Faces of the Barvinok-Novik orbitope

Cynthia Vinzant

University of California, Berkeley Department of Mathematics

February 18, 2009

• 3 >

æ

 $SM_{2k}(\theta) = (\cos(\theta), \sin(\theta), \cos(3\theta), \sin(3\theta), \dots, \cos((2k-1)\theta), \sin((2k-1)\theta)),$ $B_{2k} = \operatorname{conv}(SM_{2k}([0, 2\pi])).$

(同)((三)(三)(三)

 $SM_{2k}(\theta) = (\cos(\theta), \sin(\theta), \cos(3\theta), \sin(3\theta), \dots, \cos((2k-1)\theta), \sin((2k-1)\theta)),$ $B_{2k} = \operatorname{conv}(SM_{2k}([0, 2\pi])).$

3 ×

æ

 $SM_{2k}(\theta) = (\cos(\theta), \sin(\theta), \cos(3\theta), \sin(3\theta), \dots, \cos((2k-1)\theta), \sin((2k-1)\theta)),$ $B_{2k} = \operatorname{conv}(SM_{2k}([0, 2\pi])).$

Why?

- ◆ 臣 → - -

2

3 ×

 $SM_{2k}(\theta) = (\cos(\theta), \sin(\theta), \cos(3\theta), \sin(3\theta), \dots, \cos((2k-1)\theta), \sin((2k-1)\theta)),$ $B_{2k} = \operatorname{conv}(SM_{2k}([0, 2\pi])).$

Why?

 \triangleright B_{2k} centrally symmetric and has many faces \rightarrow good for making polytopes with many faces

 $SM_{2k}(\theta) = (\cos(\theta), \sin(\theta), \cos(3\theta), \sin(3\theta), \dots, \cos((2k-1)\theta), \sin((2k-1)\theta)),$ $B_{2k} = \operatorname{conv}(SM_{2k}([0, 2\pi])).$

Why?

- ► B_{2k} centrally symmetric and has many faces → good for making polytopes with many faces
- An interesting convex body in its own right (orbitope, projection of a spectrahedron)

Motvation: centrally symmetric polytopes with many faces

Idea: If $SM_{2k}(\theta_1), \ldots, SM_{2k}(\theta_j)$ form a face on B_{2k} then they form a face on conv $\{SM_{2k}(\theta_1), \ldots, SM_{2k}(\theta_j), SM_{2k}(\theta_{j+1}), \ldots, SM_{2k}(\theta_r)\}$.

Motvation: centrally symmetric polytopes with many faces

Idea: If $SM_{2k}(\theta_1), \ldots, SM_{2k}(\theta_j)$ form a face on B_{2k} then they form a face on conv $\{SM_{2k}(\theta_1), \ldots, SM_{2k}(\theta_j), SM_{2k}(\theta_{j+1}), \ldots, SM_{2k}(\theta_r)\}$.

Theorem (Barvinok, Novik 2008) For d = 2k fixed, $j \le k - 1$ and $n \to \infty$, there is $c_j(d) \in \mathbb{R}_+$ with

$$c_j(d) + o(1) \leq rac{fmax(d, n; j)}{\binom{n}{j+1}} \leq 1 - rac{1}{2^d} + o(1),$$

where fmax(d, n; j) is the maximum number of j - faces on a centrally symmetric polytope with dimension d and n vertices.

Sanyal, Sottile, & Sturmfels (2009) remark that convex hull of the full trigonometric moment curve,

 $(\cos(\theta), \sin(\theta), \cos(2\theta), \sin(2\theta), \dots, \cos((2k-1)\theta), \sin((2k-1)\theta))$

is a Toeplitz spectrahedron.

• 3 > 1

Sanyal, Sottile, & Sturmfels (2009) remark that convex hull of the full trigonometric moment curve,

 $(\cos(\theta), \sin(\theta), \cos(2\theta), \sin(2\theta), \dots, \cos((2k-1)\theta), \sin((2k-1)\theta))$

- is a Toeplitz spectrahedron.
- \Rightarrow The orbitope B_{2k} is a projection of a spectrahedron.

• 3 > 1

Sanyal, Sottile, & Sturmfels (2009) remark that convex hull of the full trigonometric moment curve,

 $(\cos(\theta), \sin(\theta), \cos(2\theta), \sin(2\theta), \dots, \cos((2k-1)\theta), \sin((2k-1)\theta))$

- is a Toeplitz spectrahedron.
- \Rightarrow The orbitope B_{2k} is a projection of a spectrahedron.

$$B_4 = \left\{ (x_1, y_1, x_3, y_3) : \exists x_2, y_2 \text{ with } \begin{bmatrix} 1 & z_1 & z_2 & z_3 \\ \overline{z_1} & 1 & z_1 & z_2 \\ \overline{z_2} & \overline{z_1} & 1 & z_1 \\ \overline{z_3} & \overline{z_2} & \overline{z_1} & 1 \end{bmatrix} \succeq 0 \right\}$$

where $z_j = x_j + iy_j$.

回 と く ヨ と く ヨ と …

æ

linear function on \mathbb{R}^{2k}

$$c + \sum_{d=1}^{k} a_d x_{2d-1} + b_d x_{2d}$$

< □ > < □ > < □ > □ □

linear function on
$$\mathbb{R}^{2k}$$
 $c + \sum_{d=1}^{k} a_d x_{2d-1} + b_d x_{2d}$
 \uparrow
trig poly of deg $\leq 2k - 1$ $c + \sum_{d=1}^{k} a_d \cos(2d - 1)\theta + b_d \sin(2d - 1)\theta$

□ > 《注 > 《注 > _

æ

linear function on
$$\mathbb{R}^{2k}$$

 $c + \sum_{d=1}^{k} a_d x_{2d-1} + b_d x_{2d}$
 \uparrow
trig poly of deg $\leq 2k - 1$
 $c + \sum_{d=1}^{k} a_d \cos(2d - 1)\theta + b_d \sin(2d - 1)\theta$
 $= c + \sum_{d=1}^{k} (a_d + ib_d)e^{i(2d-1)\theta} + (a_d - ib_d)e^{-i(2d-1)\theta}$

(本部) (本語) (本語) (注語)

linear function on
$$\mathbb{R}^{2k}$$

 $c + \sum_{d=1}^{k} a_d x_{2d-1} + b_d x_{2d}$
 \uparrow
trig poly of deg $\leq 2k - 1$
 $c + \sum_{d=1}^{k} a_d \cos(2d-1)\theta + b_d \sin(2d-1)\theta$
 $= c + \sum_{d=1}^{k} (a_d + ib_d)e^{i(2d-1)\theta} + (a_d - ib_d)e^{-i(2d-1)\theta}$

 $SM_{2k}(\theta_1), \ldots, SM_{2k}(\theta_r)$ form a face on B_{2k}

 \Leftrightarrow

3

・ 回 と ・ ヨ と ・ ヨ と

linear function on
$$\mathbb{R}^{2k}$$

 $c + \sum_{d=1}^{k} a_d x_{2d-1} + b_d x_{2d}$
 \uparrow
trig poly of deg $\leq 2k - 1$
 $c + \sum_{d=1}^{k} a_d \cos(2d - 1)\theta + b_d \sin(2d - 1)\theta$
 $= c + \sum_{d=1}^{k} (a_d + ib_d)e^{i(2d-1)\theta} + (a_d - ib_d)e^{-i(2d-1)\theta}$

1.

 $SM_{2k}(\theta_1), \ldots, SM_{2k}(\theta_r)$ form a face on B_{2k}

 $\Leftrightarrow \exists p(z) = c_0 + \sum_{d=1}^k c_d z^{2d-1} + \overline{c_d} z^{-(2d-1)}$ with

回 と く ヨ と く ヨ と …

2

linear function on
$$\mathbb{R}^{2k}$$

 $c + \sum_{d=1}^{k} a_d x_{2d-1} + b_d x_{2d}$
 \uparrow
trig poly of deg $\leq 2k - 1$
 $c + \sum_{d=1}^{k} a_d \cos(2d - 1)\theta + b_d \sin(2d - 1)\theta$
 $= c + \sum_{d=1}^{k} (a_d + ib_d)e^{i(2d-1)\theta} + (a_d - ib_d)e^{-i(2d-1)\theta}$

 $SM_{2k}(\theta_1), \ldots, SM_{2k}(\theta_r)$ form a face on B_{2k}

$$\Leftrightarrow \exists p(z) = c_0 + \sum_{d=1}^k c_d z^{2d-1} + \overline{c_d} z^{-(2d-1)} \text{ with}$$

$$\triangleright p \ge 0 \text{ on } \mathbb{S}^1, \text{ and}$$

æ

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

linear function on
$$\mathbb{R}^{2k}$$

 $c + \sum_{d=1}^{k} a_d x_{2d-1} + b_d x_{2d}$
 \uparrow
trig poly of deg $\leq 2k - 1$
 $c + \sum_{d=1}^{k} a_d \cos(2d - 1)\theta + b_d \sin(2d - 1)\theta$
 $= c + \sum_{d=1}^{k} (a_d + ib_d)e^{i(2d-1)\theta} + (a_d - ib_d)e^{-i(2d-1)\theta}$

 $SM_{2k}(\theta_1), \ldots, SM_{2k}(\theta_r)$ form a face on B_{2k}

 $\Leftrightarrow \exists p(z) = c_0 + \sum_{d=1}^k c_d z^{2d-1} + \overline{c_d} z^{-(2d-1)}$ with

▶
$$p \ge 0$$
 on \mathbb{S}^1 , and

• $\{z \in \mathbb{S}^1 : p(z) = 0\} = \{e^{i\theta_1}, \dots, e^{i\theta_r}\}.$

- E - M

The plan: understand the faces of B_{2k}

- Introduce a useful projection/section of B_{2k}
- ▶ Warm up: B₄
- ▶ Main theorem: Edges of B_{2k}
- ▶ Finale: *B*₆

個 と く ヨ と く ヨ と …

The plan: understand the faces of B_{2k}

- ▶ Introduce a useful projection/section of B_{2k}
- Warm up: B₄
- ▶ Main theorem: Edges of B_{2k}
- ► Finale: B₆

Main Theorem

For $\alpha, \beta \in [0, 2\pi]$, the line segment $[SM_{2k}(\alpha), SM_{2k}(\beta)]$ is

 $\begin{array}{ll} \text{an exposed edge} & \text{if } |\alpha - \beta| < 2\pi(k-1)/(2k-1) \\ \text{a non-exposed edge} & \text{if } |\alpha - \beta| = 2\pi(k-1)/(2k-1) \\ \text{not an edge} & \text{if } |\alpha - \beta| > 2\pi(k-1)/(2k-1). \end{array}$

Let $C_k(\theta) := (\cos(\theta), \cos(3\theta), \dots, \cos((2k-1)\theta)).$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

Let $C_k(\theta) := (\cos(\theta), \cos(3\theta), \dots, \cos((2k-1)\theta)).$

Let $H := \{x \in \mathbb{R}^{2k} : x_2 = x_4 = \ldots = x_{2k} = 0\}.$

| ◆ 同 ▶ ◆ 臣 ▶ ◆ 臣 ◆ 今 Q () ◆

Let
$$C_k(\theta) := (\cos(\theta), \cos(3\theta), \dots, \cos((2k-1)\theta)).$$

Let $H := \{x \in \mathbb{R}^{2k} : x_2 = x_4 = \ldots = x_{2k} = 0\}.$

Claim: Then conv(C_k) is both $\pi_H(B_{2k})$ and $H \cap B_{2k}$.

(本間) (本語) (本語) (語)

Let
$$C_k(\theta) := (\cos(\theta), \cos(3\theta), \dots, \cos((2k-1)\theta)).$$

Let $H := \{x \in \mathbb{R}^{2k} : x_2 = x_4 = \dots = x_{2k} = 0\}.$

Claim: Then conv(C_k) is both $\pi_H(B_{2k})$ and $H \cap B_{2k}$.

$$\frac{1}{2}SM_{2k}(-\theta) + \frac{1}{2}SM_{2k}(\theta) = (\cos(\theta), 0, \cos(3\theta), 0, \dots, \cos((2k-1)\theta), 0).$$

個 と く き と く き と … き

Let
$$C_k(\theta) := (\cos(\theta), \cos(3\theta), \dots, \cos((2k-1)\theta)).$$

Let $H := \{x \in \mathbb{R}^{2k} : x_2 = x_4 = \dots = x_{2k} = 0\}.$

Claim: Then conv(C_k) is both $\pi_H(B_{2k})$ and $H \cap B_{2k}$.

$$\frac{1}{2}SM_{2k}(-\theta) + \frac{1}{2}SM_{2k}(\theta) = (\cos(\theta), 0, \cos(3\theta), 0, \dots, \cos((2k-1)\theta), 0).$$

Warm up : C_2 and B_4

The faces of $conv(C_2)$ tell us the *balanced* faces of B_4 .

● ▶ < ミ ▶

< ≣ >

æ

Warm up : C_2 and B_4

As shown by Barvinok & Novik (2008), the exposed faces of B_4 are

an exposed edge	$ \alpha - \beta < \phi_k$
not an edge	if $ \alpha - \beta > \phi_k$.

個 と く ヨ と く ヨ と …

æ

an exposed edge if $|\alpha - \beta| < \phi_k$ not an edge if $|\alpha - \beta| > \phi_k$.

Conjecture ("")
$$\phi_k = \frac{2k-2}{2k-1}\pi$$
.

向下 イヨト イヨト

3

 $\begin{array}{ll} \text{an exposed edge} & \quad \text{if } |\alpha - \beta| < \phi_k \\ \text{not an edge} & \quad \text{if } |\alpha - \beta| > \phi_k. \end{array}$

Conjecture (" ") $\phi_k = \frac{2k-2}{2k-1}\pi$.

Theorem (V.) For $\theta \in (\frac{k-1}{2k-1}\pi, \frac{\pi}{2}]$ the point $C_k(\theta)$ lies in the interior of $\operatorname{conv}(C_k)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- $\begin{array}{ll} \text{an exposed edge} & \quad \text{if } |\alpha \beta| < \phi_k \\ \text{not an edge} & \quad \text{if } |\alpha \beta| > \phi_k. \end{array}$
- **Conjecture (" ")** $\phi_k = \frac{2k-2}{2k-1}\pi$.

Theorem (V.) For $\theta \in (\frac{k-1}{2k-1}\pi, \frac{\pi}{2}]$ the point $C_k(\theta)$ lies in the interior of $\operatorname{conv}(C_k)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Corollary $\phi_k = \frac{2k-2}{2k-1}\pi$.

 $C(t) = (f_1(t), \dots, f_d(t))$, a polynomial curve $F = \operatorname{conv} \{ C(t_0), \dots, C(t_r) \}$, a facet of $\operatorname{conv}(C)$

Claim: If C is smooth at t_0 and $C(t_0) + \epsilon C'(t_0)$ is in the relative interior of F then $C(t_0 + \epsilon)$ is in the interior of conv(C).

伺 とう ヨン うちょう

 $C(t) = (f_1(t), \dots, f_d(t))$, a polynomial curve $F = \operatorname{conv} \{ C(t_0), \dots, C(t_r) \}$, a facet of $\operatorname{conv}(C)$

Claim: If C is smooth at t_0 and $C(t_0) + \epsilon C'(t_0)$ is in the relative interior of F then $C(t_0 + \epsilon)$ is in the interior of conv(C).

 $C(t) = (f_1(t), \dots, f_d(t))$, a polynomial curve $F = \operatorname{conv} \{ C(t_0), \dots, C(t_r) \}$, a facet of $\operatorname{conv}(C)$

Claim: If C is smooth at t_0 and $C(t_0) + \epsilon C'(t_0)$ is in the relative interior of F then $C(t_0 + \epsilon)$ is in the interior of conv(C).

 $C(t) = (f_1(t), \dots, f_d(t))$, a polynomial curve $F = \operatorname{conv} \{ C(t_0), \dots, C(t_r) \}$, a facet of $\operatorname{conv}(C)$

Claim: If C is smooth at t_0 and $C(t_0) + \epsilon C'(t_0)$ is in the relative interior of F then $C(t_0 + \epsilon)$ is in the interior of conv(C).

 $\pi_F(C(t_0 + \epsilon)) \in \operatorname{interior}(\pi_F F)$

 $C(t) = (f_1(t), \dots, f_d(t))$, a polynomial curve $F = \operatorname{conv} \{ C(t_0), \dots, C(t_r) \}$, a facet of $\operatorname{conv}(C)$

Claim: If C is smooth at t_0 and $C(t_0) + \epsilon C'(t_0)$ is in the relative interior of F then $C(t_0 + \epsilon)$ is in the interior of conv(C).

 $\pi_F(C(t_0 + \epsilon)) \in \operatorname{interior}(\pi_F F) \Rightarrow C(t_0) + \epsilon C'(t_0) \in \operatorname{rel.interior}(F)$

 $C(t) = (f_1(t), \dots, f_d(t))$, a polynomial curve $F = \operatorname{conv} \{ C(t_0), \dots, C(t_r) \}$, a facet of $\operatorname{conv}(C)$

Claim: If C is smooth at t_0 and $C(t_0) + \epsilon C'(t_0)$ is in the relative interior of F then $C(t_0 + \epsilon)$ is in the interior of conv(C).

 $\pi_F(C(t_0 + \epsilon)) \in \operatorname{interior}(\pi_F F) \Rightarrow C(t_0) + \epsilon C'(t_0) \in \operatorname{rel.interior}(F)$ $\Rightarrow C(t_0 + \epsilon) \in \operatorname{interior}(\operatorname{conv}(C))$

Now use $C = C_5$, and $F = \operatorname{conv} \{ C_3(0\pi), C_3(\frac{2\pi}{5}), C_3(\frac{4\pi}{5}) \}.$

Need to show $C_2(\frac{2\pi}{5} + \epsilon) \in \pi_F(F)$.

Now use
$$C = C_5$$
, and
 $F = \operatorname{conv} \{ C_3(0\pi), C_3(\frac{2\pi}{5}), C_3(\frac{4\pi}{5}) \}.$

글 🕨 🛛 글

Need to show $C_2(\frac{2\pi}{5} + \epsilon) \in \pi_F(F)$.

Now use $C = C_5$, and $F = \text{conv}\{C_3(0\pi), C_3(\frac{2\pi}{5}), C_3(\frac{4\pi}{5})\}.$

Need to show $C_2(\frac{2\pi}{5} + \epsilon) \in \pi_F(F)$.

Use trigonometry to explicitly find functions giving facets of $\pi_F(F)$

Now use $C = C_5$, and $F = \text{conv}\{C_3(0\pi), C_3(\frac{2\pi}{5}), C_3(\frac{4\pi}{5})\}.$

Need to show $C_2(\frac{2\pi}{5} + \epsilon) \in \pi_F(F)$.

Use trigonometry to explicitly find functions giving facets of $\pi_F(F)$

 $x_1 + x_2 = -\frac{1}{2}$

Now use $C = C_5$, and $F = \text{conv}\{C_3(0\pi), C_3(\frac{2\pi}{5}), C_3(\frac{4\pi}{5})\}.$

Need to show $C_2(\frac{2\pi}{5} + \epsilon) \in \pi_F(F)$.

Use trigonometry to explicitly find functions giving facets of $\pi_F(F)$

and their roots and signs.

 $x_1 + x_2 = -\frac{1}{2}$

Now use $C = C_5$, and $F = \text{conv}\{C_3(0\pi), C_3(\frac{2\pi}{5}), C_3(\frac{4\pi}{5})\}.$

Need to show $C_2(\frac{2\pi}{5} + \epsilon) \in \pi_F(F)$.

Use trigonometry to explicitly find functions giving facets of $\pi_F(F)$

and their roots and signs.

 $\cos(4\pi/5)x_1 + \cos(2\pi/5)x_2 = x_1 + x_2$

Now use $C = C_5$, and $F = \text{conv}\{C_3(0\pi), C_3(\frac{2\pi}{5}), C_3(\frac{4\pi}{5})\}.$

Need to show $C_2(\frac{2\pi}{5} + \epsilon) \in \pi_F(F)$.

Use trigonometry to explicitly find functions giving facets of $\pi_F(F)$

and their roots and signs.

$$\rightarrow$$
 all positive on $C_2(\frac{2\pi}{5}+\epsilon)$.

 $\cos(4\pi/5)x_1 + \cos(2\pi/5)x_2 = x_1 + x_2$

Now use $C = C_5$, and $F = \text{conv}\{C_3(0\pi), C_3(\frac{2\pi}{5}), C_3(\frac{4\pi}{5})\}.$

Need to show $C_2(\frac{2\pi}{5} + \epsilon) \in \pi_F(F)$.

Use trigonometry to explicitly find functions giving facets of $\pi_F(F)$

and their roots and signs.

$$\rightarrow$$
 all positive on $C_2(\frac{2\pi}{5}+\epsilon)$.

 $\cos(4\pi/5)x_1 + \cos(2\pi/5)x_2 = x_1 + x_2$

The Zariski-closure of $\partial \operatorname{conv}(C_3)$ has 5 components: 2 tritangent planes and 3 edge surface components of degrees 4,4, and 7.

The Zariski-closure of $\partial \operatorname{conv}(C_3)$ has 5 components: 2 tritangent planes and 3 edge surface components of degrees 4,4, and 7.

The balanced faces of B_6 :

The Zariski-closure of $\partial \operatorname{conv}(C_3)$ has 5 components: 2 tritangent planes and 3 edge surface components of degrees 4,4, and 7.

The balanced faces of B_6 :

exposed points of $C_3 \quad \leftrightarrow \quad \text{edges of } B_6$

The Zariski-closure of $\partial \operatorname{conv}(C_3)$ has 5 components: 2 tritangent planes and 3 edge surface components of degrees 4,4, and 7.

The balanced faces of B_6 :

exposed points of $C_3 \leftrightarrow$ edges of B_6 some edges \leftrightarrow 2-dim. faces on B_6

The Zariski-closure of $\partial \operatorname{conv}(C_3)$ has 5 components: 2 tritangent planes and 3 edge surface components of degrees 4,4, and 7.

The balanced faces of B_6 :

exposed points of $C_3 \leftrightarrow$ edges of B_6 some edges \leftrightarrow 2-dim. faces on B_6 some edges \leftrightarrow 3-dim. faces on B_6

The Zariski-closure of $\partial \operatorname{conv}(C_3)$ has 5 components: 2 tritangent planes and 3 edge surface components of degrees 4,4, and 7.

The balanced faces of B_6 :

exposed points of $C_3 \leftrightarrow$ edges of B_6 some edges \leftrightarrow 2-dim. faces on B_6 some edges \leftrightarrow 3-dim. faces on B_6 triangent planes \leftrightarrow 4-dim. faces on B_6

The Zariski-closure of $\partial \operatorname{conv}(C_3)$ has 5 components: 2 tritangent planes and 3 edge surface components of degrees 4,4, and 7.

The balanced faces of B_6 :

exposed points of $C_3 \leftrightarrow$ edges of B_6 some edges \leftrightarrow 2-dim. faces on B_6 some edges \leftrightarrow 3-dim. faces on B_6 triangent planes \leftrightarrow 4-dim. faces on B_6

- 1. A. Barvinok, I. Novik, A centrally symmetric version of the cyclic polytope. Discrete Comput. Geom. 39 (2008), no. 1-3, 76–99.
- 2. R. Sanyal, F. Sottile, B. Sturmfels, *Orbitopes.* http://arxiv.org/pdf/0911.5436.pdf
- 3. C. Vinzant, Edges of the Barvinok-Novik orbitope. (in progress)

- 1. A. Barvinok, I. Novik, A centrally symmetric version of the cyclic polytope. Discrete Comput. Geom. 39 (2008), no. 1-3, 76–99.
- 2. R. Sanyal, F. Sottile, B. Sturmfels, *Orbitopes.* http://arxiv.org/pdf/0911.5436.pdf
- 3. C. Vinzant, Edges of the Barvinok-Novik orbitope. (in progress)

Thanks!