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What are orbitopes?
We are interested in the following objects:

Def.: Orbitope
An orbitope Ov is the convex hull of an orbit of a compact algebraic group
G acting on a real vector space V , i.e. fix v ∈ V and consider the set

Ov = conv {g · v | g ∈ G} .

Permutahedron, orbitope for
the symmetric group

Projection of the Grassmann
Orbitope conv(Gr2,4)

Orbitope conv(Gr2,3)
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What are orbitopes?
We are interested in the following objects:

Def.: Orbitope
An orbitope Ov is the convex hull of an orbit of a compact algebraic group
G acting on a real vector space V , i.e. fix v ∈ V and consider the set

Ov = conv {g · v | g ∈ G} .

Orbits are highly symmetric objects
Orbits are real algebraic varieties
Orbitopes are convex semi-algebraic sets

... for more details see [Sanyal, Sottile, Sturmfels, ’09].
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Central object

Def.: Grassmann orbitope
The set Ov = conv(Grk,n) is also the convex hull of the orbit of
v = e1 ∧ e2 ∧ ... ∧ ek ∈

∧k Rn under the group G = SO(n)

conv(Grk,n) = conv (g · e1 ∧ e2 ∧ ... ∧ ek | g ∈ SO(n))

Elements g ∈ SO(n) of the special orthogonal group

SO(n) =
{

X ∈ Rn×n | X · X T = Idn, det(X ) = 1
}

act on
∧k Rn by g · (u1 ∧ . . . ∧ uk) = (gu1 ∧ . . . ∧ guk)
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A bit of notation
We consider the vector space V =

∧k Rn ∼= R(n
k) of all skew-symmetric

tensors of order k over Rn.
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∑

1≤i1<···<ik≤n
pi1,...,ik ei1,...,ik︸ ︷︷ ︸

ei1∧···∧eik

for all ξ ∈
∧k

Rn.

Tensors of the form ξ = u1 ∧ · · · ∧ uk are called decomposable.

Decomposable tensor ξ = u1 ∧ · · · ∧ uk with ‖ξ‖ = 1

⇔ (oriented) k-dimensional plane span(u1, u2, . . . , uk) ⊆ Rn

⇔ ξ ∈ Grk,n (i.e. ξ in the orbit of v ∈ V under SO(n)).
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A bit of notation
We consider the vector space V =

∧k Rn ∼= R(n
k) of all skew-symmetric

tensors of order k over Rn.
If the vectors {e1, . . . , en} form an ordered basis of Rn we can write

ξ =
∑

1≤i1<···<ik≤n
pi1,...,ik ei1,...,ik︸ ︷︷ ︸

ei1∧···∧eik

for all ξ ∈
∧k

Rn.

Tensors of the form ξ = u1 ∧ · · · ∧ uk are called decomposable.

Alternatively:

All vectors p ∈ R(n
k), ‖p‖ = 1 where pi1,...,ik = det[U]i1,...,ik is the k × k

subdeterminant of the matrix U =
[
u1, . . . , uk

]
.
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Central object

Def.: Grassmann orbitope
The set Ov = conv(Grk,n) is also the convex hull of the orbit of
v = e1 ∧ e2 ∧ ... ∧ ek ∈

∧k Rn under the group G = SO(n)

conv(Grk,n) = conv (g · e1 ∧ e2 ∧ ... ∧ ek | g ∈ SO(n))

We have
conv(Grk,n) = conv(VR(Ik,n))

for the ideal

Ik,n = 〈quad. Plücker rel’s.〉︸ ︷︷ ︸
ξ decomposable

+ 〈
∑

I
p2

I − 1〉︸ ︷︷ ︸
‖ξ‖2=1

⊂ R[pi1,...,ik , . . . ]
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(Oriented) Grassmann manifold

Def.: Grassmann manifold
The set Grk,n is the set of all (oriented) k-dimensional subspaces of Rn.

In its (Plücker) embedding in the unit sphere of
∧k Rn ∼= R(n

k) it yields an
important object in several applications...

...e.g. for area minimizing surfaces.
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Excursion: Area minimizing surfaces

Theorem (Harvey and Lawson, ’82)
If all the tangent planes to a manifold M lie in the same face of
conv(Grk,n), then M is area-minimizing among all oriented surfaces with
the same boundary.
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P. Rostalski (UC Berkeley) Grassmann Orbitopes and SDP February 15, 2010 8 / 25



Excursion: Area minimizing surfaces

Theorem (Harvey and Lawson, ’82)
If all the tangent planes to a manifold M lie in the same face of
conv(Grk,n), then M is area-minimizing among all oriented surfaces with
the same boundary.

Quiz: Which one is area minimizing?

Grassmann manifold Gr1,2.

P. Rostalski (UC Berkeley) Grassmann Orbitopes and SDP February 15, 2010 8 / 25



Excursion: Area minimizing surfaces

Theorem (Harvey and Lawson, ’82)
If all the tangent planes to a manifold M lie in the same face of
conv(Grk,n), then M is area-minimizing among all oriented surfaces with
the same boundary.

Quiz: Which one is area minimizing?

Grassmann manifold Gr1,2.

P. Rostalski (UC Berkeley) Grassmann Orbitopes and SDP February 15, 2010 8 / 25



Example: Gr2,4

The oriented Grassmann variety Gr2,4 is defined by

I2,4 =
〈

p12p34 − p13p24 + p14p23 , p2
12 + p2

13 + p2
14 + p2

23 + p2
24 + p2

34 − 1
〉
.

This is the highest weight orbit of G = SO(4) acting on
∧2 R4.

A linear change of coordinates

u = 1√
2(p12 + p34), v = 1√

2(p13 − p24), w = 1√
2(p14 + p23),

x = 1√
2(p12 − p34), y = 1√

2(p13 + p24), z = 1√
2(p14 − p23).

yields
I2,4 =

〈
u2 + v2 + w2 − 1

2 , x2 + y2 + z2 − 1
2
〉
.

The orbitope conv(Gr2,4) is the direct product of two 3-balls of radius
1/
√

2.

What about higher Grassmannians?
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Central objects: spectrahedra and projections

Which other Grassmann orbitopes are spectrahedra, i.e.:

C = {x ∈ Rn |A(x) � 0}

for some A(x) = A0 +
∑n

i=1 Ai xi with symmetric Ai ∈ RN×N?

Example: The spectrahedron defined by

C =
{
(x1, x2, x3) ∈ R3

∣∣∣
 1 x1 x2

x1 1 x3
x2 x3 1

 � 0
}
.
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Central objects: spectrahedra and projections

Which other Grassmann orbitopes are spectrahedra, i.e.:

C = {x ∈ Rn |A(x) � 0}

for some A(x) = A0 +
∑n

i=1 Ai xi with symmetric Ai ∈ RN×N?

Only a few cases are known, see [Sanyal, Sottile, Sturmfels, ’09]:
conv(Gr2,n) is a spectrahedron.
conv(Gr3,6) is not a spectrahedron.
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Central objects: spectrahedra and projections

Which Grassmann orbitopes are projections of spectrahedra, i.e.:

C = {x ∈ Rn | ∃y ∈ Rm with A(x , y) � 0}

for some A(x , y) = A0 +
∑

i Ai xi +
∑

j Bjyj with symmetric
Ai ,Bj ∈ RN×N?
How to construct such a lifted SDP representation for conv(Grk,n)?
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Special case: Convex hull of a real algebraic variety

Given an real radical ideal I with real variety VR(I), we define the set of all
supporting hyperplanes

Fsupp =
{

f (x) = aT x − b | f (x) ≥ 0 ∀ x ∈ VR(I)
}
.

Real Variety with some supporting hyperplanes.

We obtain: conv(VR(I)) = {x ∈ Rn | f (x) ≥ 0∀f ∈ Fsupp}
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Special case: Convex hull of a real algebraic variety

Sequence of approximations called Moment relaxation (Lasserre/Laurent)
or Theta bodies (Gouveia, Parrilo, Thomas) for an ideal I:

TH1(I) ⊇ TH2(I) ⊇ . . . ⊇ conv(VR(I))

with

Def.: Theta body
The set of all points

THk(I) = {x ∈ Rn | f ≥ 0 ∀ f ∈ FI,k}

where FI,k contains all affine polynomials f = aT x − b such that

f ≡
∑

σ2
i mod I with deg(σi) ≤ k.

We call an ideal THk -exact if THk(I) = conv(VR(I)).
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Why do we care?

The set THk(I) is (the closure of) the projection of a spectrahedron

THk(I) = {x ∈ Rn | ∃y ∈ Rm with A(x , y) � 0}

...obtainable by a SOS/Moment construction!
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Particularly interesting:

The first Theta body TH1(I):

Theorem (Gouveia, Parrilo and Thomas, ’08)

TH1(I) =
⋂

q∈{convex quadrics in I}
conv VR(q)

Moderate size SDP representation:
Semidefinite cone of size (n + 1)× (n + 1)

Number of variables bounded by
(n+2

2
)
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The case conv(Gr2,n)

Facial structure of conv(Gr2,n) is well known:
Only bn/2c face orbits
(Up to symmetry) only one inclusion maximal face

Theorem
All Grassmann orbitopes conv(Gr2,n) are TH1-exact.

We have TH1(I2,n) ⊇ conv(Gr2,n). To show: Every inclusion maximal face
F = {x ∈ Rn | f (x) = 0} of conv(Gr2,n) is also a face of TH1(I2,n).

Well, there is essentially only one... take e.g. f (x) = 1−
∑

i p2i−1,2i and
we can explicitly compute f (x) ≡

∑
σ2

i mod I2,n with σi affine (thus F is
also a face of TH1(I2,n)).

P. Rostalski (UC Berkeley) Grassmann Orbitopes and SDP February 15, 2010 15 / 25



The case conv(Gr2,n)

Facial structure of conv(Gr2,n) is well known:
Only bn/2c face orbits
(Up to symmetry) only one inclusion maximal face

Theorem
All Grassmann orbitopes conv(Gr2,n) are TH1-exact.

We have TH1(I2,n) ⊇ conv(Gr2,n). To show: Every inclusion maximal face
F = {x ∈ Rn | f (x) = 0} of conv(Gr2,n) is also a face of TH1(I2,n).

Well, there is essentially only one... take e.g. f (x) = 1−
∑

i p2i−1,2i and
we can explicitly compute f (x) ≡

∑
σ2

i mod I2,n with σi affine (thus F is
also a face of TH1(I2,n)).

P. Rostalski (UC Berkeley) Grassmann Orbitopes and SDP February 15, 2010 15 / 25



The case conv(Gr2,n)

Facial structure of conv(Gr2,n) is well known:
Only bn/2c face orbits
(Up to symmetry) only one inclusion maximal face

Theorem
All Grassmann orbitopes conv(Gr2,n) are TH1-exact.

We have TH1(I2,n) ⊇ conv(Gr2,n). To show: Every inclusion maximal face
F = {x ∈ Rn | f (x) = 0} of conv(Gr2,n) is also a face of TH1(I2,n).

Well, there is essentially only one... take e.g. f (x) = 1−
∑

i p2i−1,2i and
we can explicitly compute f (x) ≡

∑
σ2

i mod I2,n with σi affine (thus F is
also a face of TH1(I2,n)).

P. Rostalski (UC Berkeley) Grassmann Orbitopes and SDP February 15, 2010 15 / 25



General Grassmann orbitopes

More general conv(Grk,n): Face lattice is more complicated (and only
understood in certain cases).

E.g. for conv(Gr3,6) we have, [Morgan, ’85]:
Four types of faces: vertices, edges, complex faces, special Lagrangian
faces
Inclusion maximal faces: Special Lagrangians and edges
(Up to symmetry) only one special Lagrangian face orbit but infinitely
many edge orbits

Showing TH1-exactness requires infinitely many (or a parametrized) SOS
decomposition or new techniques.

P. Rostalski (UC Berkeley) Grassmann Orbitopes and SDP February 15, 2010 16 / 25



Linear optimization over the Grassmannian
Experimental evidence: Optimizing linear functionals φ(ξ) over TH1(Ik,n)
and comparing with optimal value over conv(Grk,n) (where it is known).

That is, compare
maximize

ξ
φ(ξ)

subject to ξ ∈ conv(Grk,n).

with

minimize
λ,σi

λ

subject to λ− φ ≡
∑

i
σ2

i mod Ik,n,

λ ∈ R, σi affine poly’s.
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Linear optimization over the Grassmannian
Experimental evidence: Optimizing linear functionals φ(ξ) over TH1(Ik,n)
and comparing with optimal value over conv(Grk,n) (where it is known).

Result:

All tested cost functions for conv(Gr3,6), conv(Gr3,7), . . .,
conv(Gr4,8) lead to correct results.
Corresponding optimal faces have correct dimension.
Reasonable computation time even for relatively large orbitopes.
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Computation times

Grassmannian #vars # Plücker rel’s Avg. time1 [s]
conv(Gr2,4) 6 1 < 0.5
conv(Gr2,6) 15 15 0.5
conv(Gr2,8) 28 70 1
conv(Gr2,10) 45 210 6
conv(Gr2,12) 66 495 60
conv(Gr2,13) 78 715 200
conv(Gr3,6) 20 35 0.6
conv(Gr3,7) 35 140 2
conv(Gr3,8) 56 420 40
conv(Gr3,9) 84 1050 570
conv(Gr4,8) 70 721 180

Table: Average computation time for optimizing a generic cost function.

1@Lenovo T60, 2GHz, 1GB RAM
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Example: conv(Gr3,7)

Face type Dim. in TH1(Ik,n) Dim.in conv(Gr3,7)

Associative 27 27
Special Lagrangian 12 12

CP2 8 8
CP1 3 3

Double CP1 3 3
Vertex 0 0
Edge 1 1

S3 13 13
S2 8 8
S1 4 4

Table: All types of faces of conv(Gr3,7), [Harvey, Morgan, ’86] can be found in TH1(I3,7)!
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The Harvey Lawson Conjecture

In [Harvey and Lawson, ’82] it is conjectured that

maximize
ξ

φ(ξ)

subject to ξ ∈ conv(Grk,n).

is equivalent to

minimize
λ,σi

λ

subject to λ2
∑

I
p2

I − φ2 ≡
∑

i
σ2

i mod Jk,n

λ ∈ R, σi linear poly’s.

where Jk,n = 〈quad. Plücker rel’s〉(((((((
+ 〈
∑

I p2
I − 1〉.
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Conclusion

(Lifted-) Spectrahedral descriptions for orbitopes are desirable
THk -bodies/moment relaxations often generate good approximations
Grassmann orbitopes conv(Gr2,n) are TH1-exact
Strong numerical evidence for higher Grassmannians to be TH1-exact

What other Grassmann orbitopes conv(Grk,n) are TH1-exact? All?

How about other orbitopes?
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Recall from Frank’s talk: Sections of Orbitopes

Tautological orbitope:

conv(O(n)) = conv {g · Idn | g ∈ O(n)}

face orbits characterizable by a cube.

conv(SO(n)) = conv {g · Idn | g ∈ SO(n)}

face orbits characterizable by a halfcube.

Schur-Horn orbitopes:

OM = conv
{

g ·M · gT | g ∈ SO(n)
}

face orbits characterizable by a permutahedron.

Cube for conv(O(n)).

Halfcube for conv(SO(n)).

Permutahedron for OM .

P. Rostalski (UC Berkeley) Grassmann Orbitopes and SDP February 15, 2010 22 / 25



Results on other orbitopes

Theorem
Each of the previous orbitopes is THk -exact if the underlying polytope is
THk -exact. (For k = 1 also the reverse implication holds.)

More precisely:

The O(n)-orbitopes are TH1-exact.
The SO(n)-orbitopes are TH1-exact only for n = 1, 2, 3, 4.
The symmetric/skew symmetric Schur-Horn orbitopes are usually not
TH1-exact.

Cube for conv(O(n)). Halfcube for conv(SO(n)). Permutahedron for OM .
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TH1-exact polytopes

Theorem (Gouveia, Parrilo and Thomas, ’08)
For a finite set S ⊂ Rn, the vanishing ideal I(S) is THk -exact if
P = conv(S) is a (k + 1)-levela polytope. (For k = 1 also the reverse
implication holds.)

ai.e. P = {x ∈ Rn | gi(x) ≥ 0} s.t. all gi take at most k + 1 different values on S.

Different 2-level polytopes.
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Questions?

Thank you very much for your attention!
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Main Features: 
• Numerical (real) algebraic geometry

- Border basis algorithm
- Real root finding 
- Real radical computation
- Interfaces to Bertini, ApCoCoA,…

• Visualization of semi-algebraic sets
- Spectrahedra and its dual
- Projection of spectrahedra
- Theta bodies
- Web export 3D rotatable figures
- Interface to surfex

• Several auxiliary tools like
- Plücker relations for Grassmann and Schubert ideals

- Improved solution extraction from moment matrices
- Parametric multiplication matrices for positive

dimensional ideals (alpha)
- Femat-Weber points and k-ellipses
- Renegar derivatives of polytopes
- … 

Available summer 2010 at
math.berkeley.edu/~philipp

Bermeja, 1.  An islet lying off the north coast of the Yucatán 

peninsula […] according to several maps of the Gulf of Mexico from

the 16th to the 19th centuries.

2.  MATLAB/Yalmip Add On for numerical computation in convex 

algebraic geometry, expected released : Summer 2010
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