Faces of the Barvinok-Novik orbitope

Cynthia Vinzant

University of California, Berkeley
Department of Mathematics
February 18, 2009

Introduction

The odd trigonometric moment curve

$$
\begin{gathered}
S M_{2 k}(\theta)=(\cos (\theta), \sin (\theta), \cos (3 \theta), \sin (3 \theta), \ldots, \cos ((2 k-1) \theta), \sin ((2 k-1) \theta)), \\
B_{2 k}=\operatorname{conv}\left(S M_{2 k}([0,2 \pi])\right) .
\end{gathered}
$$

Introduction

The odd trigonometric moment curve
$S M_{2 k}(\theta)=(\cos (\theta), \sin (\theta), \cos (3 \theta), \sin (3 \theta), \ldots, \cos ((2 k-1) \theta), \sin ((2 k-1) \theta))$,

$$
B_{2 k}=\operatorname{conv}\left(S M_{2 k}([0,2 \pi])\right) .
$$

Introduction

The odd trigonometric moment curve
$S M_{2 k}(\theta)=(\cos (\theta), \sin (\theta), \cos (3 \theta), \sin (3 \theta), \ldots, \cos ((2 k-1) \theta), \sin ((2 k-1) \theta))$,

$$
B_{2 k}=\operatorname{conv}\left(S M_{2 k}([0,2 \pi])\right) .
$$

Why?

Introduction

The odd trigonometric moment curve
$S M_{2 k}(\theta)=(\cos (\theta), \sin (\theta), \cos (3 \theta), \sin (3 \theta), \ldots, \cos ((2 k-1) \theta), \sin ((2 k-1) \theta))$,

$$
B_{2 k}=\operatorname{conv}\left(S M_{2 k}([0,2 \pi])\right) .
$$

Why?

- $B_{2 k}$ centrally symmetric and has many faces
\rightarrow good for making polytopes with many faces

Introduction

The odd trigonometric moment curve
$S M_{2 k}(\theta)=(\cos (\theta), \sin (\theta), \cos (3 \theta), \sin (3 \theta), \ldots, \cos ((2 k-1) \theta), \sin ((2 k-1) \theta))$,

$$
B_{2 k}=\operatorname{conv}\left(S M_{2 k}([0,2 \pi])\right) .
$$

Why?

- $B_{2 k}$ centrally symmetric and has many faces \rightarrow good for making polytopes with many faces
- An interesting convex body in its own right (orbitope, projection of a spectrahedron)

Motvation: centrally symmetric polytopes with many faces

Idea: If $S M_{2 k}\left(\theta_{1}\right), \ldots, S M_{2 k}\left(\theta_{j}\right)$ form a face on $B_{2 k}$ then they form a face on $\operatorname{conv}\left\{S_{2 k}\left(\theta_{1}\right), \ldots, S M_{2 k}\left(\theta_{j}\right), S M_{2 k}\left(\theta_{j+1}\right) \ldots, S M_{2 k}\left(\theta_{r}\right)\right\}$.

Motvation: centrally symmetric polytopes with many faces

Idea: If $S M_{2 k}\left(\theta_{1}\right), \ldots, S M_{2 k}\left(\theta_{j}\right)$ form a face on $B_{2 k}$ then they form a face on $\operatorname{conv}\left\{S_{2 k}\left(\theta_{1}\right), \ldots, S M_{2 k}\left(\theta_{j}\right), S M_{2 k}\left(\theta_{j+1}\right) \ldots, S M_{2 k}\left(\theta_{r}\right)\right\}$.

Theorem (Barvinok, Novik 2008)
For $d=2 k$ fixed, $j \leq k-1$ and $n \rightarrow \infty$, there is $c_{j}(d) \in \mathbb{R}_{+}$with

$$
c_{j}(d)+o(1) \leq \frac{f \max (d, n ; j)}{\binom{n}{j+1}} \leq 1-\frac{1}{2^{d}}+o(1)
$$

where $\operatorname{fmax}(d, n ; j)$ is the maximum number of j - faces on a centrally symmetric polytope with dimension d and n vertices.

Motivation: an interesting convex body

Sanyal, Sottile, \& Sturmfels (2009) remark that convex hull of the full trigonometric moment curve,

$$
(\cos (\theta), \sin (\theta), \cos (2 \theta), \sin (2 \theta), \ldots, \cos ((2 k-1) \theta), \sin ((2 k-1) \theta)
$$

is a Toeplitz spectrahedron.

Motivation: an interesting convex body

Sanyal, Sottile, \& Sturmfels (2009) remark that convex hull of the full trigonometric moment curve,

$$
(\cos (\theta), \sin (\theta), \cos (2 \theta), \sin (2 \theta), \ldots, \cos ((2 k-1) \theta), \sin ((2 k-1) \theta)
$$

is a Toeplitz spectrahedron.
\Rightarrow The orbitope $B_{2 k}$ is a projection of a spectrahedron.

Motivation: an interesting convex body

Sanyal, Sottile, \& Sturmfels (2009) remark that convex hull of the full trigonometric moment curve,

$$
(\cos (\theta), \sin (\theta), \cos (2 \theta), \sin (2 \theta), \ldots, \cos ((2 k-1) \theta), \sin ((2 k-1) \theta)
$$

is a Toeplitz spectrahedron.
\Rightarrow The orbitope $B_{2 k}$ is a projection of a spectrahedron.

$$
B_{4}=\left\{\left(x_{1}, y_{1}, x_{3}, y_{3}\right): \exists x_{2}, y_{2} \text { with }\left[\begin{array}{cccc}
1 & z_{1} & z_{2} & z_{3} \\
\overline{z_{1}} & 1 & z_{1} & z_{2} \\
\overline{z_{2}} & \overline{z_{1}} & 1 & z_{1} \\
\overline{z_{3}} & \overline{z_{2}} & \overline{z_{1}} & 1
\end{array}\right] \succeq 0\right\}
$$

where $z_{j}=x_{j}+i y_{j}$.

Faces of $B_{2 k} \leftrightarrow$ trigonometric polynomials

Faces of $B_{2 k} \leftrightarrow$ trigonometric polynomials

linear function on $\mathbb{R}^{2 k}$

$$
c+\sum_{d=1}^{k} a_{d} x_{2 d-1}+b_{d} x_{2 d}
$$

Faces of $B_{2 k} \leftrightarrow$ trigonometric polynomials

linear function on $\mathbb{R}^{2 k}$

$$
c+\sum_{d=1}^{k} a_{d} x_{2 d-1}+b_{d} x_{2 d}
$$

\uparrow
trig poly of deg $\leq 2 k-1$

$$
c+\sum_{d=1}^{k} a_{d} \cos (2 d-1) \theta+b_{d} \sin (2 d-1) \theta
$$

Faces of $B_{2 k} \leftrightarrow$ trigonometric polynomials

linear function on $\mathbb{R}^{2 k}$

$$
c+\sum_{d=1}^{k} a_{d} x_{2 d-1}+b_{d} x_{2 d}
$$

\uparrow
trig poly of deg $\leq 2 k-1$

$$
\begin{aligned}
& c+\sum_{d=1}^{k} a_{d} \cos (2 d-1) \theta+b_{d} \sin (2 d-1) \theta \\
= & c+\sum_{d=1}^{k}\left(a_{d}+i b_{d}\right) e^{i(2 d-1) \theta}+\left(a_{d}-i b_{d}\right) e^{-i(2 d-1) \theta}
\end{aligned}
$$

Faces of $B_{2 k} \leftrightarrow$ trigonometric polynomials

linear function on $\mathbb{R}^{2 k}$

$$
c+\sum_{d=1}^{k} a_{d} x_{2 d-1}+b_{d} x_{2 d}
$$

\downarrow
trig poly of deg $\leq 2 k-1$

$$
\begin{aligned}
& c+\sum_{d=1}^{k} a_{d} \cos (2 d-1) \theta+b_{d} \sin (2 d-1) \theta \\
= & c+\sum_{d=1}^{k}\left(a_{d}+i b_{d}\right) e^{i(2 d-1) \theta}+\left(a_{d}-i b_{d}\right) e^{-i(2 d-1) \theta}
\end{aligned}
$$

$S M_{2 k}\left(\theta_{1}\right), \ldots, S M_{2 k}\left(\theta_{r}\right)$ form a face on $B_{2 k}$
\Leftrightarrow

Faces of $B_{2 k} \leftrightarrow$ trigonometric polynomials

linear function on $\mathbb{R}^{2 k}$

$$
c+\sum_{d=1}^{k} a_{d} x_{2 d-1}+b_{d} x_{2 d}
$$

\downarrow
trig poly of deg $\leq 2 k-1$

$$
\begin{aligned}
& c+\sum_{d=1}^{k} a_{d} \cos (2 d-1) \theta+b_{d} \sin (2 d-1) \theta \\
= & c+\sum_{d=1}^{k}\left(a_{d}+i b_{d}\right) e^{i(2 d-1) \theta}+\left(a_{d}-i b_{d}\right) e^{-i(2 d-1) \theta}
\end{aligned}
$$

$S M_{2 k}\left(\theta_{1}\right), \ldots, S M_{2 k}\left(\theta_{r}\right)$ form a face on $B_{2 k}$
$\Leftrightarrow \exists p(z)=c_{0}+\sum_{d=1}^{k} c_{d} z^{2 d-1}+\overline{c_{d}} z^{-(2 d-1)}$ with

Faces of $B_{2 k} \leftrightarrow$ trigonometric polynomials

linear function on $\mathbb{R}^{2 k}$

$$
c+\sum_{d=1}^{k} a_{d} x_{2 d-1}+b_{d} x_{2 d}
$$

\downarrow
trig poly of deg $\leq 2 k-1$

$$
\begin{aligned}
& c+\sum_{d=1}^{k} a_{d} \cos (2 d-1) \theta+b_{d} \sin (2 d-1) \theta \\
= & c+\sum_{d=1}^{k}\left(a_{d}+i b_{d}\right) e^{i(2 d-1) \theta}+\left(a_{d}-i b_{d}\right) e^{-i(2 d-1) \theta}
\end{aligned}
$$

$S M_{2 k}\left(\theta_{1}\right), \ldots, S M_{2 k}\left(\theta_{r}\right)$ form a face on $B_{2 k}$
$\Leftrightarrow \exists p(z)=c_{0}+\sum_{d=1}^{k} c_{d} z^{2 d-1}+\overline{c_{d}} z^{-(2 d-1)}$ with

- $p \geq 0$ on \mathbb{S}^{1}, and

Faces of $B_{2 k} \leftrightarrow$ trigonometric polynomials

linear function on $\mathbb{R}^{2 k}$

$$
c+\sum_{d=1}^{k} a_{d} x_{2 d-1}+b_{d} x_{2 d}
$$

\uparrow
trig poly of deg $\leq 2 k-1$

$$
\begin{aligned}
& c+\sum_{d=1}^{k} a_{d} \cos (2 d-1) \theta+b_{d} \sin (2 d-1) \theta \\
= & c+\sum_{d=1}^{k}\left(a_{d}+i b_{d}\right) e^{i(2 d-1) \theta}+\left(a_{d}-i b_{d}\right) e^{-i(2 d-1) \theta}
\end{aligned}
$$

$S M_{2 k}\left(\theta_{1}\right), \ldots, S M_{2 k}\left(\theta_{r}\right)$ form a face on $B_{2 k}$
$\Leftrightarrow \exists p(z)=c_{0}+\sum_{d=1}^{k} c_{d} z^{2 d-1}+\overline{c_{d}} z^{-(2 d-1)}$ with

- $p \geq 0$ on \mathbb{S}^{1}, and

- $\left\{z \in \mathbb{S}^{1}: p(z)=0\right\}=\left\{e^{i \theta_{1}}, \ldots, e^{i \theta_{r}}\right\}$.

The plan: understand the faces of $B_{2 k}$

- Introduce a useful projection/section of $B_{2 k}$
- Warm up: B_{4}
- Main theorem: Edges of $B_{2 k}$
- Finale: B_{6}

The plan: understand the faces of $B_{2 k}$

- Introduce a useful projection/section of $B_{2 k}$
- Warm up: B_{4}
- Main theorem: Edges of $B_{2 k}$
- Finale: B_{6}

Main Theorem

For $\alpha, \beta \in[0,2 \pi]$, the line segment $\left[\operatorname{SM}_{2 k}(\alpha), S M_{2 k}(\beta)\right]$ is
an exposed edge
a non-exposed edge not an edge

$$
\begin{aligned}
& \text { if }|\alpha-\beta|<2 \pi(k-1) /(2 k-1) \\
& \text { if }|\alpha-\beta|=2 \pi(k-1) /(2 k-1) \\
& \text { if }|\alpha-\beta|>2 \pi(k-1) /(2 k-1) .
\end{aligned}
$$

The odd cosine moment curve

$$
\text { Let } C_{k}(\theta):=(\cos (\theta), \cos (3 \theta), \ldots, \cos ((2 k-1) \theta)) \text {. }
$$

The odd cosine moment curve

Let $C_{k}(\theta):=(\cos (\theta), \cos (3 \theta), \ldots, \cos ((2 k-1) \theta))$.
Let $H:=\left\{x \in \mathbb{R}^{2 k}: x_{2}=x_{4}=\ldots=x_{2 k}=0\right\}$.

The odd cosine moment curve

$$
\begin{aligned}
& \text { Let } C_{k}(\theta):=(\cos (\theta), \cos (3 \theta), \ldots, \cos ((2 k-1) \theta)) . \\
& \text { Let } H:=\left\{x \in \mathbb{R}^{2 k}: x_{2}=x_{4}=\ldots=x_{2 k}=0\right\} .
\end{aligned}
$$

Claim: Then $\operatorname{conv}\left(C_{k}\right)$ is both $\pi_{H}\left(B_{2 k}\right)$ and $H \cap B_{2 k}$.

The odd cosine moment curve

$$
\begin{aligned}
& \text { Let } C_{k}(\theta):=(\cos (\theta), \cos (3 \theta), \ldots, \cos ((2 k-1) \theta)) . \\
& \text { Let } H:=\left\{x \in \mathbb{R}^{2 k}: x_{2}=x_{4}=\ldots=x_{2 k}=0\right\} .
\end{aligned}
$$

Claim: Then $\operatorname{conv}\left(C_{k}\right)$ is both $\pi_{H}\left(B_{2 k}\right)$ and $H \cap B_{2 k}$.

$$
\frac{1}{2} S M_{2 k}(-\theta)+\frac{1}{2} S M_{2 k}(\theta)=(\cos (\theta), 0, \cos (3 \theta), 0, \ldots, \cos ((2 k-1) \theta), 0) .
$$

The odd cosine moment curve

$$
\begin{aligned}
& \text { Let } C_{k}(\theta):=(\cos (\theta), \cos (3 \theta), \ldots, \cos ((2 k-1) \theta)) . \\
& \text { Let } H:=\left\{x \in \mathbb{R}^{2 k}: x_{2}=x_{4}=\ldots=x_{2 k}=0\right\} .
\end{aligned}
$$

Claim: Then $\operatorname{conv}\left(C_{k}\right)$ is both $\pi_{H}\left(B_{2 k}\right)$ and $H \cap B_{2 k}$.

$$
\frac{1}{2} S M_{2 k}(-\theta)+\frac{1}{2} S M_{2 k}(\theta)=(\cos (\theta), 0, \cos (3 \theta), 0, \ldots, \cos ((2 k-1) \theta), 0) .
$$

\mathbb{R}^{2}

\mathbb{R}

Warm up : C_{2} and B_{4}

The faces of $\operatorname{conv}\left(C_{2}\right)$ tell us the

 balanced faces of B_{4}.

Warm up : C_{2} and B_{4}

The faces of $\operatorname{conv}\left(C_{2}\right)$ tell us the balanced faces of B_{4}.

As shown by Barvinok \& Novik (2008), the exposed faces of B_{4} are

dim	$\operatorname{conv}(\cdot)$		
0	$S M_{4}(\alpha)$	$:$	$\alpha \in[0,2 \pi]$
1	$S M_{4}(\alpha), S M_{4}(\beta)$	$:$	$\|\alpha-\beta\|<2 \pi / 3$
2	$S M_{4}(\alpha), S M_{4}(\alpha+2 \pi / 3), S M_{4}(\alpha+4 \pi / 3)$	$:$	$\alpha \in[0,2 \pi]$

Edges of $B_{2 k}$

Theorem (Barvinok, Novik, 2008) There exists $\phi_{k} \geq \frac{2 k-2}{2 k-1} \pi$ so that for $\alpha, \beta \in[0,2 \pi]$, the line segment $\left[\operatorname{SM}_{2 k}(\alpha), S M_{2 k}(\beta)\right]$ is
an exposed edge not an edge

$$
\begin{aligned}
& \text { if }|\alpha-\beta|<\phi_{k} \\
& \text { if }|\alpha-\beta|>\phi_{k} \text {. }
\end{aligned}
$$

Edges of $B_{2 k}$

Theorem (Barvinok, Novik, 2008) There exists $\phi_{k} \geq \frac{2 k-2}{2 k-1} \pi$ so that for $\alpha, \beta \in[0,2 \pi]$, the line segment $\left[\operatorname{SM}_{2 k}(\alpha), S M_{2 k}(\beta)\right]$ is
an exposed edge
if $|\alpha-\beta|<\phi_{k}$
not an edge
if $|\alpha-\beta|>\phi_{k}$.

Conjecture (" ") $\phi_{k}=\frac{2 k-2}{2 k-1} \pi$.

Edges of $B_{2 k}$

Theorem (Barvinok, Novik, 2008) There exists $\phi_{k} \geq \frac{2 k-2}{2 k-1} \pi$ so that for $\alpha, \beta \in[0,2 \pi]$, the line segment $\left[\operatorname{SM}_{2 k}(\alpha), S M_{2 k}(\beta)\right]$ is

$$
\begin{array}{ll}
\text { an exposed edge } & \text { if }|\alpha-\beta|<\phi_{k} \\
\text { not an edge } & \text { if }|\alpha-\beta|>\phi_{k}
\end{array}
$$

Conjecture (" ") $\phi_{k}=\frac{2 k-2}{2 k-1} \pi$.
Theorem (V.) For $\theta \in\left(\frac{k-1}{2 k-1} \pi, \frac{\pi}{2}\right]$ the point $C_{k}(\theta)$ lies in the interior of $\operatorname{conv}\left(C_{k}\right)$.

Edges of $B_{2 k}$

Theorem (Barvinok, Novik, 2008) There exists $\phi_{k} \geq \frac{2 k-2}{2 k-1} \pi$ so that for $\alpha, \beta \in[0,2 \pi]$, the line segment $\left[\operatorname{SM}_{2 k}(\alpha), S M_{2 k}(\beta)\right]$ is

$$
\begin{array}{ll}
\text { an exposed edge } & \text { if }|\alpha-\beta|<\phi_{k} \\
\text { not an edge } & \text { if }|\alpha-\beta|>\phi_{k} .
\end{array}
$$

Conjecture (" ") $\phi_{k}=\frac{2 k-2}{2 k-1} \pi$.
Theorem (V.) For $\theta \in\left(\frac{k-1}{2 k-1} \pi, \frac{\pi}{2}\right]$ the point $C_{k}(\theta)$ lies in the interior of $\operatorname{conv}\left(C_{k}\right)$.

Corollary $\phi_{k}=\frac{2 k-2}{2 k-1} \pi$.

Curves dipping behind facets

$$
\begin{aligned}
& C(t)=\left(f_{1}(t), \ldots, f_{d}(t)\right), \text { a polynomial curve } \\
& F=\operatorname{conv}\left\{C\left(t_{0}\right), \ldots, C\left(t_{r}\right)\right\}, \text { a facet of } \operatorname{conv}(C)
\end{aligned}
$$

Claim: If C is smooth at t_{0} and $C\left(t_{0}\right)+\epsilon C^{\prime}\left(t_{0}\right)$ is in the relative interior of F then $C\left(t_{0}+\epsilon\right)$ is in the interior of $\operatorname{conv}(C)$.

Curves dipping behind facets

$C(t)=\left(f_{1}(t), \ldots, f_{d}(t)\right)$, a polynomial curve $F=\operatorname{conv}\left\{C\left(t_{0}\right), \ldots, C\left(t_{r}\right)\right\}$, a facet of conv (C)

Claim: If C is smooth at t_{0} and $C\left(t_{0}\right)+\epsilon C^{\prime}\left(t_{0}\right)$ is in the relative interior of F then $C\left(t_{0}+\epsilon\right)$ is in the interior of $\operatorname{conv}(C)$.

Curves dipping behind facets

$C(t)=\left(f_{1}(t), \ldots, f_{d}(t)\right)$, a polynomial curve $F=\operatorname{conv}\left\{C\left(t_{0}\right), \ldots, C\left(t_{r}\right)\right\}$, a facet of conv (C)

Claim: If C is smooth at t_{0} and $C\left(t_{0}\right)+\epsilon C^{\prime}\left(t_{0}\right)$ is in the relative interior of F then $C\left(t_{0}+\epsilon\right)$ is in the interior of $\operatorname{conv}(C)$.

Curves dipping behind facets

$C(t)=\left(f_{1}(t), \ldots, f_{d}(t)\right)$, a polynomial curve $F=\operatorname{conv}\left\{C\left(t_{0}\right), \ldots, C\left(t_{r}\right)\right\}$, a facet of conv (C)

Claim: If C is smooth at t_{0} and $C\left(t_{0}\right)+\epsilon C^{\prime}\left(t_{0}\right)$ is in the relative interior of F then $C\left(t_{0}+\epsilon\right)$ is in the interior of $\operatorname{conv}(C)$.

$\pi_{F}\left(C\left(t_{0}+\epsilon\right)\right) \in \operatorname{interior}\left(\pi_{F} F\right)$

Curves dipping behind facets

$C(t)=\left(f_{1}(t), \ldots, f_{d}(t)\right)$, a polynomial curve $F=\operatorname{conv}\left\{C\left(t_{0}\right), \ldots, C\left(t_{r}\right)\right\}$, a facet of conv($\left.C\right)$

Claim: If C is smooth at t_{0} and $C\left(t_{0}\right)+\epsilon C^{\prime}\left(t_{0}\right)$ is in the relative interior of F then $C\left(t_{0}+\epsilon\right)$ is in the interior of $\operatorname{conv}(C)$.

$\pi_{F}\left(C\left(t_{0}+\epsilon\right)\right) \in \operatorname{interior}\left(\pi_{F} F\right) \Rightarrow C\left(t_{0}\right)+\epsilon C^{\prime}\left(t_{0}\right) \in$ rel.interior (F)

Curves dipping behind facets

$C(t)=\left(f_{1}(t), \ldots, f_{d}(t)\right)$, a polynomial curve $F=\operatorname{conv}\left\{C\left(t_{0}\right), \ldots, C\left(t_{r}\right)\right\}$, a facet of conv($\left.C\right)$

Claim: If C is smooth at t_{0} and $C\left(t_{0}\right)+\epsilon C^{\prime}\left(t_{0}\right)$ is in the relative interior of F then $C\left(t_{0}+\epsilon\right)$ is in the interior of $\operatorname{conv}(C)$.

$$
\begin{aligned}
\pi_{F}\left(C\left(t_{0}+\epsilon\right)\right) \in \operatorname{interior}\left(\pi_{F} F\right) & \Rightarrow C\left(t_{0}\right)+\epsilon C^{\prime}\left(t_{0}\right) \in \text { rel.interior }(F) \\
& \Rightarrow C\left(t_{0}+\epsilon\right) \in \operatorname{interior}(\operatorname{conv}(C))
\end{aligned}
$$

Trigonometry is useful.

Now use $C=C_{5}$, and
$F=\operatorname{conv}\left\{C_{3}(0 \pi), C_{3}\left(\frac{2 \pi}{5}\right), C_{3}\left(\frac{4 \pi}{5}\right)\right\}$.

Trigonometry is useful.

Now use $C=C_{5}$, and

$$
F=\operatorname{conv}\left\{C_{3}(0 \pi), C_{3}\left(\frac{2 \pi}{5}\right), C_{3}\left(\frac{4 \pi}{5}\right)\right\} .
$$

Need to show $C_{2}\left(\frac{2 \pi}{5}+\epsilon\right) \in \pi_{F}(F)$.

Trigonometry is useful.

Now use $C=C_{5}$, and

$$
F=\operatorname{conv}\left\{C_{3}(0 \pi), C_{3}\left(\frac{2 \pi}{5}\right), C_{3}\left(\frac{4 \pi}{5}\right)\right\} .
$$

Need to show $C_{2}\left(\frac{2 \pi}{5}+\epsilon\right) \in \pi_{F}(F)$.

Trigonometry is useful.

Now use $C=C_{5}$, and

$$
F=\operatorname{conv}\left\{C_{3}(0 \pi), C_{3}\left(\frac{2 \pi}{5}\right), C_{3}\left(\frac{4 \pi}{5}\right)\right\}
$$

Need to show $C_{2}\left(\frac{2 \pi}{5}+\epsilon\right) \in \pi_{F}(F)$.
Use trigonometry to explicitly find functions giving facets of $\pi_{F}(F)$

Trigonometry is useful.

Now use $C=C_{5}$, and

$$
F=\operatorname{conv}\left\{C_{3}(0 \pi), C_{3}\left(\frac{2 \pi}{5}\right), C_{3}\left(\frac{4 \pi}{5}\right)\right\} .
$$

$$
x_{1}+x_{2}=-\frac{1}{2}
$$

Need to show $C_{2}\left(\frac{2 \pi}{5}+\epsilon\right) \in \pi_{F}(F)$.
Use trigonometry to explicitly find functions giving facets of $\pi_{F}(F)$

Trigonometry is useful.

Now use $C=C_{5}$, and

$$
F=\operatorname{conv}\left\{C_{3}(0 \pi), C_{3}\left(\frac{2 \pi}{5}\right), C_{3}\left(\frac{4 \pi}{5}\right)\right\} .
$$

$$
x_{1}+x_{2}=-\frac{1}{2}
$$

Need to show $C_{2}\left(\frac{2 \pi}{5}+\epsilon\right) \in \pi_{F}(F)$.
Use trigonometry to explicitly find functions giving facets of $\pi_{F}(F)$ and their roots and signs.

Trigonometry is useful.

Now use $C=C_{5}$, and
$F=\operatorname{conv}\left\{C_{3}(0 \pi), C_{3}\left(\frac{2 \pi}{5}\right), C_{3}\left(\frac{4 \pi}{5}\right)\right\}$.

Trigonometry is useful.

Now use $C=C_{5}$, and
$F=\operatorname{conv}\left\{C_{3}(0 \pi), C_{3}\left(\frac{2 \pi}{5}\right), C_{3}\left(\frac{4 \pi}{5}\right)\right\}$.

Need to show $C_{2}\left(\frac{2 \pi}{5}+\epsilon\right) \in \pi_{F}(F)$.
Use trigonometry to explicitly find functions giving facets of $\pi_{F}(F)$
and their roots and signs.
\rightarrow all positive on $C_{2}\left(\frac{2 \pi}{5}+\epsilon\right)$.
$\cos (4 \pi / 5) x_{1}+\cos (2 \pi / 5) x_{2}=x_{1}+x_{2}$

Trigonometry is useful.

Now use $C=C_{5}$, and
$F=\operatorname{conv}\left\{C_{3}(0 \pi), C_{3}\left(\frac{2 \pi}{5}\right), C_{3}\left(\frac{4 \pi}{5}\right)\right\}$.

Need to show $C_{2}\left(\frac{2 \pi}{5}+\epsilon\right) \in \pi_{F}(F)$.
Use trigonometry to explicitly find functions giving facets of $\pi_{F}(F)$
and their roots and signs.
\rightarrow all positive on $C_{2}\left(\frac{2 \pi}{5}+\epsilon\right)$.
$\cos (4 \pi / 5) x_{1}+\cos (2 \pi / 5) x_{2}=x_{1}+x_{2}$

Finale: C_{3} and B_{6}

> The Zariski-closure of $\partial \operatorname{conv}\left(C_{3}\right)$ has 5 components: 2 tritangent planes and 3 edge surface components of degrees 4,4, and 7 .

Finale: C_{3} and B_{6}

> The Zariski-closure of $\partial \operatorname{conv}\left(C_{3}\right)$ has 5 components: 2 tritangent planes and 3 edge surface components of degrees 4,4, and 7 .

The balanced faces of B_{6} :

Finale: C_{3} and B_{6}

> The Zariski-closure of $\partial \operatorname{conv}\left(C_{3}\right)$ has 5 components: 2 tritangent planes and 3 edge surface components of degrees 4,4, and 7 .

The balanced faces of B_{6} :
exposed points of $C_{3} \leftrightarrow$ edges of B_{6}

Finale: C_{3} and B_{6}

The Zariski-closure of $\partial \operatorname{conv}\left(C_{3}\right)$ has 5 components: 2 tritangent planes and 3 edge surface components of degrees 4,4, and 7 .

The balanced faces of B_{6} :
exposed points of $C_{3} \leftrightarrow$ edges of B_{6} some edges $\leftrightarrow \quad$ 2-dim. faces on B_{6}

Finale: C_{3} and B_{6}

The Zariski-closure of $\partial \operatorname{conv}\left(C_{3}\right)$ has 5 components: 2 tritangent planes and 3 edge surface components of degrees 4,4, and 7.

The balanced faces of B_{6} :
exposed points of $C_{3} \leftrightarrow$ edges of B_{6} some edges $\leftrightarrow \quad$ 2-dim. faces on B_{6} some edges \leftrightarrow 3-dim. faces on B_{6}

Finale: C_{3} and B_{6}

The Zariski-closure of $\partial \operatorname{conv}\left(C_{3}\right)$ has 5 components: 2 tritangent planes and 3 edge surface components of degrees 4,4, and 7 .

The balanced faces of B_{6} :
exposed points of $C_{3} \leftrightarrow$ edges of B_{6} some edges $\leftrightarrow \quad$ 2-dim. faces on B_{6} some edges \leftrightarrow 3-dim. faces on B_{6}
triangent planes $\leftrightarrow 4$-dim. faces on B_{6}

Finale: C_{3} and B_{6}

The Zariski-closure of $\partial \operatorname{conv}\left(C_{3}\right)$ has 5 components: 2 tritangent planes and 3 edge surface components of degrees 4,4, and 7 .

The balanced faces of B_{6} :
exposed points of $C_{3} \leftrightarrow$ edges of B_{6} some edges $\leftrightarrow \quad$ 2-dim. faces on B_{6} some edges \leftrightarrow 3-dim. faces on B_{6}
triangent planes $\leftrightarrow 4$-dim. faces on B_{6}

References

1. A. Barvinok, I. Novik, A centrally symmetric version of the cyclic polytope. Discrete Comput. Geom. 39 (2008), no. 1-3, 76-99.
2. R. Sanyal, F. Sottile, B. Sturmfels, Orbitopes. http://arxiv.org/pdf/0911.5436.pdf
3. C. Vinzant, Edges of the Barvinok-Novik orbitope. (in progress)

References

1. A. Barvinok, I. Novik, A centrally symmetric version of the cyclic polytope. Discrete Comput. Geom. 39 (2008), no. 1-3, 76-99.
2. R. Sanyal, F. Sottile, B. Sturmfels, Orbitopes. http://arxiv.org/pdf/0911.5436.pdf
3. C. Vinzant, Edges of the Barvinok-Novik orbitope. (in progress)

Thanks!

