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Outline

@ A Drief introduction to CS;
@ Why do support weight enumerators matter?

@ Decoding of weighted superimposed codes: BP and OMP/SP -
sublinear complexity reconstruction.

@ Many open problems...
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Compressive Sensing

CS: a technique that converts high dimensional signals into signals
(measurements) with significantly smaller dimension (m < N).
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Recovery problem: decode the signal x based on the measurement y.
@ |l conditioned in general.

» P does not have full column rank. There are many x such that
y = dx.
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When the signal is sparse, ...

When x is sufficiently sparse (K is small), exact reconstruction is possible.
(Kashin, 1977; Bresler et. al., 1999; Donoho et. al., 2004; Candés et. al., 2005)

M., Dai and Pham (UIUC) Sublinear CS - A Matroid Theory Approach BIRS Workshop, 2009 4/17



When the signal is sparse, ...

When x is sufficiently sparse (K is small), exact reconstruction is possible.
(Kashin, 1977; Bresler et. al., 1999; Donoho et. al., 2004; Candés et. al., 2005)

Exact Reconstruction: iff y; —yo = ® (x1 — x2) # 0,
VK —sparse x; # Xa.

)

Any 2K -column submatrix of & must have full rank.
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When x is sufficiently sparse (K is small), exact reconstruction is possible.
(Kashin, 1977; Bresler et. al., 1999; Donoho et. al., 2004; Candés et. al., 2005)
Exact Reconstruction: iff y; —yo = ® (x1 — x2) # 0,

VK —sparse x; # Xa.

i)

Any 2K-column submatrix of & must have full rank.
Reconstruction algorithm (lo-minimization):
min [|X[|, s.t. y = ®%.
# of measurements: m = 2K.
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When the signal is sparse, ...

When x is sufficiently sparse (K is small), exact reconstruction is possible.
(Kashin, 1977; Bresler et. al., 1999; Donoho et. al., 2004; Candés et. al., 2005)
Exact Reconstruction: iff y; —yo = ® (x1 — x2) # 0,

VK —sparse x; # Xa.

i)

Any 2K -column submatrix of & must have full rank.

Reconstruction algorithm (lo-minimization):
min [|X[|, s.t. y = ®%.
# of measurements: m = 2K.

Computational complexity: NP hard = not practical for large N.
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l;-minimization

{1 minimization
min [|X||; subject toy = ®x

@ ltis a convex optimization problem, solvable by linear programming.
@ Complexity: O (m*N3/2) (Nesterov & Nemirovski, 1994)
@ Performance guarantee?
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{1 minimization
min [|X||; subject toy = ®x

@ ltis a convex optimization problem, solvable by linear programming.
@ Complexity: O (m*N3/2) (Nesterov & Nemirovski, 1994)
@ Performance guarantee?
Restricted Isometry Property: ® satisfies the RIP with dx € [0, 1] if for all

K-sparse signals x,
2 2 2
(1 —dx) lIx]lz < [[®x][z < (1 + 0k ) [Ix]]3-
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l;-minimization

{1 minimization
min [|X||; subject toy = ®x
@ ltis a convex optimization problem, solvable by linear programming.
@ Complexity: O (m*N3/2) (Nesterov & Nemirovski, 1994)
@ Performance guarantee?
Restricted Isometry Property: ® satisfies the RIP with dx € [0, 1] if for all

K-sparse signals x,
2 2 2
(1 —dx) lIx]lz < [[®x][z < (1 + 0k ) [Ix]]3-

Sufficient condition: If ® satisfies RIP with d.x < v/2 — 1, then x = x
(Candeés & Tao, 2005 and Candes 2008)
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Number of Measurements

Random matrices satisfying the RIP with constant parameters
(Candes et. al., 2005; Litvak et. al., 2005; Rudelson & Vershynin 2006)

@ Random matrices with i.i.d. entries.

@ Gaussian distribution (subGaussian distribution).
@ Bernoulli distribution.

m > O (KlogN)
@ Random matrices from the Fourier ensemble.

@ choose m rows uniformly at random.
m > O (K (log N))
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This Talk

The interface between coding theory and CS

@ Sublinear complexity CS: Iterative decoding (belief propagation
(BP)) meets greedy algorithms;
» Constructive methods via low-density parity-check (LDPC) coding;

» Reconstruction via greedy matching pursuit algorithms (OMP, SP,
and CoSaMP) and BP decoding with a “twist”.
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Low Complexity Decoding Algorithms from CS

Recent focus on greedy algorithms:
@ Orthogonal Matching Pursuit (OMP) (Tropp, 2004)
@ Regularized OMP (ROMP) (Needell & Vershynin, 2007)
@ Stagewise OMP (StOMP) (Donoho et. al., 2007)
@ Subspace Pursuit (SP) (Dai & Milenkovic, 2008)

@ Compressive Sampling Matching Pursuit (CoSaMP) (Needell &
Tropp, 2008)

Complexity Performance
lo minimization O (N¥) So < 1
I, minimization O (m2N3/2) Soe < V2 —1
OMP O (KmN) 0k < 35
SP O(KmN)orless  d3x <0.16
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Orthogonal Matching Pursuit (OMP) Algorithm

Input: &, y, K
Initialization:
T°=¢, yl=y

Correlation Cal.
@*yﬁ—l
r

Quit Iterations

T¢ = 741 | J{The index corr. to

the largest corr. magnitude }

Output: solution obtained after K iterations
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Subspace Pursuit (SP) algorithm

Input: ®,y, K

Initialization:
T° = {K indices corresponding to the largest magnitudes of ®*y}.
y? = resid (y, ®70).

lteration:
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LDPC Applications in CS

@ Complexity of greedy strategies is dominated by correlation
computation

» Complexity is O(mN).
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LDPC Applications in CS

@ Complexity of greedy strategies is dominated by correlation
computation

» Complexity is O(mN).

m
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@ Use LDPC codebook for sensing matrix design

» Mimics the Bernoulli matrix;
» Introduce structure for storage saving.
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LDPC Applications in CS

@ Complexity of greedy strategies is dominated by correlation
computation

» Complexity is O(mN).

m
T 1
et = Ce 2" = & e {-1,+1}™N
BPSK
H c FXm Mapping

@ Use LDPC codebook for sensing matrix design

» Mimics the Bernoulli matrix;
» Introduce structure for storage saving.

@ Correlation computation via BP

» ML decoding = finding the largest correlation.
» Decoding complexity: from O (mN) to O (m).

M., Dai and Pham (UIUC) Sublinear CS - A Matroid Theory Approach BIRS Workshop, 2009

11/17



Incoherence parameter s

A
p = max (i, @;)l,
i#g

@ Sufficient condition of exact reconstruction for OMP (Tropp 2003):

< —
"=3K
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Incoherence parameter s

A
p = max (i, @;)l,
i#g

@ Sufficient condition of exact reconstruction for OMP (Tropp 2003):
< —
H=9K

@ Equivalent to Hamming distance requirement for LDPC codes

1 1 dH(Ci,Cj) 1 1 . .
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Incoherence parameter s

A
p = max (i, @;)l,
i#g

@ Sufficient condition of exact reconstruction for OMP (Tropp 2003):
< —
H=9K

@ Equivalent to Hamming distance requirement for LDPC codes

1 1 dH(Ci,Cj) 1 1 . .
2 Ik S m Satim Vi

Proposition: A random LDPC code with row sums d. > 3 and
m = O(K?log N) satisfies

1 1 dH(Ci,Cj) 1 1 . .
e ¢ AN et L R N
5TIK S m “atax i

with high probability.
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RIP property

@ Gershgorin Circle Theorem: For all A € C"*",

{\i} C U D ai,iaz |ai;
i=1

JFi
@ RIP holds!
For all eigenvalues of ®%.®,
A (@5®7) — 1 <max Y |(p;, 1)
T
< Ku< 1
S AU 9

which implies

o < 1/2.
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LDPC Code Rate for CS

A necessary condition: Unless the LDPC code family satisfies

V2logy(K 1) H(VI/K)

B<1-0-) 0@ K

the RIP constant cannot satisfy x < v/2 — 1.

Proof is based on connection
between the RIP and generalized * ol
Hamming weights of a code. !

»»»»»»»
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Performance of standard OMP and SP algorithms

Reconstruction error probability

x10°  OMP performance, matrix size 160x1024, 10000 samples
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Extensions

@ List-based BP decoding algorithm.

» Motivated by the significant performance improvement of SP
compared with OMP.

» Instead of outputing the ML codeword, we output a list of K
codewords that have large likelihood.

@ Multiple basis belief propagation (MBBP) Algorithm

» An LDPC code can have different parity check matrices (bases).

» The performance of BP algorithm highly depends on the chosen
basis.

» We propose to run BP algorithm on multiple bases and choose the
best output codeword.
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Thank you!
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