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The case we consider

◮ Inject viscid fluid (glycerol) into inviscous fluid (colored water)
slowly.

◮ The boundary is getting better.



The moving domain

•p(z, t) : pressure at z ∈ Ω(t).
•κ(z, t) : curvature at z ∈ ∂Ω(t).
•νn(z, t) : normal velocity at z on ∂Ω(t).
•γ : surface tension.
•n : unit normal.
•Q: injection rate.

Ω(t)



The free boundary problem























∆p = −Qδ0 in Ω(t),
p = γκ on ∂Ω(t),
νn = −∂p

∂n on ∂Ω(t).



The free boundary problem























∆p = −Qδ0 in Ω(t),
p = γκ on ∂Ω(t),
νn = −∂p

∂n on ∂Ω(t).

◮ Consider the problem γ= 0 now.



The free boundary problem























∆p = −Qδ0 in Ω(t),
p = γκ on ∂Ω(t),
νn = −∂p

∂n on ∂Ω(t).

◮ Consider the problem γ= 0 now.

◮ Injection with speed Q; Ω(s) ⊂ Ω(t) if s < t .



P. Ya. Polubarinova-Kochina and L. A. Galin (1945) gave a
conformal formulation of the Hele-Shaw problem.
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f(0,t)=0, f’(0,t)>0

◮ f(ζ, t) is univalent in the closed unit disk B1(0).
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Reformulation by Riemann mapping

Z=f(ξ , t)
Ω(t)

B1(0)

f(0,t)=0, f’(0,t)>0

◮ f(ζ, t) is univalent in the closed unit disk B1(0).

◮ Definition:
O(E) = {f(ζ) | f(ζ) is univalent in E , f(0) = 0 and f

′
(0) > 0}.

◮ f(ζ, t) ∈ O(B1(0)).



The Polubarinova-Galin equation

The Polubarinova-Galin equation

Re
[ d
dt

f(ζ, t)f ′(ζ, t)ζ
]

=
Q
2π
,ζ ∈ ∂B1(0), f(ζ, t) ∈O(B1(0)).



A reformulation of the P-G equation

B. Gustafsson (1984) gave a new formulation of the P-G equation
to be a Löwner-Kufarev type equation.
For f(ζ, t) ∈ O(B1(0))

ft(ζ, t) =
Q
2π

f
′
(ζ, t)ζ
2πi

∫

∂B1(0)

1

| f ′(z, t) |2
z + ζ

z − ζ
dz
z
, |ζ | < 1.



Definition of a strong solution to the P-G equation
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f(ζ, t) ∈ O(B1(0)) is continuously differentiable with respect to t in
[0, ǫ).



Definition of a strong solution to the P-G equation

Re
[ d
dt

f(ζ, t)f ′(ζ, t)ζ
]

=
Q
2π
,ζ ∈ ∂B1(0).

◮ Definition

A solution f(ζ, t) is a strong solution of the P-G equation if

f(ζ, t) ∈ O(B1(0)) is continuously differentiable with respect to t in
[0, ǫ).

◮ Definition

If a strong solution f(ζ, t) fails to exist at t = T0, we say the strong
solution f(ζ, t) blows up at t = T0.



Two special general solutions

◮ B. Gustafsson (1984) found a general set of solutions

f(ζ, t) =
m
∑

j=1

dj(t)ζ
j +d0(t)+

n
∑

l=1

sl
∑

k=1

al,k (t)

(ζ − ζl(t))k



Two special general solutions

◮ B. Gustafsson (1984) found a general set of solutions

f(ζ, t) =
m
∑

j=1

dj(t)ζ
j +d0(t)+

n
∑

l=1

sl
∑

k=1

al,k (t)

(ζ − ζl(t))k

◮ Abanov, Ar. and Mineev-Weinstein, M. and Zabrodin, A.
(2009) found multi-cut solutions

f(ζ, t)=
m
∑

j=1

dj(t)ζ
j +d0(t)+

n
∑

l=1

sl
∑

k=1

al,k (t)

(ζ − ζl(t))k
+

m0
∑

l=1

el ln(ζ−ζ−l(t)),

where el are constant.
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The Richardson complex moments

◮ Given Ω(t) which solves the problem, then the Richardson
complex moments are

Mk (t) =
1
π

∫

Ω(t)
zk dxdy,z = x + iy,k ≥ 0.

◮

(a)M0(t) = M0(0)+
Q
π

t , (b)Mk (t) = Mk (0),k ≥ 1.

◮ If Ω(t) = fk0(B1(0), t) where fk0(ζ, t) = a1(t)ζ+ · · ·+ak0(t)ζ
k0

is a polynomial strong solution,

Mk (fk0(ζ, t)) =
1

2πi

∫

∂B1(0)
fk
k0

(ζ, t)f
′

k0
(ζ, t)fk0(ζ, t)dζ

=
∑

i1,··· ,ik+1

i1ai1(t)ai2(t) · · ·aik+1(t)ai1+···+ik+1(t). (1)

Mk0 ,Mk0+1, · · ·= 0.
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The strong global solutions

◮ Some solutions blow up

◮ Some solutions are global.



Now assume Q = 2π



The global dynamics

B. Gustafsson, D. Prokhorov, and A. Vasilev(2004)

Theorem

If f(ζ,0) is a starlike function and f(ζ,0) ∈O(B1(0)) , then the
strong solution is global and f(ζ, t) is starlike forever.

x

τ x



Weak solutions rescaling behavior-Past Work1

M.Sakai (1998)

Theorem

If Ω(0) ⊂ BR(0), and t is large, then

B√
(|Ω(0)|/π+2t)−R

⊂ Ω(t) ⊂ B√
(|Ω(0)|/π+2t)+R

.



Small data rescaling behavior-Past work 2

E. Vondenhoff(2008):
Ω(0) is a small perrturbation of BR(0) where | Ω(0) |=| BR(0) |.
Then
◮ The solution Ω(t) is global.
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Small data rescaling behavior-Past work 2

E. Vondenhoff(2008):
Ω(0) is a small perrturbation of BR(0) where | Ω(0) |=| BR(0) |.
Then
◮ The solution Ω(t) is global.
◮ A rescaling behavior is described in terms of moments.
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◮ I still describe boundary behavior in terms of moments by
restricting to multi-cut solutions.



◮ I still describe boundary behavior in terms of moments by
restricting to multi-cut solutions.

◮ But I only assume solutions are global and more details result
about coefficients of solutions are obtained.
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outline of our work-2

(B. Gustafsson and Yu-Lin Lin, in preparation)On the dynamics of
roots and poles for solutions of the Polubarinova-Galin equation.

◮ Assume f is a global multi-cut solution.

◮ Show that it behaves similar to polynomial case and hence
understand how each coefficient decays and grows in terms
of moments.

◮ Obtain precise large-time rescaling behavior in terms of
moments.



The decay of polynomial coefficients
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Let fk0 = a1(t)ζ+ · · ·+ak0(t)ζ
k0 be a global polynomial solution.

◮ •Mk−1(t) = Mk−1(0),k ≥ 2

⇔
∑

i1,··· ,ik

i1ai1(t) · · ·aik (t)ai1+···+ik (t) = Mk−1(0),k ≥ 2.

◮ O. S. Kuznetsova (2001) observed

a1(t) ≈
√

2t , |ak (t)|,k ≥ 2 are bounded.

◮

Mk−1 = ak
1 (t)ak (t)+

∑

(i1,··· ,ik ),(1,··· ,1)

i1ai1(t) · · ·aik (t)ai1+···+ik (t)



The decay of polynomial coefficients

◮ Then by induction, we can get

ak (t)
(

ak
1 (t)
)

= Mk−1 +O(
1

a4
1(t)

),2 ≤ k ≤ k0.
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The decay of polynomial coefficients

◮ Then by induction, we can get

ak (t)
(

ak
1 (t)
)

= Mk−1 +O(
1

a4
1(t)

),2 ≤ k ≤ k0.

◮ Let n0 = min{k ≥ 1 |Mk (0) , 0}.

ak (t)
(

a(n0+1)
1 (t)

)

= o(1),2 ≤ k ≤ n0.

◮

lim
t→∞

[

f(ζ, t)−
√

2t +M0(0)ζ
]

(√
2t
)n0+1

= Mn0ζ
n0+1
, 0 (2)



Multi-cut solutions

Theorem

Let f(ζ, t) =
∑m

j=1 bjζ
j

∏n
l=1(ζ−ζl)

sl
+
∑m0

l=1 el ln(ζ − ζ−l)+b0 =
∑∞

j=1 ajζ
j be a

global solution. Assume n0 = min{k ≥ 1|Mk , 0}. Then we have

1.

ak (t)
(

ak
1 (t)
)

= Mk−1 +O(
1

a4
1(t)

),2 ≤ k <∞.

ak (t)
(

a(n0+1)
1 (t)

)

= o(1),2 ≤ k ≤ n0.

2.

lim
t→∞

max
ζ∈∂B1(0)

∣

∣

∣

∣

∣

[

f(ζ, t)−
√

2t +M0(0)ζ
]

(√
2t
)n0+1

−Mn0ζ
n0+1
∣

∣

∣

∣

∣

= 0

(3)

3. Let n1 = {ζj |ζj singularity of f(ζ,0)}. Then n0 ≤m +n1−1.



Key of the proof

Denote f =
∑∞

j=1 ajζ
j and fk =

∑k
j=1 ajζ

j.

max
ζ∈B1(0)

∣

∣

∣fk (ζ, t)− f(ζ, t)
∣

∣

∣= O(a1(t)
−ik ) (4)

and

max
ζ∈B1(0)

∣

∣

∣f
′

k (ζ, t)− f
′
(ζ, t)
∣

∣

∣= O(a1(t)
−ik ) (5)

where ik →∞ as k →∞.



The proof-2

In this case, there exists flk such that

Mk−1 =
1

2πi

∫

∂B1(0)
fk (ζ, t)f

′
(ζ, t)f(ζ, t)dζ

=
1

2πi

∫

∂B1(0)
fk
lk
(ζ, t)f

′

lk
(ζ, t)flk (ζ, t)dζ+O(

1

a4
1

)

=

∑k
j=1 lj≤lk
∑

i1,··· ,ik

i1ai1(t)ai2(t) · · ·aik (t)ai1+···+ik (t)+O(
1

a4
1

). (6)
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1
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∣

∣

∣

∣
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∣

∣

∣

∣

∣
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Why Multi-cut solutions behave like polynomial

◮ Understand precise large-time behavior of singularity ζl , ζ−l .
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Why Multi-cut solutions behave like polynomial

◮ Understand precise large-time behavior of singularity ζl , ζ−l .

f(ζ, t) =

∑m
j=1 bjζ

j

∏n
l=1(ζ − ζl)sl

+

m0
∑

l=1

el ln(ζ − ζ−l)+b0 =
∞
∑

j=1

ajζ
j ,

◮ Understand large-time behavior of bj.

Tool: |a1(t)| ≈
√

2t , |ak (t)|,k ≥ 2 are uniformly bounded
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+
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ζ − θj

=

[

(ζP)
′
+

1
i
(∂α lng) ·P

]

.



Derive the equation for singularity

g = f
′
(ζ, t) =

P1(ζ, t)
∏

(ζ − θj)lj
, θj are distinct singularity of f(ζ, t).

◮

∂

∂t
f = f

′
(ζ, t)ζP(

1

|f ′ |2
)

◮

∂

∂t
(lng) =

[

(ζP)
′
+

1
i
(∂α lng) ·P(

1

|g|2
)

]

.

◮

Ṗ1

P1
+
∑ lj θ̇j
ζ − θj

=

[

(ζP)
′
+

1
i
(∂α lng) ·P

]

.

◮ Multiply (ζ − θj) and let ζ − θj → 0. We can obtain θ̇j.



How to understand the behavior of singularity

◮

f(ζ, t) =

∑m
j=1 bjζ

j

∏n
l=1(ζ − ζl)sl

+

m0
∑

l=1

el ln(ζ − ζ−l)+b0,

d
dt

(ln |ζk |) =
1

2π

∫ 2π

0

1

|f ′(eiα, t)|2
|ζk |2−1

|ζk −eiα|2
dα > 0.



How to understand the behavior of singularity

◮

f(ζ, t) =

∑m
j=1 bjζ

j

∏n
l=1(ζ − ζl)sl

+

m0
∑

l=1

el ln(ζ − ζ−l)+b0,

d
dt

(ln |ζk |) =
1

2π

∫ 2π

0

1

|f ′(eiα, t)|2
|ζk |2−1

|ζk −eiα|2
dα > 0.

◮ There exist c1,c2 > 0 such that

c1 ≤
|ζk (t)|
a1(t)

≤ c2, t ≥ 0
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◮ Let f(ζ, t) be a global strong multi-cut solution.
◮ Let Ω(t) = f(B1(0), t) and n0 = min{k ≥ 1 |Mk (0) , 0}.
◮ Rescaling Ω(t) by

√

| Ω(t) | /π, we have the new domain Ω
′
(t)

with area π.
◮ Let κ(z, t) be the curvature for z ∈ ∂Ω′(t). Then

max
z∈∂Ω′(t)
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( 1
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n0
2
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( 1

t1+
n0
2

)

.



Geometric meaning of the rescaling behavior

◮ Let f(ζ, t) be a global strong multi-cut solution.
◮ Let Ω(t) = f(B1(0), t) and n0 = min{k ≥ 1 |Mk (0) , 0}.
◮ Rescaling Ω(t) by

√

| Ω(t) | /π, we have the new domain Ω
′
(t)

with area π.
◮ Let κ(z, t) be the curvature for z ∈ ∂Ω′(t). Then

max
z∈∂Ω′(t)

|| z | −1 |= O
( 1

t1+
n0
2

)

max
z∈∂Ω′(t)

| κ(z, t)−1 |= O
( 1

t1+
n0
2

)

.

◮ The value 1+ n0
2 is the best rate we can get.

limsup
t→∞

max
z∈∂Ω′(t)

|| z | −1 | (2t)1+
n0
2 =|Mn0 | .

limsup
t→∞

max
z∈∂Ω′(t)

| κ(z, t)−1 | (2t)1+
n0
2 = (n0−1)(n0 +1) |Mn0 | .
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Why n0 ≤m +n1−1, n1 =total singularity ?

◮

f(ζ, t) =

∑m
j=1 bjζ

j

∏n
l=1(ζ − ζl)sl

+

m0
∑

l=1

el ln(ζ − ζ−l)+b0 =
∞
∑

j=1

ajζ
j .

◮

f ′(ζ, t) =

∑m+n1−1
j=0 b̃jζ

j

∑m1+n1
j=0 c̃jζ j

=
∞
∑

j=0

(j +1)aj+1ζ
j .

◮

b̃s = c̃0as+1(s +1)+ c̃sa1 +
s−1
∑

j=1

c̃jas+1−j(s +1− j). (8)

b̃s = 0, c̃s = 0, s ≥m +n1



Why n0 ≤m +n1−1, n1 =total singularity ?

◮

f(ζ, t) =

∑m
j=1 bjζ

j

∏n
l=1(ζ − ζl)sl

+

m0
∑

l=1

el ln(ζ − ζ−l)+b0 =
∞
∑

j=1

ajζ
j .

◮

f ′(ζ, t) =

∑m+n1−1
j=0 b̃jζ

j

∑m1+n1
j=0 c̃jζ j

=
∞
∑

j=0

(j +1)aj+1ζ
j .

◮

b̃s = c̃0as+1(s +1)+ c̃sa1 +
s−1
∑

j=1

c̃jas+1−j(s +1− j). (8)

b̃s = 0, c̃s = 0, s ≥m +n1

◮ Let s = n0 and assume n0 ≥m +n1.



◮ Assume s = n0 ≥m +n1. Then

c̃0(n0 +1)an0+1 = −
n0−1
∑

j=1

c̃jan0+1−j(n0 +1− j) (9)



◮ Assume s = n0 ≥m +n1. Then

c̃0(n0 +1)an0+1 = −
n0−1
∑

j=1

c̃jan0+1−j(n0 +1− j) (9)

◮

lim
t→∞

an0+1an0+1
1 = 0(,Mn0). contradiction



◮ Assume s = n0 ≥m +n1. Then

c̃0(n0 +1)an0+1 = −
n0−1
∑

j=1

c̃jan0+1−j(n0 +1− j) (9)

◮

lim
t→∞

an0+1an0+1
1 = 0(,Mn0). contradiction

◮ If f(ζ, t) is rational, n0 ≤m−1.


