SDP Relaxations for the Grassmann Orbitope @ Convex Algebraic Geometry Workshop, Banff

Philipp Rostalski

joined work with R. Sanyal and B. Sturmfels

Department of Mathematics UC Berkeley

February 15, 2010

P. Rostalski (UC Berkeley)

Grassmann Orbitopes and SDP

February 15, 2010 1 / 25

590

Orbitopes

Definition and examples

Grassmann orbitopes

- Orbitope structure
- The Grassmann manifold

3 Convex Algebraic Geometry

- Theta bodies of ideals
- Theta bodies for Grassmann orbitopes

A glimpse towards other orbitopes...

- Orbitopes and polytopes
- First results

What are orbitopes?

We are interested in the following objects:

Def.: Orbitope

An orbitope \mathcal{O}_v is the convex hull of an orbit of a compact algebraic group G acting on a real vector space V, i.e. fix $v \in V$ and consider the set

 $\mathcal{O}_{v} = \operatorname{conv} \left\{ g \cdot v \, | \, g \in G \right\}.$

Permutahedron, orbitope for the symmetric group

Projection of the Grassmann Orbitope $conv(Gr_{2,4})$

 $Orbitope \ conv({\rm Gr}_{2,3})$

< ロト < 同ト < ヨト < ヨト

February 15, 2010 3 / 25

What are orbitopes?

We are interested in the following objects:

Def.: Orbitope

An orbitope \mathcal{O}_v is the convex hull of an orbit of a compact algebraic group G acting on a real vector space V, i.e. fix $v \in V$ and consider the set

 $\mathcal{O}_{v} = \operatorname{conv} \left\{ g \cdot v \, | \, g \in G \right\}.$

- Orbits are highly symmetric objects
- Orbits are real algebraic varieties
- Orbitopes are convex semi-algebraic sets

... for more details see [Sanyal, Sottile, Sturmfels, '09].

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Central object

Def.: Grassmann orbitope

The set $\mathcal{O}_{v} = \operatorname{conv}(\operatorname{Gr}_{k,n})$ is also the convex hull of the orbit of $v = e_1 \wedge e_2 \wedge \ldots \wedge e_k \in \bigwedge^k \mathbb{R}^n$ under the group $G = \operatorname{SO}(n)$

$$\operatorname{conv}(\operatorname{Gr}_{k,n}) = \operatorname{conv}(g \cdot e_1 \wedge e_2 \wedge ... \wedge e_k | g \in \operatorname{SO}(n))$$

Elements $g \in SO(n)$ of the special orthogonal group

$$\mathrm{SO}(\textit{n}) = \left\{ X \in \mathbb{R}^{n imes n} \mid X \cdot X^T = \mathrm{Id}_n, \, \mathsf{det}(X) = 1 \right\}$$

act on $\bigwedge^k \mathbb{R}^n$ by $g \cdot (u_1 \wedge \ldots \wedge u_k) = (gu_1 \wedge \ldots \wedge gu_k)$

イロト イポト イヨト イヨト 二日

We consider the vector space $V = \bigwedge^k \mathbb{R}^n \cong \mathbb{R}^{\binom{n}{k}}$ of all *skew-symmetric* tensors of order k over \mathbb{R}^n .

▲ロト ▲周ト ▲ヨト ▲ヨト ニヨー のなべ

We consider the vector space $V = \bigwedge^k \mathbb{R}^n \cong \mathbb{R}^{\binom{n}{k}}$ of all *skew-symmetric* tensors of order k over \mathbb{R}^n .

If the vectors $\{e_1,\ldots,e_n\}$ form an ordered basis of \mathbb{R}^n we can write

$$\xi = \sum_{1 \le i_1 < \dots < i_k \le n} p_{i_1, \dots, i_k} \underbrace{e_{i_1, \dots, i_k}}_{e_{i_1} \land \dots \land e_{i_k}} \quad \text{for all } \xi \in \bigwedge^k \mathbb{R}^n.$$

▲ロト ▲母 ト ▲ヨト ▲ヨト ヨー ショウ

We consider the vector space $V = \bigwedge^k \mathbb{R}^n \cong \mathbb{R}^{\binom{n}{k}}$ of all *skew-symmetric* tensors of order k over \mathbb{R}^n .

If the vectors $\{e_1,\ldots,e_n\}$ form an ordered basis of \mathbb{R}^n we can write

$$\xi = \sum_{1 \le i_1 < \dots < i_k \le n} p_{i_1, \dots, i_k} \underbrace{e_{i_1, \dots, i_k}}_{e_{i_1} \land \dots \land e_{i_k}} \quad \text{for all } \xi \in \bigwedge^k \mathbb{R}^n.$$

Tensors of the form $\xi = u_1 \wedge \cdots \wedge u_k$ are called *decomposable*.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

We consider the vector space $V = \bigwedge^k \mathbb{R}^n \cong \mathbb{R}^{\binom{n}{k}}$ of all *skew-symmetric* tensors of order k over \mathbb{R}^n .

If the vectors $\{e_1,\ldots,e_n\}$ form an ordered basis of \mathbb{R}^n we can write

$$\xi = \sum_{1 \le i_1 < \dots < i_k \le n} p_{i_1, \dots, i_k} \underbrace{e_{i_1, \dots, i_k}}_{e_{i_1} \land \dots \land e_{i_k}} \quad \text{for all } \xi \in \bigwedge^k \mathbb{R}^n.$$

Tensors of the form $\xi = u_1 \wedge \cdots \wedge u_k$ are called *decomposable*.

Decomposable tensor $\xi = u_1 \wedge \cdots \wedge u_k$ with $\|\xi\| = 1$

 $\Leftrightarrow \text{ (oriented) } k\text{-dimensional plane span}(u_1, u_2, \dots, u_k) \subseteq \mathbb{R}^n$ $\Leftrightarrow \xi \in \operatorname{Gr}_{k,n} \text{ (i.e. } \xi \text{ in the orbit of } v \in V \text{ under } \operatorname{SO}(n)\text{)}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

We consider the vector space $V = \bigwedge^k \mathbb{R}^n \cong \mathbb{R}^{\binom{n}{k}}$ of all *skew-symmetric* tensors of order k over \mathbb{R}^n .

If the vectors $\{e_1,\ldots,e_n\}$ form an ordered basis of \mathbb{R}^n we can write

$$\xi = \sum_{1 \le i_1 < \dots < i_k \le n} p_{i_1, \dots, i_k} \underbrace{e_{i_1, \dots, i_k}}_{e_{i_1} \land \dots \land e_{i_k}} \quad \text{for all } \xi \in \bigwedge^k \mathbb{R}^n.$$

Tensors of the form $\xi = u_1 \wedge \cdots \wedge u_k$ are called *decomposable*.

Alternatively:

All vectors $p \in \mathbb{R}^{\binom{n}{k}}$, ||p|| = 1 where $p_{i_1,...,i_k} = \det[U]_{i_1,...,i_k}$ is the $k \times k$ subdeterminant of the matrix $U = [u_1,...,u_k]$.

▲日▼▲□▼▲目▼▲目▼ ヨー ショマ

Central object

Def.: Grassmann orbitope

The set $\mathcal{O}_{v} = \operatorname{conv}(\operatorname{Gr}_{k,n})$ is also the convex hull of the orbit of $v = e_1 \wedge e_2 \wedge \ldots \wedge e_k \in \bigwedge^k \mathbb{R}^n$ under the group $G = \operatorname{SO}(n)$

$$\mathsf{conv}(\mathrm{Gr}_{k,n}) = \mathsf{conv}\left(g \cdot e_1 \wedge e_2 \wedge ... \wedge e_k \,|\, g \in \mathrm{SO}(n)
ight)$$

We have

$$\operatorname{conv}(\operatorname{Gr}_{k,n}) = \operatorname{conv}(V_{\mathbb{R}}(I_{k,n}))$$

for the ideal

$$I_{k,n} = \underbrace{\langle \mathsf{quad. Plücker rel's.} \rangle}_{\xi \text{ decomposable}} + \underbrace{\langle \sum_{I} p_{I}^{2} - 1 \rangle}_{\|\xi\|^{2} = 1} \subset \mathbb{R}[p_{i_{1},...,i_{k}}, \dots]$$

< ロト < 同ト < 三ト <

Def.: Grassmann manifold

The set $\operatorname{Gr}_{k,n}$ is the set of all (oriented) k-dimensional subspaces of \mathbb{R}^n .

In its (Plücker) embedding in the unit sphere of $\bigwedge^k \mathbb{R}^n \cong \mathbb{R}^{\binom{n}{k}}$ it yields an important object in several applications...

...e.g. for area minimizing surfaces.

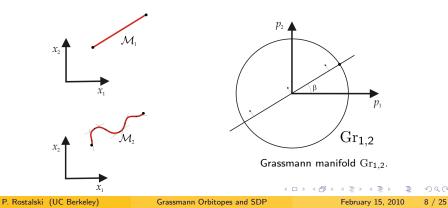
Theorem (Harvey and Lawson, '82)

If all the tangent planes to a manifold \mathcal{M} lie in the same face of $\operatorname{conv}(\operatorname{Gr}_{k,n})$, then \mathcal{M} is area-minimizing among all oriented surfaces with the same boundary.

Theorem (Harvey and Lawson, '82)

If all the tangent planes to a manifold \mathcal{M} lie in the same face of $\operatorname{conv}(\operatorname{Gr}_{k,n})$, then \mathcal{M} is area-minimizing among all oriented surfaces with the same boundary.

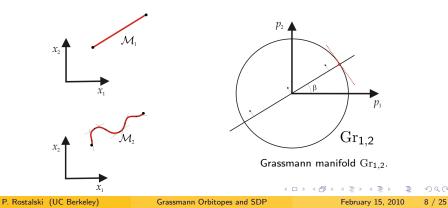
Quiz: Which one is area minimizing?



Theorem (Harvey and Lawson, '82)

If all the tangent planes to a manifold \mathcal{M} lie in the same face of $\operatorname{conv}(\operatorname{Gr}_{k,n})$, then \mathcal{M} is area-minimizing among all oriented surfaces with the same boundary.

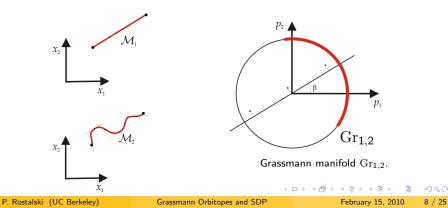
Quiz: Which one is area minimizing?



Theorem (Harvey and Lawson, '82)

If all the tangent planes to a manifold \mathcal{M} lie in the same face of $\operatorname{conv}(\operatorname{Gr}_{k,n})$, then \mathcal{M} is area-minimizing among all oriented surfaces with the same boundary.

Quiz: Which one is area minimizing?



Example: $Gr_{2,4}$

The oriented Grassmann variety $Gr_{2,4}$ is defined by

 $I_{2,4} = \langle p_{12}p_{34} - p_{13}p_{24} + p_{14}p_{23}, p_{12}^2 + p_{13}^2 + p_{14}^2 + p_{23}^2 + p_{24}^2 + p_{34}^2 - 1 \rangle.$

This is the highest weight orbit of G = SO(4) acting on $\bigwedge^2 \mathbb{R}^4$.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへ⊙

Example: Gr₂₄

The oriented Grassmann variety $Gr_{2,4}$ is defined by

 $I_{2,4} = \langle p_{12}p_{34} - p_{13}p_{24} + p_{14}p_{23}, p_{12}^2 + p_{13}^2 + p_{14}^2 + p_{23}^2 + p_{24}^2 + p_{34}^2 - 1 \rangle.$

This is the highest weight orbit of G = SO(4) acting on $\Lambda^2 \mathbb{R}^4$.

A linear change of coordinates

$$u = \frac{1}{\sqrt{2}}(p_{12} + p_{34}), \quad v = \frac{1}{\sqrt{2}}(p_{13} - p_{24}), \quad w = \frac{1}{\sqrt{2}}(p_{14} + p_{23}),$$

$$x = \frac{1}{\sqrt{2}}(p_{12} - p_{34}), \quad y = \frac{1}{\sqrt{2}}(p_{13} + p_{24}), \quad z = \frac{1}{\sqrt{2}}(p_{14} - p_{23}).$$

yields

$$I_{2,4} = \langle u^2 + v^2 + w^2 - \frac{1}{2}, x^2 + y^2 + z^2 - \frac{1}{2} \rangle.$$

The orbitope $conv(Gr_{2,4})$ is the direct product of two 3-balls of radius $1/\sqrt{2}$.

What about higher Grassmannians? イロト イヨト イヨト

= nac

Central objects: spectrahedra and projections

• Which other Grassmann orbitopes are spectrahedra, i.e.:

$$\mathcal{C} = \{ x \in \mathbb{R}^n \, | \, A(x) \succeq 0 \}$$

for some $A(x) = A_0 + \sum_{i=1}^n A_i x_i$ with symmetric $A_i \in \mathbb{R}^{N \times N}$?

Example: The spectrahedron defined by

$$\mathcal{C} = \Big\{ (x_1, x_2, x_3) \in \mathbb{R}^3 \, \Big| \, egin{bmatrix} 1 & x_1 & x_2 \ x_1 & 1 & x_3 \ x_2 & x_3 & 1 \end{bmatrix} \succeq 0 \Big\}.$$

Central objects: spectrahedra and projections

• Which other Grassmann orbitopes are spectrahedra, i.e.:

$$\mathcal{C} = \{ x \in \mathbb{R}^n \, | \, A(x) \succeq 0 \}$$

for some $A(x) = A_0 + \sum_{i=1}^n A_i x_i$ with symmetric $A_i \in \mathbb{R}^{N \times N}$?

Only a few cases are known, see [Sanyal, Sottile, Sturmfels, '09]:

- $conv(Gr_{2,n})$ is a spectrahedron.
- $conv(Gr_{3,6})$ is *not* a spectrahedron.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

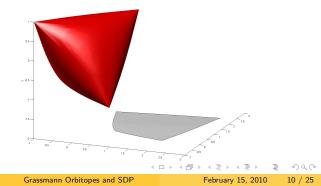
Central objects: spectrahedra and projections

• Which Grassmann orbitopes are projections of spectrahedra, i.e.:

$$\mathcal{C} = \{x \in \mathbb{R}^n \, | \, \exists y \in \mathbb{R}^m \, \text{with} \, A(x,y) \succeq 0\}$$

for some $A(x, y) = A_0 + \sum_i A_i x_i + \sum_j B_j y_j$ with symmetric $A_i, B_j \in \mathbb{R}^{N \times N}$?

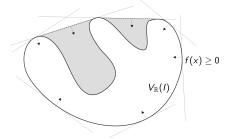
• How to construct such a *lifted SDP representation* for $conv(Gr_{k,n})$?



Special case: Convex hull of a real algebraic variety

Given an real radical ideal I with real variety $V_{\mathbb{R}}(I)$, we define the set of all supporting hyperplanes

$$F_{\mathrm{supp}} = \left\{ f(x) = a^T x - b \mid f(x) \ge 0 \, \forall \, x \in V_{\mathbb{R}}(I) \right\}.$$



Real Variety with some supporting hyperplanes.

We obtain: $\overline{\operatorname{conv}(V_{\mathbb{R}}(I))} = \{x \in \mathbb{R}^n \,|\, f(x) \ge 0 \,\forall f \in F_{\operatorname{supp}}\}$

P. Rostalski (UC Berkeley)

Grassmann Orbitopes and SDP

February 15, 2010 11 / 25

Special case: Convex hull of a real algebraic variety

Sequence of approximations called Moment relaxation (Lasserre/Laurent) or Theta bodies (Gouveia, Parrilo, Thomas) for an ideal *I*:

$$\mathsf{TH}_1(I) \supseteq \mathsf{TH}_2(I) \supseteq \ldots \supseteq \overline{\mathsf{conv}(V_{\mathbb{R}}(I))}$$

with

Def.: Theta body

The set of all points

$$\mathsf{TH}_k(I) = \{ x \in \mathbb{R}^n \, | \, f \ge 0 \, \forall \, f \in F_{I,k} \}$$

where $F_{I,k}$ contains all affine polynomials $f = a^T x - b$ such that

$$f \equiv \sum \sigma_i^2 \mod I \text{ with } \deg(\sigma_i) \leq k.$$

P. Rostalski (UC Berkeley)

イロト イポト イヨト イヨト 二日

Special case: Convex hull of a real algebraic variety

Sequence of approximations called Moment relaxation (Lasserre/Laurent) or Theta bodies (Gouveia, Parrilo, Thomas) for an ideal *I*:

$$\mathsf{TH}_1(I) \supseteq \mathsf{TH}_2(I) \supseteq \ldots \supseteq \overline{\mathsf{conv}(V_{\mathbb{R}}(I))}$$

with

Def.: Theta body

The set of all points

$$\mathsf{TH}_k(I) = \{ x \in \mathbb{R}^n \, | \, f \ge 0 \, \forall \, f \in F_{I,k} \}$$

where $F_{I,k}$ contains all affine polynomials $f = a^T x - b$ such that

$$f \equiv \sum \sigma_i^2 \mod I \text{ with } \deg(\sigma_i) \leq k.$$

We call an ideal TH_k -exact if $TH_k(I) = \overline{conv(V_{\mathbb{R}}(I))}$.

P. Rostalski (UC Berkeley)

-

The set $TH_k(I)$ is (the closure of) the projection of a spectrahedron

$$\mathsf{TH}_k(I) = \overline{\{x \in \mathbb{R}^n \,|\, \exists y \in \mathbb{R}^m ext{ with } A(x,y) \succeq 0\}}$$

...obtainable by a SOS/Moment construction!

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

The first Theta body $TH_1(I)$:

Theorem (Gouveia, Parrilo and Thomas, '08)

$$\mathsf{TH}_1(I) = \bigcap_{q \in \{\text{convex quadrics in }I\}} \mathsf{conv} \ V_{\mathbb{R}}(q)$$

Moderate size SDP representation:

- Semidefinite cone of size $(n + 1) \times (n + 1)$
- Number of variables bounded by $\binom{n+2}{2}$

Facial structure of $conv(Gr_{2,n})$ is well known:

- Only $\lfloor n/2 \rfloor$ face orbits
- (Up to symmetry) only one inclusion maximal face

Theorem

All Grassmann orbitopes $conv(Gr_{2,n})$ are TH_1 -exact.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Facial structure of $conv(Gr_{2,n})$ is well known:

- Only $\lfloor n/2 \rfloor$ face orbits
- (Up to symmetry) only one inclusion maximal face

Theorem

All Grassmann orbitopes $conv(Gr_{2,n})$ are TH_1 -exact.

We have $\mathsf{TH}_1(I_{2,n}) \supseteq \operatorname{conv}(\operatorname{Gr}_{2,n})$. To show: Every inclusion maximal face $\mathcal{F} = \{x \in \mathbb{R}^n | f(x) = 0\}$ of $\operatorname{conv}(\operatorname{Gr}_{2,n})$ is also a face of $\mathsf{TH}_1(I_{2,n})$.

< ロ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Facial structure of $conv(Gr_{2,n})$ is well known:

- Only $\lfloor n/2 \rfloor$ face orbits
- (Up to symmetry) only one inclusion maximal face

Theorem

All Grassmann orbitopes $conv(Gr_{2,n})$ are TH_1 -exact.

We have $\mathsf{TH}_1(I_{2,n}) \supseteq \operatorname{conv}(\operatorname{Gr}_{2,n})$. To show: Every inclusion maximal face $\mathcal{F} = \{x \in \mathbb{R}^n \mid f(x) = 0\}$ of $\operatorname{conv}(\operatorname{Gr}_{2,n})$ is also a face of $\mathsf{TH}_1(I_{2,n})$.

Well, there is essentially only one... take e.g. $f(x) = 1 - \sum_{i} p_{2i-1,2i}$ and we can explicitly compute $f(x) \equiv \sum \sigma_i^2 \mod I_{2,n}$ with σ_i affine (thus \mathcal{F} is also a face of $\mathsf{TH}_1(I_{2,n})$).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

More general conv($Gr_{k,n}$): *Face lattice* is more complicated (and only understood in certain cases).

- E.g. for $conv(Gr_{3,6})$ we have, [Morgan, '85]:
 - Four types of faces: vertices, edges, complex faces, special Lagrangian faces
 - Inclusion maximal faces: Special Lagrangians and edges
 - (Up to symmetry) only one special Lagrangian face orbit but *infinitely many* edge orbits

Showing TH_1 -exactness requires infinitely many (or a parametrized) SOS decomposition or new techniques.

Linear optimization over the Grassmannian

Experimental evidence: Optimizing linear functionals $\phi(\xi)$ over $\mathsf{TH}_1(I_{k,n})$ and comparing with optimal value over $\mathsf{conv}(\mathrm{Gr}_{k,n})$ (where it is known).

That is, compare

$$\begin{array}{ll} \displaystyle \max_{\xi} & \phi(\xi) \\ \\ {\rm subject \ to} & \xi \in {\rm conv}({\rm Gr}_{k,n}). \end{array}$$

with

$$\begin{array}{ll} \underset{\lambda,\sigma_i}{\text{minimize}} & \lambda\\ \text{subject to} & \lambda - \phi \equiv \sum_i \sigma_i^2 \mod I_{k,n},\\ & \lambda \in \mathbb{R}, \sigma_i \text{ affine poly's.} \end{array}$$

イロト イポト イヨト イヨト 二日

Linear optimization over the Grassmannian

Experimental evidence: Optimizing linear functionals $\phi(\xi)$ over $\mathsf{TH}_1(I_{k,n})$ and comparing with optimal value over $\mathsf{conv}(\mathrm{Gr}_{k,n})$ (where it is known).

Result:

- All tested cost functions for conv($Gr_{3,6}$), conv($Gr_{3,7}$), . . ., conv($Gr_{4,8}$) lead to correct results.
- Corresponding optimal faces have correct dimension.
- Reasonable computation time even for relatively large orbitopes.

< ロ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Computation times

Grassmannian	#vars	# Plücker rel's	Avg. time ¹ [s]
$conv(Gr_{2,4})$	6	1	< 0.5
$conv(Gr_{2,6})$	15	15	0.5
$conv(Gr_{2,8})$	28	70	1
$conv(Gr_{2,10})$	45	210	6
$conv(Gr_{2,12})$	66	495	60
$conv(Gr_{2,13})$	78	715	200
$conv(Gr_{3,6})$	20	35	0.6
$conv(Gr_{3,7})$	35	140	2
$conv(Gr_{3,8})$	56	420	40
$conv(Gr_{3,9})$	84	1050	570
conv(Gr _{4,8})	70	721	180

Table: Average computation time for optimizing a generic cost function.

¹@Lenovo T60, 2GHz, 1GB RAM

P. Rostalski (UC Berkeley)

Grassmann Orbitopes and SDP

Face type	Dim. in $TH_1(I_{k,n})$	Dim.in conv(Gr _{3,7})
Associative	27	27
Special Lagrangian	12	12
CP2	8	8
CP1	3	3
Double CP1	3	3
Vertex	0	0
Edge	1	1
S3	13	13
S2	8	8
S1	4	4

Table: All types of faces of conv(Gr_{3,7}), [Harvey, Morgan, '86] can be found in $TH_1(I_{3,7})!$

In [Harvey and Lawson, '82] it is conjectured that

 $\begin{array}{ll} \displaystyle \max_{\xi} & \phi(\xi) \\ \\ {\rm subject \ to} & \xi \in {\rm conv}({\rm Gr}_{k,n}). \end{array}$

is equivalent to

$$\begin{array}{ll} \underset{\lambda,\sigma_i}{\text{minimize}} & \lambda \\ \text{subject to} & \lambda^2 \sum_{I} p_I^2 - \phi^2 \equiv \sum_{i} \sigma_i^2 \mod J_{k,n} \\ & \lambda \in \mathbb{R}, \sigma_i \text{ linear poly's.} \end{array}$$

where $J_{k,n} = \langle \text{quad. Plücker rel's} \rangle + \langle \sum_{l} p_{l}^{2} - 1 \rangle$.

- (Lifted-) Spectrahedral descriptions for orbitopes are desirable
- TH_k-bodies/moment relaxations often generate good approximations
- Grassmann orbitopes $conv(Gr_{2,n})$ are TH_1 -exact
- $\bullet\,$ Strong numerical evidence for higher Grassmannians to be $TH_1\text{-exact}$

What other Grassmann orbitopes $conv(Gr_{k,n})$ are TH₁-exact? All?

How about other orbitopes?

< ロ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Tautological orbitope:

 $\operatorname{conv}(\operatorname{O}(n)) = \operatorname{conv} \{g \cdot \operatorname{Id}_n | g \in \operatorname{O}(n)\}$

face orbits characterizable by a *cube*.

$$\operatorname{conv}(\operatorname{SO}(n)) = \operatorname{conv} \{g \cdot \operatorname{Id}_n | g \in \operatorname{SO}(n)\}$$

face orbits characterizable by a halfcube.

Schur-Horn orbitopes:

$$\mathcal{O}_M = \operatorname{conv}\left\{g \cdot M \cdot g^T \,|\, g \in \operatorname{SO}(n)\right\}$$

face orbits characterizable by a permutahedron.

Cube for conv(O(n)).

Halfcube for conv(SO(n)).

Permutahedron for \mathcal{O}_M .

February 15, 2010 22 / 25

Theorem

Each of the previous orbitopes is TH_k -exact if the underlying polytope is TH_k -exact. (For k = 1 also the reverse implication holds.)

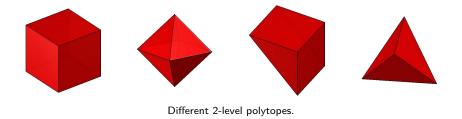
More precisely:

- The O(n)-orbitopes are TH₁-exact.
- The SO(n)-orbitopes are TH₁-exact only for n = 1, 2, 3, 4.
- $\bullet\,$ The symmetric/skew symmetric Schur-Horn orbitopes are usually not TH1-exact.

Theorem (Gouveia, Parrilo and Thomas, '08)

For a finite set $S \subset \mathbb{R}^n$, the vanishing ideal I(S) is TH_k -exact if P = conv(S) is a (k + 1)-level^a polytope. (For k = 1 also the reverse implication holds.)

^ai.e. $P = \{x \in \mathbb{R}^n | g_i(x) \ge 0\}$ s.t. all g_i take at most k + 1 different values on S.



Thank you very much for your attention!

王

999

イロト 人間 ト イヨト イヨト

[Gouveia, Parrilo and Thomas, 2008] J. Gouveia, P. Parrilo, R. Thomas Theta Bodies for Polynomial Ideals, http://arxiv.org/abs/0809.3480.

[Harvey and Morgan, 1986] R. Harvey and F. Morgan, The faces of the Grassmannian of three-planes in R^7 (Calibrated Geometries), *Invent. math.*, 83 (1986), 191-228.

[Harvey and Lawson, 1982] R. Harvey and H. B. Lawson, Jr., Calibrated Geometries, Acta Math., 148 (1982), 47-157.

[Morgan, 1985] F. Morgan, The exterior algebra ³ R⁶ and area minimization, *Linear Algebra Appl.*, 66 (1985), 1-28.

[Sanyal, Sottile, Sturmfels, 2009] R. Sanyal, F. Sottile, B. Sturmfels Orbitopes, http://arxiv.org/abs/0911.5436.

< ロ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで