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Introduction

A Bayesian hierarchical model is developed for the prediction of
annual maximum 24 hour precipitation in Iceland. This model is
applied to observed data from 86 observation sites in Iceland over
the years 1961 to 2006 and it uses other meteorological
explanatory variables.

Model assumptions

The data are modeled with a hierarchical linear model assuming a
log-normal distribution for the observations.
Let yit be the log-transformed annual maximum 24 hour
precipitation at station i at year t . Let αi be the site effect for each
site i and β be a common trend parameter. Let γt be the overall
time effect at time t . The following model is proposed

yit = αi + β(t − t0) + γt + εit i = 1, . . . , J t = 1, . . . , T

where J is the number of sites, T is the number of years, t0 is the
median of the time period. And the terms εit are independent
deviation terms for station i at time t where

εit ∼ N (0, σ2
ε).

The distributional assumptions can be written as

yit ∼ N
(
αi + β(t − t0) + γt, σ

2
ε

)
Bayesian inference

On the second level in the hierarchical model we assume the
following prior distributions

α ∼ N (Xη,Σα) where Σα,ij = σ2
α exp

(
−φ∗αdij

)
γ ∼ N (0,Σγ) where Σγ,kl = σ2

γ exp
(
−φ∗γ|tk − tl|

)
β ∼ N

(
µβ, τ

2
β

)
.

where X is a matrix which contains the meteorological explanatory
variables, η is a vector of parameters corresponding to these
varibles and dij denotes the distance in kilometers between site i
and j . The parameters σ2

ε, σ
2
α, σ

2
γ, η, φ∗α and φ∗γ are unknown

need to be given a prior distribution.
On the third level in the hierarchical model we assume the following
prior distributions

σ2
ε ∼ Invχ2

(
Vε,S2

ε

)
, σ2

α ∼ Invχ2

(
Vα,S2

α

)
,

σ2
γ ∼ Invχ2

(
Vγ,S2

γ

)
, η ∼ N (µη, diag(τ2

η))

log(φ∗α) ∼ N (µφα, τ
2
φα), log(φ∗γ) ∼ N (µφγ, τ

2
φγ).

The remaining parameters in the distribution are constants which
need to be specified.

Parameter estimation

The Gibbs sampler is used to estimate model parameters. The
following posterior estimates are obtained for β(t − t0) + γt and αi
respectively.

β(t − t0) + γt αi
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Posterior 2.5% quantiles, means and 97.5% quantiles are shown

parameters 2.5% quantile mean 97.5% quantile
β -0.00069 0.00021 0.00113
σ2
ε 0.09268 0.09441 0.09613
σ2
α 0.27255 0.37965 0.45551
σ2
γ 0.05219 0.15821 0.20293

η1 (intercept) 16.32845 17.35563 18.36950
η3 (latitude) -0.22144 -0.20571 -0.18996
η4 (altitude) -0.00020 0.00039 0.00101
η5 (dst. sea) -0.00928 -0.00700 -0.00477

log(φ∗α) -0.67209 -0.04521 0.51864
log(φ∗γ) 0.57592 0.92829 1.20800

Posterior estimates for other parameters in the model

Prediction

A posterior prediction for the mean of annual maximum 24 hour
precipitation can now be obtained by using the posterior estimates
of the parameters and known facts[1].

Predictions for the mean of annual maximum 24 hour precipitation for
the year 2010 in Iceland

Future research

The proposed model works well when dealing with means, but
when dealing with large extremes the model values deviate
significantly from observed values, so improvements need to be
made. In order to improve the model the following is proposed.

I Assume the general extreme value distribution for the observations,
which is more suitable for dealing with extremes.

I Incorporate outputs from meteorological models.
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