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» Inject inviscid fluid (colored water) into viscous fluid (glycerol)
slowly.
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The case we consider

» Inject viscid fluid (glycerol) into inviscous fluid (colored water)
slowly.

» The boundary is getting better.



The moving domain

ep(z,t) : pressure at z € Q(t).

ex(z,t) : curvature at z € 9Q(t).
ev,(z,t) : normal velocity at z on 92(t).
ey : surface tension.

en : unit normal.

¢Q: injection rate.




The free boundary problem

Ap=-Q& inQ(t),
p =y« on 99Q(t),
vp= —Z—ﬁ on 99Q(t).
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The free boundary problem

Ap=-Qby inQ(t),
p =k on 99Q(t),
Vn= —g—ﬂ on 9Q(t).
» Consider the problem y = 0 now.
» Injection with speed Q; Q(s) c Q(t) if s < t.



P. Ya. Polubarinova-Kochina and L. A. Galin (1945) gave a
conformal formulation of the Hele-Shaw problem.
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» f(Z,t) is univalent in the closed unit disk By (0).
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Reformulation by Riemann mapping

Z=f(€, 1) a
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» f(Z,t) is univalent in the closed unit disk By (0).

=

» Definition:
O(E) = {f(¢) | f(£) is univalent in E, f(0) = 0 and f (0) > 0}.

> f(¢.t) € O(B1(0)).



The Polubarinova-Galin equation

The Polubarinova-Galin equation

Re| S (L OT 02| = 2.2 € 9B,(0)./(2.1) < O(B:(0)).



A reformulation of the P-G equation

B. Gustafsson (1984) gave a new formulation of the P-G equation
to be a Loéwner-Kufarev type equation.
For f(¢,t) € O(B1(0))

ft(g,t):gf(g,t)g 1 z+{dz

2 21 Jogyo) 1f ()P 2=¢ 2°

1< 1.



Definition of a strong solution to the P-G equation

R —
Re| 6. O (2.0 = 2%,{ € 9B1(0).

g Definton |
A solution (¢, t) is a strong solution of the P-G equation if

f(¢,t) € O(B1(0)) is continuously differentiable with respect to t in
[0,€).



Definition of a strong solution to the P-G equation

R —
Re| 6. O (2.0 = 2%,{ € 9B1(0).

g Definton |
A solution (¢, t) is a strong solution of the P-G equation if

f(¢,t) € O(B1(0)) is continuously differentiable with respect to t in
[0,€).

L ocfniion |
If a strong solution (£, t) fails to exist at t = Ty, we say the strong
solution f(¢,t) blows up at t = Tp.



Two special general solutions

» B. Gustafsson (1984) found a general set of solutions
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Two special general solutions

» B. Gustafsson (1984) found a general set of solutions

(0= df §'+do(t)+ZZ (ga’g(t)

j=1 =1k=1

» Abanov, Ar. and Mineev-Weinstein, M. and Zabrodin, A.
(2009) found multi-cut solutions

f(z. r):Z §f+do(t)+zz(§alg(t) +Ze,m(4 £i(1)).
= 1k=1

where g, are constant.
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The Richardson complex moments

» Given Q(t) which solves the problem, then the Richardson
complex moments are

1
M (t) = ;L(t)zkdxdy,z:x—kiy,k >0.

(2)Mo(t) = Mo(0) + 2t (B)Mk(t) = Me(0),k = 1.



The Richardson complex moments

» Given Q(t) which solves the problem, then the Richardson
complex moments are

M (t) = lf ZXdxdy,z = x + iy, k > 0.
TJa(t)
(@)Mo(t) = Mo(0) + %t, (B)Mic(1) = Mic(0),k > 1.

> If Q(t) = fi, (B1(0), 1) where fi, (£,t) = ag(t)d + -+ ak, ()%
is a polynomial strong solution,

Milfo6.0) = 57 [ (€08 (0BG D
= > hay(ay(t) ., (Da i, (0. @)

(RN %]

Mk()?Mko-l—la =0.



The strong global solutions
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The strong global solutions

» Some solutions blow up
» Some solutions are global.



Now assume Q = 2x



The global dynamics

B. Gustafsson, D. Prokhorov, and A. Vasilev(2004)

Iff(£,0) is a starlike function and f(£,0) € O(B1(0)) , then the
strong solution is global and (¢, t) is starlike forever.

/TN




Weak solutions rescaling behavior-Past Work1

M.Sakai (1998)

IfQ(0) c Br(0), and t is large, then

B Jioomrzo-r < Ut € B fmmyiaran k-



Small data rescaling behavior-Past work 2

E. Vondenhoff(2008):
Q(0) is a small perrturbation of Bg(0) where | 2(0) |=| Bg(0) |.
Then

» The solution Q(t) is global.




Small data rescaling behavior-Past work 2

E. Vondenhoff(2008):
Q(0) is a small perrturbation of Bg(0) where | 2(0) |=| Bg(0) |.
Then

» The solution Q(t) is global.

» A rescaling behavior is described in terms of moments.




» | still describe boundary behavior in terms of moments by
restricting to multi-cut solutions.



» | still describe boundary behavior in terms of moments by
restricting to multi-cut solutions.

» But | only assume solutions are global and more details result
about coefficients of solutions are obtained.



outline of our work-1

(Yu-Lin Lin)Large-time rescaling behaviors of Stokes and
Hele-Shaw flows driven by injection

» Assume fi,(t) is a global polynomial solution.



outline of our work-1

(Yu-Lin Lin)Large-time rescaling behaviors of Stokes and
Hele-Shaw flows driven by injection

» Assume fi,(t) is a global polynomial solution.

» Understand how each coefficient decays and grows in terms
of moments.



outline of our work-1

(Yu-Lin Lin)Large-time rescaling behaviors of Stokes and
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» Assume fi,(t) is a global polynomial solution.

» Understand how each coefficient decays and grows in terms
of moments.

» Obtain precise large-time rescaling behavior in terms of
moments.
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outline of our work-2

(B. Gustafsson and Yu-Lin Lin, in preparation)On the dynamics of
roots and poles for solutions of the Polubarinova-Galin equation.

» Assume fis a global multi-cut solution.

» Show that it behaves similar to polynomial case and hence
understand how each coefficient decays and grows in terms
of moments.

» Obtain precise large-time rescaling behavior in terms of
moments.
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The decay of polynomial coefficients

Let fi, = ar(t)¢ + -+ + ak, (t)¢%° be a global polynomial solution.
> OMk_l(t) = Mk_l(O),k >2

& > hay (1) a (D) a1, (t) = Mia(0), k > 2
i,k

» O. S. Kuznetsova (2001) observed

a;(t)~ V2t, |ak(t),k>2 are bounded.

Mca=af(Da)+ >, hay(t)-a(0ay i (1)
(i1, ik)#(L,++,1)



The decay of polynomial coefficients

» Then by induction, we can get
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The decay of polynomial coefficients

» Then by induction, we can get

ak(t)(alk(t)) M1+ 0(—— )2 < k < ko.

4()

» Let ng = min{k > 1| M,(0) # 0}.

ak(t)(a§”°+”(t)) — o(1).2 <k < o.

lim [f(g, £)— \[2t+ Mo(o)g] (V2" =T 20 (2)



Multi-cut solutions

b
Letf(4,1) = s + 5™ eiin(¢ ~£1) + bo = 5%, 8¢ be a

global solution. Assume ng = min{k > 1|My # 0}. Then we have
1.

ak(t)(alk(t)) M1+ O(—— 4()

ak(t)(a§”°+”(t)) — 0(1).2 <k < no.

lim max
t—007€9B; (0)

[f({ ) — A2t + Mo(O)g](\/z_t)no—f—l_M_méno_i_l »
(3)

3. Letny ={{jlg;  singularity of f(£,0)}. Thenng < m+ny —1.



Key of the proof

Denote f = Zfil ai’ and fy = Z,’Ll aill.

max |fi(¢,t)—f(£.1)| = O(ax (1) ™) 4)
£€By(0)
and
max_|f(£,t) - (£,t)] = O(au(t) ™) 5)
€B;(0)

where i — o0 as k — oo,



The proof-2

In this case, there exists f;, such that

My —— MO O

2mi (931()

1 K2 OF (2.0 (Z.0de + O(~
~ ), f,k(g,t)f,k(g,t) W(¢,0)dZ + (a_g)
Z/:llfSIk

= ), ha a0 a0a a0+ ©

i,k



The decay coefficients

» Let ng = min{k > 1| M,(0) # 0}.



The decay coefficients

» Let ng = min{k > 1| M,(0) # 0}.
» We can get
ak(t)(a§"°+1)(t)) — o(1).2 <k < no.

1
aj(t)

ak(t)(af(t)) = Mi—1+ O(



The decay coefficients

» Let ng = min{k > 1| M,(0) # 0}.
» We can get
ak(t)(a§"°+1)(t)) — o(1).2 <k < no.

1
aj(t)

ak(t)(af(t)) = Mi—1+ O(

lim max
t—00 £€dBy (0)

|f(.0) - yJ2t-+ Mo(0)¢ | (V21)™ " = g™+ | =0
(7)



Why Multi-cut solutions behave like polynomial

» Understand precise large-time behavior of singularity ¢;,Z_;.
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Why Multi-cut solutions behave like polynomial

» Understand precise large-time behavior of singularity ¢;,Z_;.

m m
Z]lj( 0

60 =qr g + 2,4 +bo—2afé'

» Understand large-time behavior of b;.

Tool: |ay(t)| = V2t, lak ()], k > 2 are uniformly bounded
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P1(4.1)
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Derive the equation for singularity

P1(Z,t)
[1(Z-6)"

g="Ff(4t) = 6; are distinct singularity of f(¢,t).

0 / 1
5 = (f,t)fp(W)

%(Ing) =|(¢P) + % (0aIng)- P(lg%) :



Derive the equation for singularity

P1(4.1)
[1(£-6)

g="f (Z.1) = ,0; are distinct singularity of f(¢,t).

5ot =1 (C0eP()
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Derive the equation for singularity

P1(4.1)
[1(£-6)

g="f (Z.1) = ,0; are distinct singularity of f(¢,t).

5ot =1 (C0eP()

7 ng) =|(¢P) + 5 @,mma) P 2)|-

P, 1i6; 1
ot =Py + Fuma) |

Multiply (£ —6;) and let £ —6; — 0. We can obtain 6;.

v



How to understand the behavior of singularity

X bl Mo
ft)= —2—= 2 (et b b
e M- ;ef N({ =)+ bo

‘ 171 gl
S (nll) = o fo PR e




How to understand the behavior of singularity

X bl
[TL.(¢=-&)®
d 1 (% 1 2.1
i) == [ o B da >0
at 2r Jo I (€', 1)1 Ik — eof?
» There exist ¢1, ¢, > 0 such that

|§k( )l S
1() < Cy, t>0

f(g.1) = -+ ) eiln(¢=¢-1) + bo,
=1
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Geometric meaning of the rescaling behavior

» Let f(¢,t) be a global strong multi-cut solution.

» Let Q(t) = f(B1(0),t) and ny = min{k > 1| M, (0) # O}.

» Rescaling Q(t) by +/ Q(t) | /z, we have the new domain Q'(t)
with area 7.

> Let k(z,t) be the curvature for z € Q' (t). Then

1
max ||z]-1}=0(—=)
zedQ (1) tit=2

max |«(z,t)-1|= O(

zedY (1) t1+n70 )



Geometric meaning of the rescaling behavior

» Let f(¢,t) be a global strong multi-cut solution.

» Let Q(t) = f(Bl( ). t) and no = min{k > 1| M, (0) # O}.

» Rescaling Q(t) by /| Q(t) | /x, we have the new domain Q'(t)
with area 7.

> Let k(z,t) be the curvature for z € Q' (t). Then

1
max ||z]-1}=0(—=)
zedQ (1) tit=2

1
max |«(z,t)-1|= ( o )
zedY (1) tH+=

» The value 1+ @ is the best rate we can get.
limsup max || z|-1] (2t)1Jr 2 = Mp, | .
t—oo  zed (t)
o]

limsup max |k(z,t)-1](2t)*2 = (no—1)(ng+1) | Mp, | .
t—oco  zedQ (t)
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>mibd &

)= gy M=) +bo= Zafé'-
S ThY &

F(£1) = = > (+1)ad

my+m
Z] 0 Cfgj j=0



Why np < m—+n; — 1, n; =total singularity ?

Z] 1 ]( o
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(¢.1) > M g ;( )aj+1l
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Why np < m—+n; — 1, n; =total singularity ?

Z] 1 ]( o

60 =fr gy * 2,84+ bo= Zafé'
Zm—gnl b{j

f’g,tz’m—n— j+1)aj1 2.

(¢.1) S ag Z( 41

. s-1

bs = Chas+1(s+1)+ Csar + Z Cias+1-j(s+1—j). (8)

=1

55:0, ESZO, 52m+n1

» Let s = ng and assume ng > m+ ny.



» Assume S =g > m+ ni. Then
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» Assume S =g > m+ ni. Then

np—1

Co(o+1)an+1 == ), Gam+1-j(no+1-}) )
=1

lim ap, 1a”°+1 =0(# Mp,). contradiction
o+1 0
t—o0



» Assume S =g > m+ ni. Then

np—1

Eo(Mo +1)an 1= ), &an11-(no+1-)) 9)
=
>
lim ano+1a]° " = 0(# Mpn,).  contradiction

» If f(¢,t) is rational, np < m—1.



