Large-time asymptotic behavior of multi-cut solutions to Hele-Shaw flows

Yu-Lin Lin ${ }^{1}$

Joint work with B. Gustafsson
Integrable and stochastic Laplacian growth in modern mathematical physics

November 04, 2010

- The gap between two parallel plates is small.

- The gap between two parallel plates is small.
- Inject inviscid fluid (colored water) into viscous fluid (glycerol) slowly.
- Considered to be a two-dimensional problem.
- Considered to be a two-dimensional problem.

- Inject viscid fluid (glycerol) into inviscous fluid (colored water) slowly.
- Inject viscid fluid (glycerol) into inviscous fluid (colored water) slowly.
- The boundary is getting better.
$\bullet p(z, t)$: pressure at $z \in \Omega(t)$.
$\bullet \kappa(z, t)$: curvature at $z \in \partial \Omega(t)$.
$\bullet v_{n}(z, t)$: normal velocity at z on $\partial \Omega(t)$.
$\bullet \gamma$: surface tension.
$\bullet n$: unit normal.
-Q: injection rate.

$$
\begin{cases}\Delta p=-Q \delta_{0} & \text { in } \Omega(t) \\ p=\gamma \kappa & \text { on } \partial \Omega(t), \\ v_{n}=-\frac{\partial p}{\partial n} & \text { on } \partial \Omega(t)\end{cases}
$$

$$
\begin{cases}\Delta p=-Q \delta_{0} & \text { in } \Omega(t), \\ p=\gamma \kappa & \text { on } \partial \Omega(t), \\ v_{n}=-\frac{\partial p}{\partial n} & \text { on } \partial \Omega(t) .\end{cases}
$$

- Consider the problem $\gamma=0$ now.

$$
\begin{cases}\Delta p=-Q \delta_{0} & \text { in } \Omega(t), \\ p=\gamma \kappa & \text { on } \partial \Omega(t), \\ v_{n}=-\frac{\partial p}{\partial n} & \text { on } \partial \Omega(t) .\end{cases}
$$

- Consider the problem $\gamma=0$ now.
- Injection with speed $Q ; \Omega(s) \subset \Omega(t)$ if $s<t$.
P. Ya. Polubarinova-Kochina and L. A. Galin (1945) gave a conformal formulation of the Hele-Shaw problem.

- $f(\zeta, t)$ is univalent in the closed unit disk $\overline{B_{1}(0)}$.

- $f(\zeta, t)$ is univalent in the closed unit disk $\overline{B_{1}(0)}$.
- Definition:
$O(E)=\left\{f(\zeta) \mid f(\zeta)\right.$ is univalent in $E, f(0)=0$ and $\left.f^{\prime}(0)>0\right\}$.

- $f(\zeta, t)$ is univalent in the closed unit disk $\overline{B_{1}(0)}$.
- Definition:
$O(E)=\left\{f(\zeta) \mid f(\zeta)\right.$ is univalent in $E, f(0)=0$ and $\left.f^{\prime}(0)>0\right\}$.
- $f(\zeta, t) \in O\left(\overline{B_{1}(0)}\right)$.

The Polubarinova-Galin equation

$$
\operatorname{Re}\left[\frac{d}{d t} f(\zeta, t) \overline{f^{\prime}(\zeta, t) \zeta}\right]=\frac{Q}{2 \pi}, \zeta \in \partial B_{1}(0), f(\zeta, t) \in O\left(\overline{B_{1}(0)}\right)
$$

B. Gustafsson (1984) gave a new formulation of the P-G equation to be a Löwner-Kufarev type equation.
For $f(\zeta, t) \in O\left(\overline{B_{1}(0)}\right)$

$$
f_{t}(\zeta, t)=\frac{Q}{2 \pi} \frac{f^{\prime}(\zeta, t) \zeta}{2 \pi i} \int_{\partial B_{1}(0)} \frac{1}{\left|f^{\prime}(z, t)\right|^{2}} \frac{z+\zeta}{z-\zeta} \frac{d z}{z},|\zeta|<1 .
$$

$$
\operatorname{Re}\left[\frac{d}{d t} f(\zeta, t) \overline{f^{\prime}(\zeta, t) \zeta}\right]=\frac{Q}{2 \pi}, \zeta \in \partial B_{1}(0) .
$$

- Definition

A solution $f(\zeta, t)$ is a strong solution of the P-G equation if $f(\zeta, t) \in O\left(\overline{B_{1}(0)}\right)$ is continuously differentiable with respect to t in $[0, \epsilon)$.

$$
\operatorname{Re}\left[\frac{d}{d t} f(\zeta, t) \overline{f^{\prime}(\zeta, t) \zeta}\right]=\frac{Q}{2 \pi}, \zeta \in \partial B_{1}(0) .
$$

- Definition

A solution $f(\zeta, t)$ is a strong solution of the P-G equation if $f(\zeta, t) \in O\left(\overline{B_{1}(0)}\right)$ is continuously differentiable with respect to t in $[0, \epsilon)$.

- Definition

If a strong solution $f(\zeta, t)$ fails to exist at $t=T_{0}$, we say the strong solution $f(\zeta, t)$ blows up at $t=T_{0}$.

- B. Gustafsson (1984) found a general set of solutions

$$
f(\zeta, t)=\sum_{j=1}^{m} d_{j}(t) \zeta^{j}+d_{0}(t)+\sum_{l=1}^{n} \sum_{k=1}^{s_{l}} \frac{a_{l, k}(t)}{\left(\zeta-\zeta_{l}(t)\right)^{k}}
$$

- B. Gustafsson (1984) found a general set of solutions

$$
f(\zeta, t)=\sum_{j=1}^{m} d_{j}(t) \zeta^{j}+d_{0}(t)+\sum_{l=1}^{n} \sum_{k=1}^{s_{l}} \frac{a_{l, k}(t)}{\left(\zeta-\zeta_{l}(t)\right)^{k}}
$$

- Abanov, Ar. and Mineev-Weinstein, M. and Zabrodin, A. (2009) found multi-cut solutions

$$
f(\zeta, t)=\sum_{j=1}^{m} d_{j}(t) \zeta^{j}+d_{0}(t)+\sum_{l=1}^{n} \sum_{k=1}^{s_{l}} \frac{a_{l, k}(t)}{\left(\zeta-\zeta_{l}(t)\right)^{k}}+\sum_{l=1}^{m_{0}} e_{l} \ln \left(\zeta-\zeta_{-l}(t)\right)
$$

where $e_{\text {I }}$ are constant.

- Given $\Omega(t)$ which solves the problem, then the Richardson complex moments are

$$
M_{k}(t)=\frac{1}{\pi} \int_{\Omega(t)} z^{k} d x d y, z=x+i y, k \geq 0
$$

- Given $\Omega(t)$ which solves the problem, then the Richardson complex moments are

$$
M_{k}(t)=\frac{1}{\pi} \int_{\Omega(t)} z^{k} d x d y, z=x+i y, k \geq 0
$$

$$
(a) M_{0}(t)=M_{0}(0)+\frac{Q}{\pi} t
$$

$$
(b) M_{k}(t)=M_{k}(0), k \geq 1
$$

- Given $\Omega(t)$ which solves the problem, then the Richardson complex moments are

$$
M_{k}(t)=\frac{1}{\pi} \int_{\Omega(t)} z^{k} d x d y, z=x+i y, k \geq 0
$$

$$
(a) M_{0}(t)=M_{0}(0)+\frac{Q}{\pi} t, \quad(b) M_{k}(t)=M_{k}(0), k \geq 1
$$

- If $\Omega(t)=f_{k_{0}}\left(B_{1}(0), t\right)$ where $f_{k_{0}}(\zeta, t)=a_{1}(t) \zeta+\cdots+a_{k_{0}}(t) \zeta^{k_{0}}$ is a polynomial strong solution,

$$
\begin{align*}
M_{k}\left(f_{k_{0}}(\zeta, t)\right) & =\frac{1}{2 \pi i} \int_{\partial B_{1}(0)} f_{k_{0}}^{k}(\zeta, t) f_{k_{0}}^{\prime}(\zeta, t) \overline{f_{k_{0}}(\zeta, t)} d \zeta \\
& =\sum_{i_{1}, \cdots, i_{k+1}} i_{1} a_{i_{1}}(t) a_{i_{2}}(t) \cdots a_{i_{k+1}}(t) \overline{a_{i_{1}+\cdots+i_{k+1}}(t)} \tag{1}
\end{align*}
$$

$M_{k_{0}}, M_{k_{0}+1}, \cdots=0$.

- Some solutions blow up
- Some solutions blow up
- Some solutions are global.

Now assume $Q=2 \pi$
B. Gustafsson, D. Prokhorov, and A. Vasilev(2004)

Theorem

If $f(\zeta, 0)$ is a starlike function and $f(\zeta, 0) \in O\left(\overline{B_{1}(0)}\right)$, then the strong solution is global and $f(\zeta, t)$ is starlike forever.

Weak solutions rescaling behavior-Past Work1
M.Sakai (1998)

Theorem
If $\Omega(0) \subset B_{R}(0)$, and t is large, then
$B_{\sqrt{(|\Omega(0)| / \pi+2 t)}-R} \subset \Omega(t) \subset B_{\sqrt{(|\Omega(0)| / \pi+2 t)}+R}$.

Small data rescaling behavior-Past work 2
E. Vondenhoff(2008):
$\Omega(0)$ is a small perrturbation of $B_{R}(0)$ where $|\Omega(0)|=\left|B_{R}(0)\right|$. Then

- The solution $\Omega(t)$ is global.

Small data rescaling behavior-Past work 2
E. Vondenhoff(2008):
$\Omega(0)$ is a small perrturbation of $B_{R}(0)$ where $|\Omega(0)|=\left|B_{R}(0)\right|$. Then

- The solution $\Omega(t)$ is global.
- A rescaling behavior is described in terms of moments.

- I still describe boundary behavior in terms of moments by restricting to multi-cut solutions.
- I still describe boundary behavior in terms of moments by restricting to multi-cut solutions.
- But I only assume solutions are global and more details result about coefficients of solutions are obtained.
(Yu-Lin Lin)Large-time rescaling behaviors of Stokes and Hele-Shaw flows driven by injection
- Assume $f_{k_{0}}(t)$ is a global polynomial solution.
(Yu-Lin Lin)Large-time rescaling behaviors of Stokes and Hele-Shaw flows driven by injection
- Assume $f_{k_{0}}(t)$ is a global polynomial solution.
- Understand how each coefficient decays and grows in terms of moments.
(Yu-Lin Lin)Large-time rescaling behaviors of Stokes and Hele-Shaw flows driven by injection
- Assume $f_{k_{0}}(t)$ is a global polynomial solution.
- Understand how each coefficient decays and grows in terms of moments.
- Obtain precise large-time rescaling behavior in terms of moments.
(B. Gustafsson and Yu-Lin Lin, in preparation)On the dynamics of roots and poles for solutions of the Polubarinova-Galin equation.
- Assume f is a global multi-cut solution.
(B. Gustafsson and Yu-Lin Lin, in preparation)On the dynamics of roots and poles for solutions of the Polubarinova-Galin equation.
- Assume f is a global multi-cut solution.
- Show that it behaves similar to polynomial case and hence understand how each coefficient decays and grows in terms of moments.
(B. Gustafsson and Yu-Lin Lin, in preparation)On the dynamics of roots and poles for solutions of the Polubarinova-Galin equation.
- Assume f is a global multi-cut solution.
- Show that it behaves similar to polynomial case and hence understand how each coefficient decays and grows in terms of moments.
- Obtain precise large-time rescaling behavior in terms of moments.

Let $f_{k_{0}}=a_{1}(t) \zeta+\cdots+a_{k_{0}}(t) \zeta^{k_{0}}$ be a global polynomial solution.

- $\bullet M_{k-1}(t)=M_{k-1}(0), k \geq 2$

$$
\Leftrightarrow \sum_{i_{1}, \cdots, i_{k}} i_{1} a_{i_{1}}(t) \cdots a_{i_{k}}(t) \overline{a_{i_{1}+\cdots+i_{k}}(t)}=M_{k-1}(0), k \geq 2 .
$$

Let $f_{k_{0}}=a_{1}(t) \zeta+\cdots+a_{k_{0}}(t) \zeta^{k_{0}}$ be a global polynomial solution.

- $\bullet M_{k-1}(t)=M_{k-1}(0), k \geq 2$

$$
\Leftrightarrow \sum_{i_{1}, \cdots, i_{k}} i_{1} a_{i_{1}}(t) \cdots a_{i_{k}}(t) \overline{a_{i_{1}+\cdots+i_{k}}(t)}=M_{k-1}(0), k \geq 2
$$

- O. S. Kuznetsova (2001) observed

$$
a_{1}(t) \approx \sqrt{2 t}, \quad\left|a_{k}(t)\right|, k \geq 2 \quad \text { are bounded. }
$$

Let $f_{k_{0}}=a_{1}(t) \zeta+\cdots+a_{k_{0}}(t) \zeta^{k_{0}}$ be a global polynomial solution.

- $\bullet M_{k-1}(t)=M_{k-1}(0), k \geq 2$

$$
\Leftrightarrow \sum_{i_{1}, \cdots, i_{k}} i_{1} a_{i_{1}}(t) \cdots a_{i_{k}}(t) \overline{a_{i_{1}+\cdots+i_{k}}(t)}=M_{k-1}(0), k \geq 2 .
$$

- O. S. Kuznetsova (2001) observed

$$
a_{1}(t) \approx \sqrt{2 t}, \quad\left|a_{k}(t)\right|, k \geq 2 \quad \text { are bounded. }
$$

$$
M_{k-1}=a_{1}^{k}(t) \overline{a_{k}(t)}+\sum_{\left(i_{1}, \cdots, i_{k}\right) \neq(1, \cdots, 1)} i_{1} a_{i_{1}}(t) \cdots a_{i_{k}}(t) \overline{a_{i_{1}+\cdots+i_{k}}(t)}
$$

- Then by induction, we can get

$$
a_{k}(t)\left(a_{1}^{k}(t)\right)=\overline{M_{k-1}}+O\left(\frac{1}{a_{1}^{4}(t)}\right), 2 \leq k \leq k_{0}
$$

- Then by induction, we can get

$$
a_{k}(t)\left(a_{1}^{k}(t)\right)=\overline{M_{k-1}}+O\left(\frac{1}{a_{1}^{4}(t)}\right), 2 \leq k \leq k_{0}
$$

- Let $n_{0}=\min \left\{k \geq 1 \mid M_{k}(0) \neq 0\right\}$.

$$
a_{k}(t)\left(a_{1}^{\left(n_{0}+1\right)}(t)\right)=o(1), 2 \leq k \leq n_{0} .
$$

- Then by induction, we can get

$$
a_{k}(t)\left(a_{1}^{k}(t)\right)=\overline{M_{k-1}}+O\left(\frac{1}{a_{1}^{4}(t)}\right), 2 \leq k \leq k_{0} .
$$

- Let $n_{0}=\min \left\{k \geq 1 \mid M_{k}(0) \neq 0\right\}$.

$$
a_{k}(t)\left(a_{1}^{\left(n_{0}+1\right)}(t)\right)=o(1), 2 \leq k \leq n_{0}
$$

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left[f(\zeta, t)-\sqrt{2 t+M_{0}(0)} \zeta\right](\sqrt{2 t})^{n_{0}+1}=\overline{M_{n_{0}}} \zeta^{n_{0}+1} \neq 0 \tag{2}
\end{equation*}
$$

Multi-cut solutions

Theorem
Let $f(\zeta, t)=\frac{\sum_{j=1}^{m} b_{j} \zeta^{j}}{\prod_{l=1}^{n}\left(\zeta-\zeta_{l}\right)^{s l}}+\sum_{l=1}^{m_{0}} e_{l} \ln \left(\zeta-\zeta_{-l}\right)+b_{0}=\sum_{j=1}^{\infty} a_{j} \zeta^{j}$ be a global solution. Assume $n_{0}=\min \left\{k \geq 1 \mid M_{k} \neq 0\right\}$. Then we have 1.

$$
\begin{aligned}
& a_{k}(t)\left(a_{1}^{k}(t)\right)=\overline{M_{k-1}}+O\left(\frac{1}{a_{1}^{4}(t)}\right), 2 \leq k<\infty . \\
& a_{k}(t)\left(a_{1}^{\left(n_{0}+1\right)}(t)\right)=o(1), 2 \leq k \leq n_{0} .
\end{aligned}
$$

2.

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \max _{\zeta \in \partial B_{1}(0)}\left|\left[f(\zeta, t)-\sqrt{2 t+M_{0}(0)} \zeta\right](\sqrt{2 t})^{n_{0}+1}-\overline{M_{n_{0}}} \zeta^{n_{0}+1}\right|=0 \tag{3}
\end{equation*}
$$

3. Let $n_{1}=\left\{\zeta_{j} \mid \zeta_{j}\right.$ singularity of $\left.f(\zeta, 0)\right\}$. Then $n_{0} \leq m+n_{1}-1$.

Denote $f=\sum_{j=1}^{\infty} a_{j} \zeta^{j}$ and $f_{k}=\sum_{j=1}^{k} a_{j} \zeta^{j}$.

$$
\begin{equation*}
\max _{\zeta \in \overline{B_{1}(0)}}\left|f_{k}(\zeta, t)-f(\zeta, t)\right|=O\left(a_{1}(t)^{-i_{k}}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{\zeta \in \overline{B_{1}(0)}}\left|f_{k}^{\prime}(\zeta, t)-f^{\prime}(\zeta, t)\right|=O\left(a_{1}(t)^{-i_{k}}\right) \tag{5}
\end{equation*}
$$

where $i_{k} \rightarrow \infty$ as $k \rightarrow \infty$.

In this case, there exists f_{k} such that

$$
\begin{align*}
M_{k-1} & =\frac{1}{2 \pi i} \int_{\partial B_{1}(0)} f^{k}(\zeta, t) f^{\prime}(\zeta, t) \overline{f(\zeta, t)} d \zeta \\
& =\frac{1}{2 \pi i} \int_{\partial B_{1}(0)} f_{l_{k}}^{k}(\zeta, t) f_{l_{k}}^{\prime}(\zeta, t) \overline{f_{k}(\zeta, t)} d \zeta+O\left(\frac{1}{a_{1}^{4}}\right) \\
& =\sum_{i_{1}, \cdots, i_{k}}^{\sum_{j=1}^{k} l_{j \leq l_{k}}} i_{1} a_{i_{1}}(t) a_{i_{2}}(t) \cdots a_{i_{k}}(t) \overline{a_{i_{1}+\cdots+i_{k}}(t)}+O\left(\frac{1}{a_{1}^{4}}\right) . \tag{6}
\end{align*}
$$

The decay coefficients

- Let $n_{0}=\min \left\{k \geq 1 \mid M_{k}(0) \neq 0\right\}$.
- Let $n_{0}=\min \left\{k \geq 1 \mid M_{k}(0) \neq 0\right\}$.
- We can get

$$
\begin{aligned}
& a_{k}(t)\left(a_{1}^{\left(n_{0}+1\right)}(t)\right)=o(1), 2 \leq k \leq n_{0} . \\
& a_{k}(t)\left(a_{1}^{k}(t)\right)=\overline{M_{k-1}}+O\left(\frac{1}{a_{1}^{4}(t)}\right), 2 \leq k<\infty .
\end{aligned}
$$

- Let $n_{0}=\min \left\{k \geq 1 \mid M_{k}(0) \neq 0\right\}$.
- We can get

$$
\begin{aligned}
& a_{k}(t)\left(a_{1}^{\left(n_{0}+1\right)}(t)\right)=o(1), 2 \leq k \leq n_{0} . \\
& a_{k}(t)\left(a_{1}^{k}(t)\right)=\overline{M_{k-1}}+O\left(\frac{1}{a_{1}^{4}(t)}\right), 2 \leq k<\infty .
\end{aligned}
$$

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \max _{\zeta \in \partial B_{1}(0)}\left|\left[f(\zeta, t)-\sqrt{2 t+M_{0}(0)} \zeta\right](\sqrt{2 t})^{n_{0}+1}-\overline{M_{n_{0}}} \zeta^{n_{0}+1}\right|=0 \tag{7}
\end{equation*}
$$

- Understand precise large-time behavior of singularity $\zeta_{1, \zeta_{-1}}$.

$$
f(\zeta, t)=\frac{\sum_{j=1}^{m} b_{j} \zeta^{j}}{\prod_{l=1}^{n}\left(\zeta-\zeta_{1}\right)^{s_{l}}}+\sum_{l=1}^{m_{0}} e_{l} \ln \left(\zeta-\zeta_{-1}\right)+b_{0}=\sum_{j=1}^{\infty} a_{j} \zeta^{j}
$$

- Understand precise large-time behavior of singularity $\zeta_{1, \zeta_{-1}}$.

$$
f(\zeta, t)=\frac{\sum_{j=1}^{m} b_{j} \zeta^{j}}{\prod_{l=1}^{n}\left(\zeta-\zeta_{l}\right)^{s_{l}}}+\sum_{l=1}^{m_{0}} e_{l} \ln \left(\zeta-\zeta_{-l}\right)+b_{0}=\sum_{j=1}^{\infty} a_{j} \zeta^{j}
$$

- Understand large-time behavior of b_{j}.

Tool: $\quad\left|a_{1}(t)\right| \approx \sqrt{2 t}, \quad\left|a_{k}(t)\right|, k \geq 2$ are uniformly bounded

$$
g=f^{\prime}(\zeta, t)=\frac{P_{1}(\zeta, t)}{\prod\left(\zeta-\theta_{j}\right)^{l_{j}}}, \theta_{j} \text { are distinct singularity of } f(\zeta, t) .
$$

$$
\frac{\partial}{\partial t} f=f^{\prime}(\zeta, t) \zeta P\left(\frac{1}{\left|f^{\prime}\right|^{2}}\right)
$$

$$
g=f^{\prime}(\zeta, t)=\frac{P_{1}(\zeta, t)}{\prod\left(\zeta-\theta_{j}\right)^{l_{j}}}, \theta_{j} \text { are distinct singularity of } f(\zeta, t) .
$$

$$
\frac{\partial}{\partial t} f=f^{\prime}(\zeta, t) \zeta P\left(\frac{1}{\left|f^{\prime}\right|^{2}}\right)
$$

$$
\frac{\partial}{\partial t}(\ln g)=\left[(\zeta P)^{\prime}+\frac{1}{i}\left(\partial_{\alpha} \ln g\right) \cdot P\left(\frac{1}{|g|^{2}}\right)\right]
$$

$$
g=f^{\prime}(\zeta, t)=\frac{P_{1}(\zeta, t)}{\Pi\left(\zeta-\theta_{j}\right)^{l_{j}}}, \theta_{j} \text { are distinct singularity of } f(\zeta, t) \text {. }
$$

$$
\frac{\partial}{\partial t} f=f^{\prime}(\zeta, t) \zeta P\left(\frac{1}{\left|f^{\prime}\right|^{\prime}}\right)
$$

$$
\frac{\partial}{\partial t}(\ln g)=\left[(\zeta P)^{\prime}+\frac{1}{i}\left(\partial_{\alpha} \ln g\right) \cdot P\left(\frac{1}{|g|^{2}}\right)\right] .
$$

$$
\frac{\dot{P}_{1}}{P_{1}}+\sum \frac{l_{j} \dot{\theta}_{j}}{\zeta-\theta_{j}}=\left[(\zeta P)^{\prime}+\frac{1}{i}\left(\partial_{\alpha} \ln g\right) \cdot P\right] .
$$

$$
g=f^{\prime}(\zeta, t)=\frac{P_{1}(\zeta, t)}{\Pi\left(\zeta-\theta_{j}\right)^{i j}}, \theta_{j} \text { are distinct singularity of } f(\zeta, t) \text {. }
$$

$$
\frac{\partial}{\partial t} f=f^{\prime}(\zeta, t) \zeta P\left(\frac{1}{\left|f^{\prime}\right|^{\prime}}\right)
$$

$$
\frac{\partial}{\partial t}(\ln g)=\left[(\zeta P)^{\prime}+\frac{1}{i}\left(\partial_{\alpha} \ln g\right) \cdot P\left(\frac{1}{|g|^{2}}\right)\right] .
$$

$$
\frac{\dot{P}_{1}}{P_{1}}+\sum \frac{l_{j} \dot{\theta}_{j}}{\zeta-\theta_{j}}=\left[(\zeta P)^{\prime}+\frac{1}{i}\left(\partial_{\alpha} \ln g\right) \cdot P\right] .
$$

- Multiply $\left(\zeta-\theta_{j}\right)$ and let $\zeta-\theta_{j} \rightarrow 0$. We can obtain $\dot{\theta}_{j}$.

$$
\begin{aligned}
& f(\zeta, t)=\frac{\sum_{j=1}^{m} b_{j} \zeta^{j}}{\prod_{l=1}^{n}\left(\zeta-\zeta_{l}\right)^{s_{l}}}+\sum_{l=1}^{m_{0}} e_{l} \ln \left(\zeta-\zeta_{-l}\right)+b_{0} \\
& \frac{d}{d t}\left(\ln \left|\zeta_{k}\right|\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1}{\left|f^{\prime}\left(e^{i \alpha}, t\right)\right|^{2}} \frac{\left|\zeta_{k}\right|^{2}-1}{\left|\zeta_{k}-e^{i \alpha}\right|^{2}} d \alpha>0
\end{aligned}
$$

$$
\begin{aligned}
& f(\zeta, t)=\frac{\sum_{j=1}^{m} b_{j} \zeta^{j}}{\prod_{l=1}^{n}\left(\zeta-\zeta_{l}\right)^{s_{l}}}+\sum_{l=1}^{m_{0}} e_{l} \ln \left(\zeta-\zeta_{-l}\right)+b_{0}, \\
& \frac{d}{d t}\left(\ln \left|\zeta_{k}\right|\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1}{\left|f^{\prime}\left(e^{i \alpha}, t\right)\right|^{2}} \frac{\left|\zeta_{k}\right|^{2}-1}{\left|\zeta_{k}-e^{i \alpha}\right|^{2}} d \alpha>0 .
\end{aligned}
$$

- There exist $c_{1}, c_{2}>0$ such that

$$
c_{1} \leq \frac{\left|\zeta_{k}(t)\right|}{a_{1}(t)} \leq c_{2}, \quad t \geq 0
$$

Geometric meaning of the rescaling behavior

- Let $f(\zeta, t)$ be a global strong multi-cut solution.

Geometric meaning of the rescaling behavior

- Let $f(\zeta, t)$ be a global strong multi-cut solution.
- Let $\Omega(t)=f\left(B_{1}(0), t\right)$ and $n_{0}=\min \left\{k \geq 1 \mid M_{k}(0) \neq 0\right\}$.

Geometric meaning of the rescaling behavior

- Let $f(\zeta, t)$ be a global strong multi-cut solution.
- Let $\Omega(t)=f\left(B_{1}(0), t\right)$ and $n_{0}=\min \left\{k \geq 1 \mid M_{k}(0) \neq 0\right\}$.
- Rescaling $\Omega(t)$ by $\sqrt{|\Omega(t)| / \pi}$, we have the new domain $\Omega^{\prime}(t)$ with area π.

Geometric meaning of the rescaling behavior

- Let $f(\zeta, t)$ be a global strong multi-cut solution.
- Let $\Omega(t)=f\left(B_{1}(0), t\right)$ and $n_{0}=\min \left\{k \geq 1 \mid M_{k}(0) \neq 0\right\}$.
- Rescaling $\Omega(t)$ by $\sqrt{|\Omega(t)| / \pi}$, we have the new domain $\Omega^{\prime}(t)$ with area π.
- Let $\kappa(z, t)$ be the curvature for $z \in \partial \Omega^{\prime}(t)$. Then

$$
\begin{aligned}
& \max _{z \in \partial \Omega^{\prime}(t)}| | z|-1|=O\left(\frac{1}{t^{1+\frac{n_{0}}{2}}}\right) \\
& \max _{z \in \partial \Omega^{\prime}(t)}|\kappa(z, t)-1|=O\left(\frac{1}{t^{1+\frac{n_{0}}{2}}}\right) .
\end{aligned}
$$

Geometric meaning of the rescaling behavior

- Let $f(\zeta, t)$ be a global strong multi-cut solution.
- Let $\Omega(t)=f\left(B_{1}(0), t\right)$ and $n_{0}=\min \left\{k \geq 1 \mid M_{k}(0) \neq 0\right\}$.
- Rescaling $\Omega(t)$ by $\sqrt{|\Omega(t)| / \pi}$, we have the new domain $\Omega^{\prime}(t)$ with area π.
- Let $\kappa(z, t)$ be the curvature for $z \in \partial \Omega^{\prime}(t)$. Then
$\max _{z \in \partial \Omega^{\prime}(t)}| | z|-1|=O\left(\frac{1}{t^{1+\frac{n_{0}}{2}}}\right)$
$\max _{z \in \partial \Omega^{\prime}(t)}|\kappa(z, t)-1|=O\left(\frac{1}{t^{1+\frac{n_{0}}{2}}}\right)$.
- The value $1+\frac{n_{0}}{2}$ is the best rate we can get.
$\limsup \max _{z \in \partial \Omega^{\prime}(t)}| | z|-1|(2 t)^{1+\frac{n_{0}}{2}}=\left|M_{n_{0}}\right|$.

$$
t \rightarrow \infty \quad z \in \partial \Omega^{\prime}(t)
$$

$\limsup \max _{t \rightarrow \Omega^{\prime}(t)}|\kappa(z, t)-1|(2 t)^{1+\frac{n_{0}}{2}}=\left(n_{0}-1\right)\left(n_{0}+1\right)\left|M_{n_{0}}\right|$. $t \rightarrow \infty \quad z \in \partial \Omega^{\prime}(t)$

Why $n_{0} \leq m+n_{1}-1, n_{1}=$ total singularity ?

$$
f(\zeta, t)=\frac{\sum_{j=1}^{m} b_{j} \zeta^{j}}{\prod_{l=1}^{n}\left(\zeta-\zeta_{1}\right)^{s_{l}}}+\sum_{l=1}^{m_{0}} e_{l} \ln \left(\zeta-\zeta_{-1}\right)+b_{0}=\sum_{j=1}^{\infty} a_{j} \zeta^{j} .
$$

Why $n_{0} \leq m+n_{1}-1, n_{1}=$ total singularity ?

$$
\begin{aligned}
& f(\zeta, t)=\frac{\sum_{j=1}^{m} b_{j} \zeta^{j}}{\prod_{l=1}^{n}\left(\zeta-\zeta_{1}\right)^{s_{1}}}+\sum_{l=1}^{m_{0}} e_{l} \ln \left(\zeta-\zeta_{-1}\right)+b_{0}=\sum_{j=1}^{\infty} a_{j} \zeta^{j} . \\
& f^{\prime}(\zeta, t)=\frac{\sum_{j=0}^{m+n_{1}-1} \tilde{b}_{j} \zeta^{j}}{\sum_{j=0}^{m_{1}+n_{1}} \tilde{c}_{j} \zeta^{j}}=\sum_{j=0}^{\infty}(j+1) a_{j+1} \zeta^{j} .
\end{aligned}
$$

$$
f(\zeta, t)=\frac{\sum_{j=1}^{m} b_{j} \zeta^{j}}{\prod_{l=1}^{n}\left(\zeta-\zeta_{l}\right)^{s_{l}}}+\sum_{l=1}^{m_{0}} e_{l} \ln \left(\zeta-\zeta_{-1}\right)+b_{0}=\sum_{j=1}^{\infty} a_{j} \zeta^{j} .
$$

$$
f^{\prime}(\zeta, t)=\frac{\sum_{j=0}^{m+n_{1}-1} \tilde{b}_{j} j^{j}}{\sum_{j=0}^{m_{1}+n_{1}} \tilde{c}_{j} \zeta^{j}}=\sum_{j=0}^{\infty}(j+1) a_{j+1} \zeta^{j} .
$$

$$
\begin{equation*}
\tilde{b}_{s}=\tilde{c_{0}} a_{s+1}(s+1)+\tilde{c_{s}} a_{1}+\sum_{j=1}^{s-1} \tilde{c_{j}} a_{s+1-j}(s+1-j) . \tag{8}
\end{equation*}
$$

$$
\tilde{b}_{s}=0, \quad \tilde{c}_{s}=0, \quad s \geq m+n_{1}
$$

$$
f(\zeta, t)=\frac{\sum_{j=1}^{m} b_{j} \zeta^{j}}{\prod_{l=1}^{n}\left(\zeta-\zeta_{l}\right)^{s_{l}}}+\sum_{l=1}^{m_{0}} e_{l} \ln \left(\zeta-\zeta_{-l}\right)+b_{0}=\sum_{j=1}^{\infty} a_{j} \zeta^{j}
$$

$$
f^{\prime}(\zeta, t)=\frac{\sum_{j=0}^{m+n_{1}-1} \tilde{b}_{j} \zeta^{j}}{\sum_{j=0}^{m_{1}+n_{1}} \tilde{c}_{j} \zeta^{j}}=\sum_{j=0}^{\infty}(j+1) a_{j+1} \zeta^{j} .
$$

$$
\begin{equation*}
\tilde{b}_{s}=\tilde{c_{0}} a_{s+1}(s+1)+\tilde{c_{s}} a_{1}+\sum_{j=1}^{s-1} \tilde{c}_{j} a_{s+1-j}(s+1-j) . \tag{8}
\end{equation*}
$$

$$
\tilde{b}_{s}=0, \quad \tilde{c}_{s}=0, \quad s \geq m+n_{1}
$$

- Let $s=n_{0}$ and assume $n_{0} \geq m+n_{1}$.
- Assume $s=n_{0} \geq m+n_{1}$. Then

$$
\begin{equation*}
\tilde{c}_{0}\left(n_{0}+1\right) a_{n_{0}+1}=-\sum_{j=1}^{n_{0}-1} \tilde{c}_{j} a_{n_{0}+1-j}\left(n_{0}+1-j\right) \tag{9}
\end{equation*}
$$

- Assume $s=n_{0} \geq m+n_{1}$. Then

$$
\begin{equation*}
\tilde{c}_{0}\left(n_{0}+1\right) a_{n_{0}+1}=-\sum_{j=1}^{n_{0}-1} \tilde{c}_{j} a_{n_{0}+1-j}\left(n_{0}+1-j\right) \tag{9}
\end{equation*}
$$

$$
\lim _{t \rightarrow \infty} a_{n_{0}+1} a_{1}^{n_{0}+1}=0\left(\neq \overline{M_{n_{0}}}\right) . \quad \text { contradiction }
$$

- Assume $s=n_{0} \geq m+n_{1}$. Then

$$
\begin{equation*}
\tilde{c}_{0}\left(n_{0}+1\right) a_{n_{0}+1}=-\sum_{j=1}^{n_{0}-1} \tilde{c}_{j} a_{n_{0}+1-j}\left(n_{0}+1-j\right) \tag{9}
\end{equation*}
$$

$$
\lim _{t \rightarrow \infty} a_{n_{0}+1} a_{1}^{n_{0}+1}=0\left(\neq \overline{M_{n_{0}}}\right) . \quad \text { contradiction }
$$

- If $f(\zeta, t)$ is rational, $n_{0} \leq m-1$.

