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World example 1 of spatial extreme dependence

Satellite image of China precipitation

Figure 1: China heavy rain real time image

Z. Zhang & C. Zhang (UW-Madison) Extreme Precipitation August 25, 2010 2 / 41



logo

World example 2 of temporal extreme dependence

Does CO2 cause the increase of temperature?

Figure 2: Temperature and CO2 concentration in the atmosphere over the
past 400 000 years
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World example 3 of conditional temporal and spatial
extreme dependence

Temperatures rocketed and rainfall reached extremes

Figure 3: Russia’s Fires & Pakistan’s Floods: The Result of a Stagnant Jet
Stream?
Z. Zhang & C. Zhang (UW-Madison) Extreme Precipitation August 25, 2010 4 / 41



logo

Illustration of bivariate tail (in)dependence
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Purpose of this talk (1)

In theory and methodology
Introduce a class of tail quotient correlation coefficients (TQCC)
which allows the underlying threshold values to be random and
diverge to infinity almost surely.

Test statistics for extremal independence are constructed and
shown to have asymptotic power one under the alternative
hypothesis of extremal dependence and M4 approximation.

Introduce a class of nonlinear quotient correlation coefficients
(NQCC) for studying nonlinear dependency between random
variables.
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Purpose of this talk (2)

In application
Apply TQCC and NQCC to study spatial extremal dependency
and nonlinear dependency of daily precipitation during 1950–1999
recorded at 5873 stations from NCDC Rain Gauge Data.

Our results suggest nonstationarity, asymmetry, spatial clusters,
and extremal dependency in the data. They provide useful
information for next generation climate models.
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Extremal (in)dependence definition
Two identically distributed r.v. X and Y are called extremely
independent if

λ = lim
u→xF

P(Y > u | X > u) (1)

exists and equals 0, where xF = sup{x ∈R : P(X ≤ x) < 1}. The
quantity λ , if exists, is called the bivariate extremal dependence index.
If λ > 0, then (X ,Y ) is called extremely dependent and we say there
are extreme co-movements between X and Y .

Remark
The notion extremal dependence, also known as tail dependence or
asymptotic dependence, between the components of a
two-dimensional random vector, refers to the concurrence of extreme
values in the components.
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Importance of Studying Extreme (In)dependence

In theory
Suppose {(Xi ,Yi), i = 1, . . . ,n} is a random sample of (X ,Y ).

If λ = 0, then the limit joint bivariate extreme value distribution is
the product of the univariate limit distributions, i.e.

lim
n→∞

P
{

an(max
i

Xi −bn) < x , cn(max
i

Yi −dn) < y
}

= lim
n→∞

P
{

an(max
i

Xi −bn) < x
}

lim
n→∞

P
{

cn(max
i

Yi −dn) < y
}

.

When λ = 0, the limit theory of the joint maxima is simple and
easy!

Example: a bivariate normal random variable with correlation
coefficient ρ 6= 1.

When λ > 0, the limit theory of the joint maxima does not show a
unified parametric form!!

Example: a bivariate t random variable with correlation coefficient
ρ > 0.

Z. Zhang & C. Zhang (UW-Madison) Extreme Precipitation August 25, 2010 9 / 41



logo

Importance of Studying Extreme (In)dependence:
In financial risk management.

Did Gaussian copula cause Wall Street crash?
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Figure 4: VaR comparison of portfolios of different combinations. Zhang and
Huang (2006), Zhang and Shinki (2006), Zhang and Zhao (2009)
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Importance of Studying Extreme (In)dependence:
In extremal climatic conditions.

Notes
Global warming causes severe storms.

Increased ocean temperatures cause increasingly intense
hurricanes

Three major earthquakes struck within an hour and 10 minutes in
the morning of October 8, 2009 near Vanuatu in the South Pacific,
prompting a tsunami warning that was quickly lifted.

Reliability of climate models
There are increasing concerns about the reliability of climate
models.

Climate models are used to predict climate changes, which draw
the most attention and debate among politicians,
environmentalists and even scientists.
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The specific question for forecasting future extreme weather
events:

How to account for historical records.

Two fundamental issues:
1. How to identify extremal dependency and nonlinear dependency

between climatic variables.

2. How to develop statistical models dealing with extremal
dependency and nonlinear dependency. Zhang (2008) AISM,
studied wave heights in North Sea.

Our present focus:
The first issue.
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Hypotheses of extremal (in)dependence

H0 : X and Y are extremely independent

↔ H1 : X and Y are extremely dependent,

which can also be written as

H0 : λ = 0←→ H1 : λ > 0. (2)

In the remaining of the talk, we discuss how to test the null of (2) and
how to estimate λ under the alternative hypothesis.

Remarks
The null and alternative hypotheses in Ledford and Tawn (1996,
1997) are reversed in this talk, see also Peng (1999), Draisma et
al. (2004), and others.

Other significant tests include Falk and Michel (2006), Hüsler and
Li (2009), Bacro, Bel, and Lantuéjoul (2010) etc.
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Motivations:
In view of (1), the extremal dependence index λ is mainly relying
on a high threshold value u and the dependence between tails of
two random variables.

Examples of constructing extremal (in)dependence
Let

ξ1, . . . , ξn, η1, . . . , ηn (3)

be a sequence of independent unit Fréchet random variables with
distribution function F (x) = e−1/x , x > 0.
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Example 2.1
Let {(Uni , Qni), i = 1, . . . ,n} be a sample of independent random pairs,
where Uni and Qni are correlated and both are supported on (0,un] for
a positive high threshold value un. Let

Xi = ξi I{ξi>un}+Uni I{ξi≤un}, Yi = ηi I{ηi>un}+Qni I{ηi≤un}

for i = 1, . . . ,n. Then it follows that tail values Xi I{Xi>un} (= ξi I{ξi>un})
and Yi I{Yi>un} (= ηi I{ηi>un}) are independent, but Xi I{Xi≤un}
(= Uni I{ξi≤un}) and Yi I{Yi≤un} (= Qni I{ηi≤un}) are dependent.
Furthermore,

(X1, Y1), . . . ,(Xn, Yn) (4)

is a sample of independent and identically distributed random pairs
with extremely independent margins.
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Elementary facts
Ways to measure relative positions:

the difference X −Y ;
the quotient X/Y for positive variables X and Y .

X/Y = 0 ‘means’ no relation.
X/Y = 1 means they are identical.

In a ‘Normal’ world: Pearson correlation coefficient is the sum of
the products of the Z scores,

rn =
1
n ∑Zxi Zyi .

Quotient correlation coefficients are based on the maxima of the
quotients of the Fréchet scores,

qn =
maxi≤n{Yi/Xi}+maxi≤n{Xi/Yi}−2
maxi≤n{Yi/Xi}×maxi≤n{Xi/Yi}−1

(5)

Z. Zhang & C. Zhang (UW-Madison) Extreme Precipitation August 25, 2010 16 / 41



logo

A generalized extremal dependence measure: Tail quotient
correlation coefficient (TQCC)
Suppose now Xi and Yi are two dependent unit Fréchet random
variables. Define a sample based tail dependence measure by

qun
=

max
1≤i≤n

{max(Xi ,un)
max(Yi ,un)}+ max

1≤i≤n
{max(Yi ,un)

max(Xi ,un)}−2

max
1≤i≤n

{max(Xi ,un)
max(Yi ,un)}× max

1≤i≤n
{max(Yi ,un)

max(Xi ,un)}−1
. (6)

In the particular case of un = u (a constant), definition (6)
coincides with the one defined in Zhang (2008). In this talk, un is
allowed to diverge to infinity.

Z. Zhang & C. Zhang (UW-Madison) Extreme Precipitation August 25, 2010 17 / 41



logo

Analytical properties of qun

f (x ,y) =
x +y −2

xy −1
, for x ≥ 1, y ≥ 1, x +y > 2. (7)

is a bounded and monotone function.

0≤ f (x ,y) ≤ 1, f (1,y) = 1, f (x ,1) = 1

f (x1, y1)≤ f (x2, y2), where x1 ≥ x2 and/or y1 ≥ y2.
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Figure 5: Illustration of the function f (x ,y) in (7).
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Example 2.2
Using (3), we define

X ∗i = max{aξi , (1−a)ηi}, Y ∗i = max{(1−b)ξi , bηi},

where 0 < a < 1 and 0 < b < 1.
Suppose {(ε1i , ε2i), i = 1, . . . ,n} is a sample of independent random
pairs from a bivariate standard normal random variables (ε1, ε2) with
correlation coefficient ρ . For i = 1, . . . ,n, define

Uni =−1/ log{Φ(ε1i)e
−1/un}, Qni =−1/ log{Φ(ε2i)e

−1/un},

where Φ(·) denotes N(0,1) distribution function, and define

Xi = X ∗i I{X ∗i >un}+Uni I{X ∗i ≤un}, Yi = Y ∗i I{Y ∗i >un}+Qni I{Y ∗i ≤un}. (8)

Then for 0 < a < 1 and 0 < b < 1,

qun

a.s.−→ lim
u→∞

P(Xi > u | Yi > u) = lim
u→∞

P(X ∗i > u | Y ∗i > u) = λ ∗ > 0,
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Illustration of extremal dependence
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Figure 6: Scatterplot of {(Φ−1(exp(−1/Xi)),Φ
−1(exp(−1/Yi)))}500

i=1 in
Example 2.2 (8). Values at lower regions in three panels are drawn from a
bivariate standard normal random variable with correlation coefficient ρ .
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How to determine extremal (in)dependence: Random thresholds
at work
Suppose X and Y are unit Fréchet distributed, un = Wn,t , where Wn,t is
distributed as e−n/w t

, for w > 0 and t > 1, and Wn,t is independent of
(X ,Y ). Then

lim
u→∞

P(X > u, Y > u)

P(X > u)
= lim

u→∞

P{max(X ,Wn,t) > u, max(Y ,Wn,t) > u}
P{max(X ,Wn,t) > u} .

(9)
Furthermore, suppose X and Y are extremely independent satisfying

P(X > u, Y > u)

P(X > u)
= O{u−(t0−1)}

for a fixed t0 > 1.

Remarks
The existence of t0 is guaranteed.
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Random thresholds at work
Suppose X ′ and Y ′ are independent unit Fréchet random variables,
and they are independent of Wn,t . Then

P(X > u, Y > u)

P(X > u)
= O

(P{max(X ′,Wn,t0) > u, max(Y ′,Wn,t0) > u}
P{max(X ′,Wn,t0) > u}

)

(10)
and

P(X > u, Y > u)

P(X > u)
= o

(P{max(X ′,Wn,t) > u, max(Y ′,Wn,t) > u}
P{max(X ′,Wn,t) > u}

)

(11)
for t ∈ (1, t0).
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Random thresholds at work
Equation (9) tells that under the null hypothesis of extremal
independence, testing for (X ,Y ) is equivalent to testing for
(max(X ,Wn,t), max(Y ,Wn,t)) where Wn,t can be simulated values.
Equation (9) implies

P{max(X ,Wn,s) > u, max(Y ,Wn,s) > u}
= O(P{max(X ′,Wn,t) > u, max(Y ′,Wn,t ) > u})

for all s > 1 and t ∈ (1, t0], which tells that the upper tail probability
of (max(X ,Wn,s), max(Y ,Wn,s)) is ‘equivalent’ to that of
(max(X ′,Wn,t ), max(Y ′,Wn,t)).

Equation (11) tells that if (10) holds, one can always theoretically
choose a t such that 1 < t < t0 and construct a test statistic based
on a bivariate random sample from (max(X ′,Wn,t ), max(Y ′,Wn,t)).

On the other hand, if X and Y are extremely dependent, (10) can
never be true, i.e. the above test statistic (procedure) is an
asymptotic power one test under the alternative hypothesis of
extremal dependence.
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Limit distribution and extremal independence test
Suppose that random variables Xi , Yi , Wn,t , i = 1, . . . ,n, are
independent, where Xi and Yi are unit Fréchet random variables, Wn,t

is distributed as e−n/w t
, for w > 0 and t > 1. Define

qn,t =
maxi≤n

max(Xi ,Wn,t)
max(Yi ,Wn,t)

+maxi≤n
max(Yi ,Wn,t)
max(Xi ,Wn,t)

−2

maxi≤n
max(Xi ,Wn,t)
max(Yi ,Wn,t)

×maxi≤n
max(Yi ,Wn,t)
max(Xi ,Wn,t)

−1
.

Then 2n{1−e−1/Wn,t}qn,t

L−→ χ2
4 .

Random thresholds at work
The limit distribution does not depend on the power transformation
index t . This is an important property in practice. One does not
need to deal with Wn,t .

For example, suppose we simulate a value u1 from Wn,t1 for a
pre-specified t1 . Then for any s1 > 0, us1

1 can be used as a value
simulated from Wn,s1∗t1 , i.e. we can set Wn,t as some pre-specified
value un, for example the sample 100pth percentiles.
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Testing procedure
For a given significance level α and an appropriate chosen un, if
2n{1−exp(−1/un)}qun

> χ2
4;α , H0 of (2) is rejected, and we

conclude there exists extremal dependence between two random
variables of interest. Here χ2

4;α is the upper α percentile of a χ2

distributed random variable with 4 degrees of freedom.

If H0 of (2) is rejected, (6) is an estimate of λ .

Remarks
Pearson’s sample correlation coefficient and TQCC are
asymptotically independent. Zhang, Qi, and Ma (2010).

TQCC is
√

n convergence under the alternative hypothesis of
bivariate Gumbel copula. Wang (2010).
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Simulation and performance comparison

Model specifications
(1) Componentwise maxima of bivariate normal random variables

with ρ = 0.2,0.4,0.6,0.8.

(2) Example 2.1 in this talk revisited with ρ = 0.2,0.4,0.6,0.8..

(3) Gumbel copula.

(4) Resnick’s example (1/U,1/(1−U)).

(5) Product of two random variables: Xi = Ei ∗Zi , Yi = Ei ∗Z ′i .

(6) Bivariate t distribution example. d.f.=4. ρ = 0.8.

Test statistics and threshold levels
Hüsler and Li (2009) test (HLT), top 25% order statistics

Bacro, Bel, and Lantuéjoul (2010) Madogram test (MaT), no levels
specified.

TQCC, at levels 80%:0.025:97.5%
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Empirical Type I errors and powers

Sample size n=300
Model HLT MaT TQCC

.80 .825 .85 .875 .90 .925 .95 .975
(3) 16 100 98 98 97 97 96 94 86 54
(4) 6 0 1 1 1 1 1 1 1 1
(5) 4 100 7 7 7 6 5 4 4 2
(6) 12 100 99 99 99 99 99 97 97 95

Sample size n=500
(3) 20 100 100 100 100 100 100 99 98 70
(4) 4 0 2 2 3 3 3 3 3 3
(5) 5 100 4 3 3 3 3 4 4 4
(6) 25 100 100 100 100 100 100 100 100 99
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Empirical Type I errors and powers

Sample size n=1000
Model HLT MaT TQCC

.80 .825 .85 .875 .90 .925 .95 .975
(3) 52 100 100 100 100 100 100 99 98 96
(4) 3 0 2 2 3 3 3 3 3 3
(5) 5 100 5 5 5 6 5 4 4 4
(6) 39 100 100 100 100 100 100 100 100 100

Sample size n=2000
(3) 93 100 100 100 100 100 100 100 100 98
(4) 1 0 4 4 4 5 6 6 7 7
(5) 7 100 10 9 8 6 5 5 4 2
(6) 87 100 100 100 100 100 100 100 100 100
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Empirical Type I errors and powers

Model (1), Sample size n=300
ρ HLT MaT TQCC

.80 .825 .85 .875 .90 .925 .95 .975
0.2 2 4 3 3 2 2 2 2 2 1
0.4 6 4 2 1 1 1 1 1 1 1
0.6 2 18 3 3 2 2 2 2 1 1
0.8 4 90 9 9 8 8 7 5 2 2

Model (2), Sample size n=300
0.2 3 9 5 5 5 6 6 4 4 3
0.4 5 25 2 2 2 2 3 2 0 0
0.6 1 66 3 3 3 3 3 2 1 1
0.8 4 88 3 2 2 2 2 2 2 1
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Empirical Type I errors and powers

Model (1), Sample size n=500
ρ HLT MaT TQCC

.80 .825 .85 .875 .90 .925 .95 .975
0.2 3 1 4 4 4 4 4 4 4 3
0.4 2 3 6 6 6 5 5 5 4 3
0.6 6 14 3 3 2 2 2 2 2 2
0.8 7 100 13 12 11 10 9 6 5 4

Model (2), Sample size n=500
0.2 0 11 4 3 3 3 4 4 2 2
0.4 4 44 5 5 3 3 2 2 1 1
0.6 1 88 5 6 5 5 4 4 3 3
0.8 3 99 9 10 10 10 10 9 7 6
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What do we learn from these three tests
HL test is conservative.

Madogram test is too aggressive. Type I errors are not controlled
within the pre-specified nominal levels.

TQCC based test seems acceptable.
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The precipitation data
The data are daily precipitation totals covering period 1950-1999
over 5873 stations in the continental USA (excluding Alaska and
Hawaii). The data units are tenths of a millimeter.

The data are the same as used by Smith, Grady, and Hegerl
(2007), and by Shamseldin, Smith, Sain, Mearns, and Cooley
(2008).

The data are first fitted to GEVs, and then transformed to unit
Fréchet margins.

H(x ;ξ ,µ ,ψ) = exp[−{1+ ξ (x−µ)/ψ}−1/ξ
+ ], (12)

to local maxima of observations, where µ is a location parameter,
ψ > 0 is a scale parameter, and ξ is a shape parameter
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Tail indecies of precipitations
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Figure 7: Fitted tail shape parameter values for all 5873 station time series.
The left panel shows the distribution of fitted shape parameter values. The
right panel plots fitted shape parameter values to US map using krigging.

Precipitations appear to be non-stationarity, spatial clusters, and
asymmetry over all stations.

Precipitations over stations near Mexican bay region and stations
near Atlantic ocean and along North Carolina coast have heavier
tails then precipitations over other stations have.
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Overall extremal dependency across all stations
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Figure 8: Maximal extremal precipitation dependencies between one station
and the rest of stations on the same day.

Each individual station si , at least 80% of paired stations
(si , sj), j = 1, . . . ,5873; j 6= i are rejecting the null hypothesis of
extremal independence.

The maximal extremal dependencies decay as time goes by.
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Table 1: The 10 largest tail quotient correlation coefficients and their
corresponding stations information.

Pair ID TQCC Latitude Longitude Elevation Station name
(I) .3787 33.92 -118.13 34 DOWNEY FIRE STN FC107D

33.97 -118.02 128 WHITTIER CITY YD FC106C
(II) .2652 44.40 -122.48 262 CASCADIA

44.10 -122.68 206 LEABURG 1 SW
(III) .2324 34.48 -119.50 633 JUNCAL DAM

34.53 -119.78 312 LOS PRIETOS RANGER STN
(IV) .2271 40.08 -99.20 610 HARLAN COUNTY LAKE

40.07 -99.13 573 NAPONEE
(V) .2208 39.35 -123.12 309 POTTER VALLEY P H

39.13 -123.20 193 UKIAH
(VI) .2206 42.48 -71.28 49 BEDFORD

42.52 -71.13 27 READING
(VII) .2200 34.52 -119.68 473 GIBRALTAR DAM 2

34.48 -119.50 633 JUNCAL DAM
(VIII) .2198 34.08 -117.87 175 COVINA NIGG FC193B

33.97 -118.02 128 WHITTIER CITY YD FC106C
(IX) .2128 29.95 -90.13 6 NEW ORLEANS WATER PLT

29.98 -90.02 3 NEW ORLEANS D P S 5
(X) .2092 33.53 -117.77 11 LAGUNA BEACH

33.73 -117.87 41 SANTA ANA FIRE STATIONZ. Zhang & C. Zhang (UW-Madison) Extreme Precipitation August 25, 2010 35 / 41
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Illustrations of an individual station

0 0.005 0.01 0.015 0.02 0.025
0

500

1000

1500

2000

2500

TQCC

F
r
e

q
u

e
n

c
y

Figure 9: Maximal extremal precipitation dependencies between Station
Healdsburg and the rest of stations on the same day.

We can see that each of these plots itself can be viewed as a
skewed and long tailed distribution. This phenomenon suggests
flooding can be anywhere which shares smaller extremal
dependencies with other locations.
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The most recent flooding areas

The largest tail quotient correlation coefficients and their
corresponding stations information.

Pair ID TQCC Latitude Longitude Elevation Station name
(I) .0223 31.95 -112.80 512 ORGAN PIPE CACTUS N M

38.62 -122.87 33 HEALDSBURG
(II) .0239 47.55 -116.17 680 KELLOGG AIRPORT

47.62 -117.52 718 SPOKANE WSO AIRPORT
(III) .0363 41.25 -91.37 204 COLUMBUS JUNCT 2 SSW

41.63 -91.52 195 IOWA CITY
(IV) .0214 29.98 -90.25 1 NEW ORLEANS WSCMO ARPT

45.52 -89.20 488 SOUTH PELICAN
(V) .0326 47.93 -97.17 256 GRAND FORKS FAA AP

47.92 -97.08 253 GRAND FORKS UNIV NWS
(VI) .0769 33.98 -78.00 6 SOUTHPORT 5 N

34.32 -77.92 12 WILMINGTON 7 N
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Nonlinear quotient correlation for less extremes

qn(g) =
g
(

max(un ,X1)
max(un ,Y1)

, . . . , max(un ,Xn)
max(un ,Yn)

)

+g
(

max(un ,Y1)
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, . . . , max(un ,Yn)
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)

−2

g
(
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, . . . ,
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max(un ,Yn)

)

×g
(
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, . . . ,
max(un ,Yn)
max(un ,Xn)

)

−1
,

where g(z1, . . . ,zn) gives the k th largest value, or the pth percentile, of
{z1, . . . ,zn} such that g(z1, . . . ,zn)≥ 1.
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Note that the shape of nonlinear dependence correlations show a
bell shaped curve.
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Linear versus nonlinear (extreme)

Asymptotic independence of Pearson’s correlation and the
quotient correlation: Zhang, Qi and Ma (2010)
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We hope:
TQCC is a sample based alternative to Pearson’s correlation
coefficient.

TQCC and NQCC can be applied to many applications in which
as long as one uses Pearson’s correlation coefficient.

TQCC may be used to evaluate climate model performance and to
guide model building.

TQCC may result in true sparsity in very large correlation
matrices.
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Thank You!
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