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1 Overview of the Field
The area of our research project is probability and statistical mechanics. More specifically, we study the
loop-erased random walk (LERW) – a prominent discrete model in statistical mechanics – and its continu-
ous scaling limit, Schramm-Loewner evolution (SLE) with parameter 2. The LERW was invented by Greg
Lawler [3] in order to study the self-avoiding walk (SAW). While that approach did not turn out to be fruitful
for analyzing the SAW, the LERW is extensively studied today, most notably for its intimate connection to
the uniform spanning tree through Wilson’s algorithm.

SLE was invented by Oded Schramm [7] as a candidate for the scaling limit of LERW. Under the as-
sumptions of conformal invariance of the scaling limit (which was conjectured to be true for the LERW)
and a “domain Markov property” (which is easy to show for the LERW), Schramm proved that the only
possible scaling limit was SLE with parameter κ: a random curve satisfying the Loewner equation with a
Brownian motion of variance κ as its driving function. In his original paper, Schramm determined that if
LERW had a conformally invariant scaling limit, one would have to have κ = 2. Then, in a later paper [4],
Lawler, Schramm and Werner verified that LERW does indeed converge to SLE(2). In addition, many other
prominent models from statistical physics such as the uniform spanning tree, the self-avoiding walk, the Ising
model at criticality, the Gaussian free field, and critical percolation contain discrete curves that scale or are
conjectured to scale to SLE(κ) for various values of κ. Establishing that SLE is the scaling limit of these
models rigorously confirms many of the predictions that had previously been made using conformal field
theory.

2 Goal of the Research Project
In the paper [4], Lawler, Schramm and Werner proved the weak convergence of LERW to SLE(2) with
respect to the supremum norm on curves modulo reparametrization. The goal of our project is to prove weak
convergence in the stronger topology that takes into account the parametrization of the LERW. Namely, if we
let Xn be the LERW from the origin to the unit circle on the lattice (1/n)Z2 andMn be the number of steps
of Xn, then one expects that Yn(t) = Xn(E[Mn]t) should converge weakly (as n tends to infinity) in the
supremum norm to a suitably parametrized version of SLE(2). Although other models have been shown to
scale to SLE, none of them have been proved to converge as parametrized curves.
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3 Recent Developments
There are two recent developments that make this problem appear tractable. The first is the identification
of what the suitable parametrization for the SLE(2) curve should be. In the original definition of SLE by
Schramm, the SLE curves were parametrized so that their capacity (a measure of how big the curves look
in the unit disc when viewed from the origin) grew linearly. This was the best way to analyze the curves
by way of the Loewner equation but is not natural when one considers the SLE curves as scaling limits of
discrete models. Indeed, Beffara showed that the Hausdorff dimension of SLE(κ) is d = 1 + κ/8 almost
surely (κ ≤ 8). This suggests that for a discrete model to converge to SLE(κ) as a parametrized curve,
the parametrization on the SLE(κ) curve should be such that scaling the curve by a factor of r in space is
equivalent to scaling by a factor of rd in time. This “natural parametrization” of SLE has recently been
shown to exist by Lawler and Sheffield [5]. It is SLE(2) in this parametrization that one expects the LERW
Yn defined above to scale to. Note that d = 5/4 for SLE(2), and the fact that E[Mn] grows like n5/4 was
established by Kenyon.

The second result that will be useful for this problem is a tail bound onMn. Recent work by Barlow and
Masson [1] gives both upper and lower exponential tail bounds onMn. As we describe below, this allows us
to establish a tightness result that gives subsequential weak limits of LERW in the topology induced by the
supremum norm.

4 Scientific Progress Made
The natural parametrization for SLE(2) defined by Lawler and Sheffield [5] is more easily described in terms
of a random Borel measure µ on D. The measure µ is supported on the SLE(2) curve and in essence gives the
amount of time that the curve (in the natural parametrization) spends in each subset of D. By the conformal
invariance and the domain Markov property of SLE(2) one expects that it should satisfy the following.

1. µ is measurable with respect to the trace of the SLE(2) curve.

2. µ is almost surely supported on the trace of the SLE(2) curve.

3. E[dµ(z)] = G(z) dz where G(z) is the “Green’s function” for SLE(2) in D.

4. Given any parametrization for SLE(2), µ(· ∩ γ[0, t]) is γ[0, t] measurable.

5. E[dµ(z)|γ[0, t]] = |g′t(z)|3/4G(gt(z)) for z ∈ D \ γ[0, t], where gt is the unique conformal map from
D \ γ[0, t] to D such that gt(0) = 0 and g′t(0) > 0.

The exponent 3/4 arises from the fact that the dimension of SLE(2) is 5/4.
Lawler and Sheffield [5] proved that a measure satisfying these properties exists. Moreover, this measure

is unique. Given µ and an SLE(2) curve γ(t) in any parametrization, one sets Θ(t) = µ(γ[0, t]), and then
defines SLE(2) in the natural parametrization by

γ∗(t) = γ(Θ−1(t)). (∗)

Hence, the key step in constructing the natural parametrization is the construction of the natural measure µ.
With this in mind, we show that convergence of the natural measure for LERW to the natural measure

for SLE(2) implies the convergence of the associated curves in their naturally parametrized form. Given the
LERW Yn, its natural measure is defined to be

νYn(A) =

∫ ∞

0
1 {Yn(t) ∈ A} dt. (∗∗)

Our goal is to prove that νYn converges weakly to µ with respect to the Prokhorov topology on measures.
As summarized in the diagram below, this fact plus Lawler, Schramm and Werner’s result that the LERW
converges weakly to SLE(2) modulo reparametrization implies the same convergence but in the natural
parametrization.
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LERW Yn parameterized
by (scaled) natural time

(Ỹn, νYn
) (γ̃, µ)

SLE(2) parameterized
by natural time

SLE(2) parameterized
by capacity time

T S

(d)

(d)

Lawler-Sheffield

Here Ỹn and γ̃ are the equivalence classes of the LERW and SLE(2) curves modulo reparametrization.
The mapping T takes the parametrized LERWs Yn into the pair consisting of the equivalence class and
the occupation measure (∗∗), while S maps equivalence classes of curves and occupation measures into
parametrized curves via (∗). The map S is continuous at almost all pairs (Ỹ , µ), and therefore weak conver-
gence on the top level of the diagram implies weak convergence on the bottom level.

Convergence on the top level follows the usual argument: we show that the pair (Ỹn, νYn) is tight, and
that any subsequential weak limit must have the law of (γ̃, µ). Tightness of the Ỹn follows from [4], while
tightness of νYn is a consequence of the estimate

P

(
α−1 ≤

Mn

E[Mn]
≤ α

)
≥ 1 − Ce−cα1/2

that is due to Barlow and Masson [1].
It remains to show that any subsequential weak limit of (Ỹn, νYn) satisfies the properties 1 through 5 that

uniquely define µ. Of these, property 2 is the most straightforward to verify; it follows readily from the fact
that νYn is supported on Ỹn. Properties 1 and 4 are nontrivial and do not follow from general facts about
weak convergence. Some extra information is required and at this point we are not entirely sure what that is.

Properties 3 and 5 can be established once the following conjectures are proved.
Conjecture 4.1. For all z ∈ D and ε > 0 sufficiently small,

E [νYn(B(z, ε))|Yn ∩ B(z, ε) '= ∅] =
E [Mεn]

E [Mn]
+ o(1)

as n → ∞.
This implies property 3 by the following argument.

E [µ(B(z, ε))] = lim
n→∞

E [νYn(B(z, ε))]

= lim
n→∞

[
E [Mεn]

E [Mn]
+ o(1)

]
P (Yn ∩ B(z, ε) '= ∅)

= ε5/4
P (γ ∩ B(z, ε) '= ∅)

∼ ε2G(z).

The second to last line follows from [4] while the last line is the definition of G(z).
Conjecture 4.2. Suppose that D and D′ are simply connected domains in C containing 0 and F : D → D′

is a conformal transformation such that F (0) = 0. Then for any z ∈ D ∩ Z2/n,

P (F (z) ∈ Xn
D′) ∼ |F ′(z)|−3/4

P (z ∈ Xn
D)

as n → ∞, where Xn
D is the LERW in the domainD ∩ Z2/n.



4

This implies property 5 by the following argument. First observe that
∫ ∞

0
1 {Yn(s) ∈ A} ds =

∫

A
δYn(s)(z),

so that by an application of Fubini’s Theorem
∫ ∞

0
P (Yn(s) ∈ A) ds =

∫

A
P (z ∈ Yn[0,∞]) dz.

Consequently for A ⊂ D \ Yn[0, t],

E [νYn(A)| Yn[0, t]] =

∫ ∞

0
P (Yn(s) ∈ A|Yn[0, t]) ds

=

∫

A
P (z ∈ Yn[t,∞)|Yn[0, t]) dz

=

∫

A
P

(
z ∈ Y n

D\Yn[0,t]

)
dz

∼

∫

A
|(gn

t )′(z)|3/4
P (gn

t (z) ∈ Y n
D ) dz.

The last line is an application of Conjecture 4.2, via the map gn
t : D \ Yn[0, t] → D that has gn

t (0) = 0 and
positive derivative at zero. Since this holds for all A ⊂ D \ Yn[0, t], we have

E [dνYn(z)|Yn[0, t]] ∼ |(gn
t )′(z)|3/4

P (gn
t (z) ∈ Y n

D ) dz

as n → ∞. One then uses some form of convergence of νYn to µ to show that the left side converges to
E [dµ(z)| γ[0, t]] as n → ∞, and some other form of convergence of LERW to SLE(2) to show that the right
side converges to |g′t(z)|3/4G(gt(z)) dz.

5 Outcome of the Meeting
We are currently working on proving these conjectures and intend to produce a manuscript as soon as they
have been established.
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