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Laplacian growth, elliptic 
growth, and singularities 
of the Schwarz potential 



The Schwarz function of a curve:

 Let Γ:={q(x,y)=0}, q  is real-analytic. 
 The Schwarz function S(z) is the unique 

function complex-analytic near Γ that 
coincides with     on Γ.

 If q(x,y) is a polynomial, S(z) can be 
obtained by changing variables: 

   z = x + iy,    = x – iy 

   and solving for    .
z

z
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The Schwarz function of a curve: Example
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S  z =
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C. Neumann's oval



The Schwarz Potential: A generalization 
of the Schwarz Function

 In the plane we have 

S(z) = W
x 
(x, y) – i W

y 
(x, y)  =  2 W

z 
(x, y).

∆W( x ) = 0    ( near Γ )

W( x ) = || x ||2/2 ,     W( x ) = x   ( on Γ )

Define the Schwarz potential of an analytic 
surface as the unique solution of the Cauchy 
problem (Khavinson-Shapiro):

∇
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Laplacian Growth with sink at x
0

 V =  -    p 
 ∆ p = 0 
 p | ∂ Ω = 0

 p( x → x
0 
) ~  - Q K(x - x

0
)

where V is the normal velocity of ∂Ω, and K is the 
fundamental solution of Laplace's equation.  

Often Ω is considered unbounded and the sink is 
placed at x0  = infinity, so that p solves an exterior 
Dirichlet problem.

∇



Several sources and sinks x
i

  V = -    p 
  ∆ p = 0 , p( x → x

i 
) ~ - Q

i
 K(x - x

i
)

  p |∂Ω = 0

Integrable structure: Given a list of total quantities to be 
injected or removed from each source and sink, the end 
result does not depend on the order of work of the sources 
and sinks.

2D case related to soliton theory by K-M-W-Z.

∇



2-D Laplacian Growth and the Schwarz function: 
Dynamics of Singularities

Thus “singularities of the Schwarz function do not 
depend on time except for simple poles stationed 
at the sources/sinks”.

S t  z,t =−4⋅pz  z,t 

Suppose S(z,t) is the Schwarz function of ∂Ωt, and 
p(z,t) is the “pressure”.  Then



Laplacian Growth and the Schwarz potential: 

 Relates a solution of a “mathematically-posed” Cauchy 
Problem to that of a “physically-posed” Dirichlet 
Problem.

 Related to Richardson's Theorem by way of theory of 
“quadrature domains”.

 Proof uses vector calculus to show that both sides of 
the equation solve the same Cauchy problem.

Suppose W(x,t) is the Schwarz potential of ∂Ωt, and p(x,t) 
is the “pressure”.  Then we have (n = spatial dim):

W t  x,t =−n⋅p  x,t 



Elliptic Growth and a generalized Schwarz 
potential: 

“Elliptic Growth” allows for the porous medium to have a 
non-constant “filtration” coefficient λ and “porosity” ρ.

Let L := L u = div( λ ρ grad u).

The “pressure” satisfies L (P) = 0 , and the velocity of 
the boundary is  - λ grad P

Suppose q(x) solves L q = n ρ.
Then given a curve (or surface), define the Elliptic SP:

L u = 0    ( near Γ )

 u = q ,   grad u = grad q   ( on Γ )



Elliptic Growth and a generalized Schwarz 
potential: 

For the elliptic growth, we have the exact same equation:

u t  x,t =−n⋅p  x,t 



Examples of 2D LG illustrated through 
singularities of Schwarz function:

(1.)  Concentric circles 

S(z,t) = t / z , St (z,t) = 1/z

x2+y2 =r2

z⋅z =r 2

S  z =r 2 /z



Examples of 2D LG illustrated through 
the dynamics of singularities:

(2.)  Start with the two parameter family of Pascal's 
“Limacon”, for which S(z) = a/z + b/z2 + H(z), where 
H(z) is analytic inside the domain.

Choose b = const. and a(t) = t:

St(z,t) = 1/z + Ht(z).  

Physical breakdown: develops a 
cusp (limacon becomes a 
cardioid).



Examples of 2D LG illustrated through 
the dynamics-of-singularities:

3. “C. Neumann's Oval” 

S  z =
z a22b2+z 4a 44a2 b24b2 z2

2  z 2−b2 

S(z,t) = t/(z-1) + t/(z+1) + H(z)
“two sinks”:  St (z,t) = 1/(z-1) + 1/(z+1) + Ht(z)

 x2+y 2 
2
=a2  x2+y 2 4b2 x2

 z z 2=a2  zz b2  zz 



Axially-symmetric examples in R4

For axially-symmetric hypersurfaces in R4 the Schwarz 
potential W(x,y) can be calculated exactly using the fact that 
yW(x,y) is a harmonic function in the plane (x = symmetry-
axis coord. and y = dist. to symmetry-axis).

L. Karp outlined the details of the procedure and worked out 
explicit examples showing singularities of certain surfaces of 
revolution generated by quadrature domains.

The examples considered by L. Karp lead to solutions 
involving multi-poles.

 Can we find examples with simple sources/sinks?



 Profile of an axially-symmetric solution in R4, with 
one source and one sink: 
 Schwarz potential has a singular segment joining the 
source and sink (which is killed by time-derivative).
 Pumping rates must be chosen 
carefully or the time-derivative 
will include the singular 
segment.
 But recall: the end
result is independent
of rates and only
depends on total
amounts.



Conjecture: In dimensions higher than two, there exist 
quadrature domains (in the classical, restricted sense) 
that are not algebraic.

A conjecture regarding a comment of 
H. S. Shapiro:

Here, “QD” means that the SP has finitely many isolated 
singularities of finite order inside the domain, and “algebraic” 
means “zero set of a polynomial”.  In two dimensions any QD is 
algebraic.



Some exact solutions to elliptic growth. 
For λ = ym  and ρ = y2  -  m 

Theorem: For m a positive integer, the exact solutions from LG 
with polynomial conformal map (Galin) can be generated as 
an elliptic growth (with the above filtration and porosity) driven 
by multi-poles of finite order.

 Resembles results of
Loutsenko and Yermolayeva.
 For negative m, Theorem
fails in an interesting way.
We can still obtain exact
solutions with fixed 
multi-poles, but singularities of
(harmonic) Schwarz function move.



Toward three-dimensional examples: A view from Cn

 The Schwarz potential solves a Cauchy 
problem.  Since the data and initial surface are  
both algebraic, problem can be lifted to cn .
 Leray's Principle describes propagation of 
singularities from characteristic points on the 
surface in cn .  But it is only locally rigorous.
 G. Johnsson made Leray's principle globally 
rigorous for quadratic surfaces.
 Johnsson's proof inverts a linear system of 
equations that becomes nonlinear for higher-
degree surfaces.



 Theorem: The Schwarz potential of the family of 
surfaces above is real-analytic throughout the interior 
domain except on the segment joining (-b,0,0) and 
(b,0,0).

 In R2 it is immediate.
 In R4 it was an example done by L. Karp.
 For proof in Rn in general we used Cn techniques to 

establish the analytic extension without actually being 
able (so far) to calculate the Schwarz potential.

R3: Singularity set of SP for Neumann Ovaloid

 x2+y 2+z2 
2
= a2 x2+4b2  y2z2  



1. Method of globalizing families from proof of the Bony-
Shapira Theorem.

2. Zerner's local extension theorem.

3. Extension theorem of Ebenfelt, Khavinson, and Shapiro.

 Ideas in proof using a c2 argument:



Three-dimensional Neumann Ovaloid: approximate 
description of sinks

Having located the singularity set for the SP, one can choose 
some points on the segment and interpolate a quadrature formula. 
This gives a good approximate description of the initial and final 
domains shown as a Laplacian growth with, say, 5 sinks.

i.e. we approximately solve the inverse problem of describing the 
driving mechanism required to generate an initial and final domain 
from the family of Neumann Ovaloids.



Schwarz Potential for axially-symmetric case: 
Integral formula (following Garabedian's book)

   where S(z) is the Schwarz function of the profile 
curve, and A(s, t ; z, w) is the Riemann function 
for the axially-symmetric Laplacian in complex 
characteristic coordinates:  A(s, t ; z, w) involves 
a Gaussian Hypergeometric function.


1
2
∫

S  w 

w
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Schwarz Potential Conjecture:

SP Conjecture (Khavinson, Shapiro): Suppose u solves the Cauchy 
problem for Laplace’s equation posed on a non-singular analytic surface 
Γ with real-entire data. Then the singularity set of u is contained in the 
singularity set of the Schwarz potential w.

Consequence:  Given a Laplacian growth, the same “movie” can be 
produced amid elliptic growth If α = λρ = 1 and ρ is entire. The driving 
singularities are at the same positions as the singularities of the 
(harmonic) Schwarz function.

Elliptic SP Conjecture:  Suppose α is entire and that v solves the Cauchy 
problem on a non-singular analytic surface for div(α grad u) = 0 with 
entire data. Then the singularity set of u is contained in the singularity set 
of v, where v solves the Cauchy problem with data q the solution of 

div(α grad q) = 1.



Future directions:
 Formulate general principles governing singularities of axially-

symmetric SP in terms of SF of the profile curve.

 Study examples that are not axially-symmetric.

 Exact solutions in special geometry (cone, cylindrical channel, half-
space)?  Self-similar solutions?

 Applications to quasi-geostrophic vortex dynamics?  A missing 
ingredient: stability analysis.

 Explore integrable structure of n-dim LG.  Perhaps consider first the 
axially-symmetric case.

 Is there a connection to KP hierarchy?

 Scaling limit of cusps that can form: 

(a) stable direction: bubble break-up.

(b) unstable direction: “catastrophic” cusps
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