of smooth univalent functions.

The fiberW consists of special points of Sato’s smooth

GrassmannianGr∞;

It is a principle bundle. Isomorphism between fibers is given

by the Hamiltonian flow.

TheLöwner-Kufarev evolutionin F0 traces a curve in the

principal bundleE, which is projected to acurvein each

connected componentU (−n)
H+

of the neighbourhoodUH+
of the

pointH+ ∈ Gr∞;
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Conclusions

The(−n)-th componentU (−n)
H+

is defined by its virtual

dimensionVirt.dim(U (−n)
H+

)= n+ 1.

The componentU (−n)
H+

contains a point ofGr∞ defined by the

graphW (−n) = (Id+ T−n)H+ ∈ Gr∞.
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Löwner-Kufarev traces in Gr∞

U
(1)
H+

U
(0)
H+

U
(−1)
H+

H+ = W (−n)
∣

∣

t=0

H+ ∈ U
(1)
H+

; Löwner-Kufarev traces

W (0),(−1),(−2)
∣

∣

t=τ
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The End
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