
Extreme events in climate and weather–an interdisciplinary
workshop

Peter Guttorp, University of Washington/Norwegian Computing Center
Montserrat Fuentes, North Carolina State University

August 22- 27, 2010

August 22-27 an interdisciplinary workshop was held at the Banff International Research Station on
Extreme events in climate and weather. The workshop had 32 participants from 7 countries. The goal of the
workshop was to set a research agenda for statistical analysis of extreme climate events. The format was two
lectures in the mornings, and group discussions in the afternoons. The lectures and posters, as well as a list
of the participants, are available at the meeting website http://temple.birs.ca/ 10w5016

This document contains an overview of the lectures (section 1) and a summary of the discussions of
research directions held at the workshop (sections 2-6). Each research direction has some concrete needs in
boldface.

1 Lectures
1.1 Introduction
In the opening lecture Peter Guttorp described how general circulation models work, going from a simple
energy balance model to the modern gridded solutions to a system of partial differential equations. He
discussed the various sources of uncertainty in climate analysis, including uncertainties in forcings and data,
and how well the models cope with features such as El Niño. The downscaling of global models to regional
ones was demonstrated, and a comparison of data to a regional model was illustrated.

The second lecture of the first day was given by Eric GIlleland, who demonstrated the different scales of
extremeweather events. He described the various definitions of droughts and heat waves, and illustrated some
analyses based on extreme value theory. Analyses based on global models benefit from developing large-scale
indicators of extreme weather, such as the product of maximum wind speed and wind shear, illustrated with
various approaches to analysis and forecasting/projection.

1.2 Time series extremes
On the second day, Georg Lindgren posed the question whether a fixed seasonal model is adequate for anal-
ysis of weather related extremes in the presence of strong seasonal effects, and demonstrated in a simulation
study that high quantiles may be underestimated by a factor of 2-3. He also discussed peaks over thresh-
old analysis, and the effect of a temporal trend in the seasonal amplitude, suggesting use of nonparametric
quantile regression in the latter case.

In the second lecture RIck Katz described how to use extreme value theory to model nonstationaryweather
phenomena. The effect of scaling and aggregation was illustrated. For clustered events, such as heat spells,
he suggested modeling the clustering, rather than the common declustering approach. Models of damage
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from extreme weather events were presented and related to insurance issues. He closed with a discussion of
risk communication under climate change, suggesting that we stop using the return level terminology under
a changing climate, and rather use a probabilistic language.

1.3 Spatial extremes
Zhenyung Zhan opened the third day by presenting an analysis of US precipitation, with the emphasis on
tail dependency between spatial pairs of stations. The main tool for testing for tail dependency was the
tail quotient correlation coefficient with random thresholds, for which asymptotic theory was developed and
checked using simulation studies. Strong tail dependency was found in many cases between stations quite far
apart,

Dan Cooley gave the second lecture, making a distinction between weather and climate in the context
of spatial dependence, where climate effects are changes of marginal distribution by location, while weather
effects is the joint behavior of multiple locations. He suggested to replace he classical regional frequency
analysis from hydrology with a Bayesian hierarchical model. The relatively standard conditional indepen-
dence assumption made in such models was shown not to hold because of weather effects. The statistical
difficulties with max-stable processes casts some doubt over whether this is the right approach. He showed
an attempt to make approximate Bayesian inference using composite likelihood replacing the (uncomputable)
real likelihood, showing improvement over the conditional independence model.

1.4 Forests and observing networks
Charmaine Dean described a mixture-modeling approach to Canadian forest fires, where the probability of a
fire in a given location is a mixture of normal, extreme, and zero-heavy components. The question of interest
is trends in this type of model, where the trend is both in the parameters of the different components and in the
mixing proportions. The results show a movement from zero-heavy to normal risk, while the probability of
the extreme component is relatively stable. She discussed data issues, such as changing detection efficiency
and fire management strategies.

In the final lecture, Paul Whitfield illustrated the usefulness of networks of stations to study precipitation
patterns as well as extreme precipitation (defined as at least one station in the network having extreme precip-
itation). The Pineapple Express, delivering moisture from the Pacific to the northwestern Americas, was used
as a particularly interesting illustration. The effect of climate change on jet stream paths is still somewhat
uncertain.

2 Climate models and extremes
Climate models and regional models produce outputs for several meteorological variables at predetermined
spatial scale in terms of averages over a grid cell or areas over a grid cell. An interesting area of research
is to develop models to downscale the outputs of such models to point level, or even to develop models
to downscale predictions for extremes obtained from climate or regional models (Mannshardt-Shamseldin
et al., 2010). Adapting to climate models methods already adopted to downscale outputs from air quality
models, a possible approach would use historical station data and regress it on the regional model output for
the grid cell where the meteorological station lies using coefficients that vary in space and time (Berrocal et
al., 2011). The coefficients would then be in turn modeled using appropriate statistical models. Possibilities
include Gaussian processes, appropriate transformation of Gaussian processes, Gaussian copulas, or Dirichlet
processes, all with an autoregressive structure in time.

Output from climate models at different scales can be used to generate testable hypotheses about changes
in weather.

There is a need to develop models to downscale the outputs of such models to point level, or even to
develop models to downscale predictions for extremes obtained from climate or regional models.
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2.1 Comparison of regional models to data
The interpretation of a grid square value depends on several factors, such as the numerical solution scheme,
the boundary values and forcings chosen, etc. In fact, a regional model value may be a better descriptor of
the area around the grid square than the precise grid square itself. To accommodate the fact that the output
of a regional and a climate model really refers to a neighborhood of a grid cell, it might be more appropriate
to actually regress the historical station data on the regional/climate model output at neighboring grid cells to
the one where the meteorological station lies.

The distribution of observed (or reanalyzed) weather needs to be compared to distributions from the
climate model. One can borrow spatial strength from nearby stations to predict grid square observation, or
use spatial regression tools to predict station observations from model output. Statistical issues here include
developing tools for multivariate two-sample comparisons,

Seasonal-to-decadal predictions (10-30yr) form an active field of research in the course of CMIP5 (Cou-
pled Model Intercomparison Project 5). Decision makers that need to account for climate change adaptation
and mitigation measures are particularly interested in these predictions, especially in terms of extreme cli-
mate events. The potential for skillful decadal predictions depends largely on the initialization of the GCM1
(Global Climate Model) runs and whether the GCMs simulate sufficient decadal climate variability, both in
magnitude and structure (Meehl et al. 2009). It is, in this context, very important to investigate GCM en-
sembles since multiple initial conditions with contrasting parameter values and model structure are needed in
order to capture extreme events in transient systems.

There is a need to develop more appropriate methods for validating the representation of extreme
events in models.

2.2 Skill scores for climate models
With the new CMIP5 database becoming available in the next years, we will have multiple decadal model
predictions available, for which we have to find appropriate statistical methods to analyze various aspects
regarding extreme values. These include (1) skill assessment of the GCM predictions, (2) comparison of
multi-model ensemble distributions to observations, and (3) determination of uncertainties in the predictions.

Concerning the skill assessment of GCMs, it will be important to first identify mechanisms (climate
and/or weather patterns such as El Nino and atmospheric blocking, topography, etc.) that contribute to the
occurrence of extreme events but can also be well captured with the available model resolution. Based on that
knowledge we need to extend the current practice (i.e. described in Tebaldi and Knutti. 2007; Ferr0, 2007)
and develop objective skill measures, that could be region specific, to rank GCMs within the multi-model
ensemble. Numerous methods have been proposed in the forecasting literature to spatially verify weather
forecasts on small scales, see Gilleland et al. (2009) and Gilleland et al. (2010). To be used in the current
context, these methods need to be adapted both to account for the large scale of the GCMs and to focus on
the specific mechanisms of interest.

Once a ranking of the multi-model GCM ensemble has been established, it can be used to obtain a
probabilistic distribution from the appropriately weighted ensemble members (Friedrichs and Hense, 2007).
Further statistical tools are then needed to evaluate the skill of the probabilistic distribution obtained from the
weighted ensemble as compared to observations/reality. Such tools should also involve the estimation of the
uncertainties (e.g. model based, scenario based) in the predictions. The usefulness of commonly applied skill
measures including correlation coefficients or MSE (Kharin et al. 2009) should be analyzed in this context.
To ensure propriety in the evaluation, the procedure should be based on proper scoring rules for probability
distributions, such as the logarithmic score or the continuous rank probability score (Gneiting and Raftery,
2007; Stephenson et al., 2008).

There is a need for appropriate statistical methods to analyze various aspects regarding extreme
values. These include (1) skill assessment of the GCM predictions, (2) comparison of multi-model
ensemble distributions to observations, and (3) determination of uncertainties in the predictions
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3 Multivariate extreme value tools
It would be desirable to have a peaks-over-threshold approach for multivariate extreme values. One possible
approach would be to use the point process representation of max-stable processes to develop more tractable
multivariate extremes models. We also need tools for dealing with extremes in vector block extremes that
occur at different times during the block.

There is a need for appropriate statistical methods to analyze time series of multivariate extreme
values.

4 Spatial and space-time models for extreme values
4.1 Tractable spatial models
The max-stable processes, while mathematically seemingly well suited to the analysis of spatial extremes, are
statistically not very tractable, and only ad hoc approaches to their statistical inference are currently available.

Another approach to temporal extremes of space-time processes is to assign a spatial prior for the GEV-
parameters for annual or seasonal extremes over a network of station while treating the stations as condi-
tionally independent. However, considering, for example, temperature data, it is quite common in upper
latitudes for extremely cold weather to arise from Arctic air masses in a high pressure situation. Hence there
is a tendency for annual minima to appear simultaneously at several stations. The appropriate likelihood (as
long as separated minima can be considered independent) would be the product of conditional densities of
the nonextreme sites, given the values at the extreme sites. Calculating these densities can of course be a
daunting task in itself, but the approximation due to Heffernan and Tawn (2004), appropriately extended to
the situation at hand, would be a possibility.

There is a need for methods that are well suited to the analysis of spatial extremes and that are
statistically tractable.

4.2 Temporal nonstationarity
It seems that the most usual approach to deal with ’non-stationarities’ in extremes is to allow for parametric
changes in time for a GEV distribution. Linear trends on GEV parameters are a first step and had shown
practical use to assess long term changes in climate/weather extremes. On the other hand, there has been
some work in using Generalized AdditiveModels and state-space models to accommodate smooth/non-linear
parameter change (Davison and Ramesh, 2000; Yee and Stephenson, 2007). An interesting idea is to apply
Hidden Markov Models to represent change points in time and cluster structure. A state-space model can
account for seasonalities with time-varying amplitudes. In general, it is unclear that in analyzing time series
of extremes that arise in weather and climate, these perhaps more flexible models are more useful than simple
linear trends. What model comparison tools are available to learn about this?

There is a need for models with distributional changes and in particular with different shape parameters,
but one has to be careful about estimating this shape parameter. It was recommended to first model changes in
location, then location/scale, and finally consider location/scale/shape. Beyond parameter changes, we may
also need to consider temporal dependence in extremes.

One main problem with nonstationarity of extreme data is our poor understanding of natural low fre-
quency climate oscillations. For instance, the Atlantic Multi-Decadal Oscillation (AMO), arising from the
slow oscillation in the strength of the North Atlantic thermohaline circulation, has a period of about 70 years,
with a profound effect on the number and strength of Atlantic hurricanes. Our short climate records make it
difficult to detect/understand very low frequency climate oscillations, and their contribution to nonstationarity
in our relatively short records of extreme data.

There is a need for methods that are suitable for series that are non-stationary, whether that non-
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stationarity is in location, distribution, etc., and such methods need to be able to address the connection
to climate time series.

5 Climate and weather extremes
5.1 Heat waves
Heat waves are a complex form of extreme climate event with substantial health impacts. Yet extreme value
theory has rarely been applied. Challenges include how to model the temporal clustering of temperatures at
high levels and whether multivariate extreme value theory can be used to model climate variables that can
contribute to heat waves (e.g., maximum and minimum temperature, dew point or humidity, wind speed,
cloud cover) (Coles et al.,1994; Smith et al., 1997; Meehl and Tibaldi, 2004; Furrer et al., 2010). Such a
research effort is needed to compare the statistics of observed heat waves (frequency, duration, severity) with
those simulated by climate models, as well as to detect trends in heat wave statistics.

There is a need to improve the statistical modelling used for heat waves and other meteorological
extremes.

5.2 Forest fires
One specific application area considered at the workshop was the analysis of fire events with a view to
detecting trends in extremes. Spatio-temporal methods for this important application area have not utilized
methodology from extreme value theory. In the forest fire context, increasing temperatures could lead to an
increase in the number of ignitions, an increase in the length of the fire season, and an increase in the amount
of severe fire weather (Schoenberg et al., 2003). Some additional challenges with quantifying extremes in this
context is the need for homogenization of data from long records, incorporating information about changes
in suppression activities, and fire management strategies. Given the challenges with climate predictions, it is
also unclear what is the best way to accommodate weather variables to evaluate impacts under future climate
scenarios; a sensible approach may be to focus on accessing how large a change in weather would lead to
specific forestry vulnerabilities.

There is a need for methods that allow reconstruction, restoration, infilling of incomplete records.
There is a need for more robust methods to detect changes in environmental time series that are

rich in zeros such as forest fires and ephemeral streamflows.

5.3 Extreme events that are not modeled by extreme value theory
Not all extreme climate events are extreme in the statistical sense. For example, Heavy rain on frozen ground
can lead to severe flooding, or high winds following heavy snow and temperatures just around freezing can
lead to severe forest destruction. One may be able to use climate model output to get an idea of future
frequencies of particularly dangerous combination of factors, not all of which need to be extreme. From a
modeling point of view it would be important to estimate conditional joint distributions of variables, given
that one is extreme (Heffernan and Tawn, 2004), is one approach to this. Quantities such as trends in the
onset of frost appear not directly amenable to extreme value theory, but would rather need nonstationary time
series tools for directional data.

There is a need for robust methods that allow the separation of extreme events in relation to the
generating processes. Floods being one example of an event with multiple generating mechanisms.
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6 Index numbers
Climate and environmental indices need to be [1] robust, [2] specific, [3] relevant, and [4] comparable. There
are many indices that may be useful in reducing the dimensions of climate and ecological studies, but many
of them are problematic; some such as those that attempt to define the end of drought or the start and end
of floods are particularly difficult in practice. Others such as FRICH for comparing global models may be
more useful in the model comparison perspective than as test of reality. Indices may be more valuable when
considering a change in the index as opposed to its absolute value.

Technically one can view indices as exceedances outside convex manifolds, and perhaps develop func-
tionals that assess the degree of severity of the exceedance.

Water supply forecast models share many of the characteristics of indices as they are generally linear
functions of several environmental variables. However, their output is either an estimate of future flow vol-
umes or of their distribution function. Water supply forecasts are only of great importance for low values.
EVT may be able to contribute to more rigorous forecasts of low flows which may occur due to the interaction
of non-minimal variables. EVT may also be able to quantify the additional uncertainty of low flow volumes
due to non-stationarity.

There is a need for methodology that can be used to assess properties of environmental indices, and
determine if the are robust, specific, and comparable.
Further, the potential for indices that are not linear combinations, but of non-linear combinations

would be useful in filed such as hydrology and climatology where non-linear processes are common,
should be explored.
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