Extremes for data with phase shifting seasons - some observations from marine climate

Georg Lindgren ${ }^{1}$
with input from Helena Olsson
${ }^{1}$ Mathematical Statistics, Lund University

Extreme events in climate and weather, Banff, August, 2010

The problem

- Estimation of weather related return periods in the presence of strong seasonal effects
- Example: Significant wave height H_{s} (4 times standard deviation of sea surface height) in the North Sea March 1980 - March 1988, 3 hour sampling inteval

The problem, continued

- Strong seasonal effect for location in $\log H_{s}$, i.e. in scale of H_{s}

- Standard deviation of hourly sea level - astronomical cycle with period 18.61 year; Méndez et al, J. Atmospheric and Oceanic Technology, 2007

Common practise - I

- Divide the year into "homogeneous" intervals, e.g. months, and make separate analyses for each period
- Smith: Extreme value analysis of environmental time series ..., Statistical Science, 1989

Common practise - II

- Estimate parameteric models for time dependent parameters in extreme value analysis
- Katz et al: Statistics of extremes in hydrology, Advances in Water Resources, 2002 - upper curve shows separate 100-year return level for GEV model for monthly maximum of Fort Collins precipitation.

The fixed periodic model

- For seasonal GEV analysis for monthly maximum, the maximum value over month $t=1, \ldots, 12$ is assumed to have a GEV distribution with location $\mu(t)$, scale $\sigma(t)$ and shape parameter $\gamma(t)$ dependent on t :
- Katz, Méndez, and many others, assume ("sum of") harmonics:

$$
\begin{aligned}
\mu(t) & =\mu_{0}+\alpha_{1} \cos 2 \pi f_{0} t+\beta_{1} \sin 2 \pi f_{0} t \\
& =\mu_{0}+A_{1} \cos \left(2 \pi f_{0} t+\phi_{1}\right) \\
\log \sigma(t) & =s_{0}+A_{2} \cos \left(2 \pi f_{0} t+\phi_{2}\right)
\end{aligned}
$$

and possibly a constant $\gamma(t)$.
Frequency $f_{0}=1 / 12$ for monthly maxima, and ϕ_{k} are fixed phases for the harmonic change in location and scale.

But - is the "fixed phase" model realistic?

- Does the "stormy season" occur at a fixed date every year?
- Or does it come with some phase variation?
- And, does that really matter,
- so it can systematically influence estimation of return levels?
- Take a look at the $\log H_{s}$ data from the North Sea, centered around 0 .
- Fit a fixed phase cosine to y_{t}, the centered $\log H_{s}(t)$ data from the North Sea, minimizing

$$
\sum\left(y_{j}-\alpha \cos 2 \pi f_{0} t_{j}-\beta \sin 2 \pi f_{0} t_{j}\right)^{2}
$$

- and take $\widehat{A}=\sqrt{\alpha^{2}+\beta^{2}}, \widehat{\phi}=-\arctan \beta / \alpha$

A look at the North Sea significant wave height

- Residuals, $y_{t}-\widehat{A} \cos \left(2 \pi f_{0} t+\widehat{\phi}\right)$, around the mean value function still contain a seasonal component!

The stormy season may come at different dates!

- Assume a slowly varying random amplitude A_{t} and phase $\phi(t)$

$$
m(t)=A_{t} \cos \left(2 \pi f_{0} t+\phi_{t}\right)
$$

- Estimate A_{t} and ϕ_{t} by local least squares, minimizing, for fixed t,

$$
\sum_{\left|t_{j}-t\right|<h}\left(y_{j}-\alpha_{t} \cos 2 \pi f_{0} t_{j}-\beta_{t} \sin 2 \pi f_{0} t_{j}\right)^{2} \frac{K\left(\left(t_{j}-t\right) / h\right)}{h}
$$

- and take $\widehat{A}_{t}=\sqrt{\alpha_{t}^{2}+\beta_{t}^{2}}, \widehat{\phi}_{t}=-\arctan \beta_{t} / \alpha_{t}$

Amplitude and phase are not constant

- Amplitude and phase vary slowly over the 8 years of North Sea data: plot of amplitude \widehat{A}_{t} and phase $\widehat{\phi}_{t}$

- Phase varies by ± 0.2 around its average value, i.e. the time for peak H_{s} may shift back and forth with about 12 days between years!

Does the phase shift have any effect on the extreme value analysis?

- Visible effect on seasonal pattern:

Fixed and shifting seasonal effects

- Small, but clear (?) difference between residual patterns for fixed (left) and shifting (right) phases

Simulation study: does random phase affect extreme value

 analysis?Gaussian time series
Mean value
Residual standard deviation
Estimation assumption I
Estimation assumption II
sample interval
yearly cosine
constant
constant A and ϕ
variable A and ϕ

3 hours variable A and ϕ
σ_{y}
WRONG!
CORRECT!

Estimate residual distribution Question

The model

- Independent residuals Y_{t} around a random season:

$$
\begin{aligned}
Y_{t} & =m_{t}+N\left(0, \sigma_{y}^{2}\right) \\
m_{t} & =m_{0}+A_{t} \cos \left(2 \pi f_{0} t+\phi_{t}\right), \quad \operatorname{Var}\left(m_{t}\right)=\sigma_{\mathrm{m}}^{2} \\
A_{t} & =0.5+\widetilde{A}_{t}, \quad \text { stationary Gaussian, psd } S_{a}(\omega) \\
\phi_{t} & =-0.2+\widetilde{\phi}_{t}, \quad \text { stationary Gaussian, psd } S_{f}(\omega)
\end{aligned}
$$

- Left: examples of A_{t} and ϕ_{t} with estimates; Right: example of m_{t} (black), \widehat{m}_{t} fixed (red), \widehat{m}_{t} flexible (blue)

Estimate residual distribution under the two assumptions

 when in fact model II is correct?- Generate data (8 year) from Model II (flexible) and estimate season m_{t} under Assumption I and Assumption II
- Residuals

$$
\begin{aligned}
x_{t}^{\prime} & =y_{t}-\widehat{m}_{t}^{\prime} \\
x_{t}^{\prime \prime} & =y_{t}-\widehat{m}_{t}^{\prime \prime}
\end{aligned}
$$

- Compute empirical quantiles in the two sets of residuals
- Compare the two sets of quantiles

Results - 1a

- The results will depend on the relation between the residual standard deviation σ_{y} and the variability of the season measured by its standard deviation σ_{m}.
- Upper quantile ratio $\lambda_{q}^{\prime} / \lambda_{q}^{\prime \prime}$ based on 100 replicates

$\mathrm{q}=$		0.9	-	0.99999
$\sigma_{y} / \sigma_{m}=$	1	1.05	-	1.04
	0.75	1.08	-	1.08
	0.6	1.12	-	1.11
	0.5	1.17	-	1.14
	0.4	1.27	-	1.25
	0.3	1.31	-	1.26
	0.2	1.59	-	1.45
	0.1	2.74	-	2.10

Results - 1b

- If residual and season have the same standard deviation, $\sigma_{y}=\sigma_{m}$, the effect of phase mismatch is small ($<5 \%$)
- If $\sigma_{y}=\sigma_{m} / 2$ high residual quantiles may be overestimated by 15%
- If $\sigma_{y}=\sigma_{m} / 5$ high residual quantiles may be overestimated by 50\%

Peaks over threshold analysis

- For POT analysis with seasonal effect, select a variable high level and analyse exceedances
- Coles and Tawn: Seasonal effects of extreme surges. Stoch Environ Res Risk Assess (2005):

Threshold selection

- Coles and Tawn select a seasonal quantile curve,

$$
Q(t)=a+b \cos \left(2 \pi f_{0} t+c\right)
$$

exceeded by 5% of all data, both summer and winter (actually $C \& T$ take $c=0$) and make an extreme value analysis of the exceedances

- We compare with a similar analysis with a seasonal quantile curve with flexible phase
- Estimate by local quantile regression a quantile curve

$$
Q(t)=A(t)+B(t) \cos \left(2 \pi f_{0} t\right)+C(t) \sin \left(2 \pi f_{0} t\right)
$$

with slowly varying $A(t), B(t), C(t)$ - this is a standard quantile regression problem

Local quantile regression

Recursion: for a small ϵ,

$$
\begin{aligned}
\theta^{m+1} & =\arg \min \sum_{\left|t_{j}-t\right|<h}\left(y_{j}-A(t)-B(t) \cos 2 \pi f_{0} t_{j}-C(t) \sin 2 \pi f_{0} t_{j}\right)^{2} \\
& \times \frac{v\left(y_{j}\right) \frac{K\left(\left(t_{j}-t\right) / h\right)}{h}}{\sqrt{\left(y_{j}-Q(t)^{m}\right)^{2}+\epsilon^{2}}}
\end{aligned}
$$

optimize for $A(t), B(t), C(t)$

Results - 2

- Simulate 8 year of independent normal data, around a varying mean, sampled 8 times a day
- Yearly season with flexible phase similar to H_{s} North Sea model
- Estimate upper quantile function with "fixed phase" and with "flexible phase"
- Compute exceedance distributions

Results 2a - variability due to phase variation

Nine simulations of empirical CDF (blue=fixed, red=flexible) for exceedances over 90% quantile curve and true distribution (black) phase STD twice that in "Results 1 ", $s_{y}=s_{m} / 2$

Results 2 b - dependence on "signal-to-noise" ratio

Results depend on the "signal-to-noise" ratio, i.e. the ratio between the variance of the residuals and the season. Empirical CDF of exceedances over 80% limits. Upper row: $s_{y}=s_{m}$, Middle row: $s_{y}=s_{m} / 2$, Bottom row: $s_{y}=s_{m} / 10$,

Results 2 c - dependence on quantile level

Results depend on the quantile level. Empirical CDF of exceedances over 80, 95, 99% quantiles. $s_{y}=s_{m} / 2$. Upper row: $p=0.80$, Middle row: $p=0.95$, Bottom row: $p=0.99$,

Result 2d - dependence on exceedance distribution

- Examples have illustrated normal data with almost exponential exceedance distribution
- Seasonal baseline function + exponential residuals gives (trivially) identical results for fixed and flexible quantile estimation
- Seasonal baseline function + GPD residuals follow the main pattern, with "fixed phase" assumption overestimating the excesses when phase shifts are present

Result 2d - examples

Left: exponential 80\%; Right: GPD 99\%

Back to the North Sea wave height

Based on available data with large gaps, estimate fixed (blue) and flexible (red) seasonal 80% quantile curves and obtain exceedance CDF - results are consistent with simulations ($\mathrm{h}=1600$ hours). The overestimation in the center of the exceedance distribution is about 0.05 , which implies a 5% overestimation of the true significant wave height return value

New problem: Should season amplitude be allowed to vary over years?

- The seasonal variation of the amplitude in Result 2 is confounded with the exceedance variation.
- Therefore, estimate quantile curve with fixed amplitude allowing only the phase to vary between years
- Technically, first estimate variable amplitude and phase model
- Then, accept the estimated phase shifts $\phi(t)$ and estimate a new constant amplitude quantile function of the form

$$
m_{t}=m_{0}+A \cos \left(2 \pi f_{0} t+\phi(t)\right)
$$

Estimation of m_{0} and A is now a linear quantile estimation problem.

Results 3a - main results remain - normal residuals

Nine simulations of constant amplitude-variable phase model. Normal residuals with $s_{y}=0.1 s_{m}$. Estimation of CDF from constant amplitude (red) and constant amplitude and phase (blue) compared to true exceedance CDF (black). 99% quantile. Note: the "flexible phase-constant amplitude" falls between the "fixed phase" CDF and the true CDF

Results 3b - main results remain - GPD

Nine simulations of constant amplitude-variable phase model. GPD residuals with shape parameter 0.5 and scale $s_{y}=0.5 s_{m}$. Estimation of CDF from constant amplitude (red) and constant amplitude and phase (blue) compared to true exceedance CDF (black). 99\% quantile.

Discussion 1

- Seasonal parameters in EVD or in "normal" models are not unreasonable in weather and climate models
- Formal non-parametric quantile regression can accurately estimate a amplitude/phase-shifting seasonal trend
- Trend estimation allowing for phase (and amplitude) shifts seem to "often" agree with the true shifts - when they are present
- Exceedances over an estimated fixed-phase season are (in simulations) systematically larger than exceedances over an estimated flexible phase model in the presence of flexible season
- Difference in "Significant wave height" example is of the order of 5% in moderately high extremes

Discussion 2

- Difference seems to be smaller for more extreme quantiles
- Difference depends on the "signal-to-noise" ratio
- Exceedance models from flexible phase model can be combined with a fixed phase model for prediction puposes
- Gaps with missing values may cause problems
- Effects of the variable amplitude have not been studied
- CONCLUSION: If one prefers a POT analysis in the presence of strong seasonal effects, the problem with modelling possible phase variations should be considered - return values may otherwise be biased in an unconservative way
- Block maxima (e.g. yearly) may be to prefer

References

- Helena Olsson: A study of extreme significant wave heights in the Norwegian Sea. Masters Thesis in Mathematical statistics, Lund University, 1994.
- G. Lindgren and H. Olsson: The effect of seasonal phase mismatch in extreme value analysis of environmental variables. In preparation.
- R. Katz, M.B. Parlange and P. Naveau: Statistics of extremes in hydrology. Advances in Water Resources, 25 (2002) 1287-1304.
- F.J. Méndez et al.: Analyzing monthly extreme sea levels with a time-dependent GEV model. J. Atmospheric and Oceanic Research, 24 (2007) 894-911.
- R.L. Smith: Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone. Statistical Science, 4 (1989) 367-377.

