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Formulation Main Problem

Thermoacoustic Tomography

In thermoacoustic tomography, a short electro-magnetic pulse is sent through a patient’s
body. The tissue reacts and emits an ultrasound wave form any point, that is measured
away from the body. Then one tries to reconstruct the internal structure of a patient’s
body form those measurements.

The Mathematical Model

P = c2 1√
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Let u solve the problem 8<:
(∂2

t + P)u = 0 in (0, T )× Rn,
u|t=0 = f ,

∂tu|t=0 = 0,
(1)

where T > 0 is fixed.
Assume that f is supported in Ω̄, where Ω ⊂ Rn is some smooth bounded domain. The
measurements are modeled by the operator

Λf := u|[0,T ]×∂Ω.

The problem is to reconstruct the unknown f .
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Formulation Time reversal

If T = ∞, we can just solve a Cauchy problem backwards with zero initial data.
One of the most common methods when T < ∞ is to do the same (time reversal). Solve8>><>>:

(∂2
t + P)v0 = 0 in (0, T )× Ω,

v0|[0,T ]×∂Ω = h,
v0|t=T = 0,

∂tv0|t=T = 0.

(2)

Then we define the following

“Approximate Inverse”

A0h := v0(0, ·) in Ω̄.

Most (but not all) works are in the case of constant coefficients, i.e., when P = −∆. If n
is odd, and T > diam(Ω), this is an exact method by the Hyugens’ principle.

In that case, this is actually an integral geometry problem because of Kirchoff’s formula
— recovery of f from integrals over spheres centered at ∂Ω.

When n is even, or when the coefficients are not constant, this is an “approximate
solution” only. As T →∞, the error tends to zero by finite energy decay. The
convergence is exponentially fast, when the geometry is non-trapping.
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Formulation Time reversal

Known results

Kruger; Agranovsky, Ambartsoumian, Finch, Georgieva-Hristova, Jin,
Haltmeier, Kuchment, Nguyen, Patch, Quinto, Wang, Xu . . .

The time reversal method is frequently used in a slightly modified way. The boundary
condition h is first cut-off near t = T in a smooth way. Then the compatibility conditions
at {T} × ∂Ω are satisfied and at least we stay in the energy space.

When T is fixed, there is no control over the error (unless n is odd and P = −∆). There
are other methods, as well, for example a method based on an eigenfunctions expansion;
or explicit formulas in the constant coefficient case (with T = ∞ in even dimensions),
that just give a computable version of the time reversal method.

Results for variable coefficients exists but not so many. Finch and Rakesh (2009)
proved uniqueness when T > diam(Ω), based on Tataru’s uniqueness theorem (that we
use, too). Reconstructions for finite T have been tried numerically, and they “seem to
work” at least for non-trapping geometries.

Another problem of a genuine applied interest is uniqueness and reconstruction with
measurements on a part of the boundary. There were no results so far for the variable
coefficient case, and there is a uniqueness result in the constant coefficients one by
Finch, Patch and Rakesh (2004).
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Main results a short version

The main results in a nutshell

We study the general case of variable coefficients and fixed T > T (Ω) (the longest
geodesics of c−2g).

Measurements on the whole boundary:

we write an explicit solution formula in the form of a converging Neumann series
(hence, uniqueness and stability).

Measurements on a part of the boundary:

We give an almost “if and only if” condition for uniqueness, stable or not.

We give another almost “if and only if” condition for stability.

We describe the observation operator Λ as an FIO, and under the condition above,
we show that it is elliptic.

Then we show that the problem reduces to solving a Fredholm equation with a
trivial kernel.
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Measurements on the whole boundary New pseudo-inverse

We assume here that (Ω, g) is non-trapping, i.e., T (Ω) < ∞, and that T > T (Ω).

A new pseudo-inverse

Given h (that eventually will be replaced by Λf ), solve8>><>>:
(∂2

t + P)v = 0 in (0, T )× Ω,
v |[0,T ]×∂Ω = h,

v |t=T = φ,
∂tv |t=T = 0,

(3)

where φ solves the elliptic boundary value problem

Pφ = 0, φ|∂Ω = h(T , ·).

Note that the initial data at t = T satisfies compatibility conditions of first order (no
jump at {T} × ∂Ω). Then we define the following pseudo-inverse

Ah := v(0, ·) in Ω̄.
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Measurements on the whole boundary New pseudo-inverse

Why would we do that? We are missing the Cauchy data at t = T ; the only thing we
know there is its value on ∂Ω. The time reversal methods just replace it by zero. We
replace it by that data (namely, by (φ, 0)), having the same trace on the boundary, that
minimizes the energy.

Given U ⊂ Rn, the energy in U is given by

EU(t, u) =

Z
U

“
|Du|2 + c−2q|u|2 + c−2|ut |2

”
d Vol,

where Dj = −i∂/∂x j + aj , D = (D1, . . . , Dn), |Du|2 = g ij(Diu)(Dju), and
d Vol(x) = (det g)1/2dx . In particular, we define the space HD(U) to be the completion
of C∞0 (U) under the Dirichlet norm

‖f ‖2
HD

=

Z
U

“
|Du|2 + c−2q|u|2

”
d Vol .

The norms in HD(Ω) and H1(Ω) are equivalent, so

HD(Ω) ∼= H1
0 (Ω).
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Measurements on the whole boundary Main results, whole boundary

Main results, whole boundary

Theorem 1

Let T > T (Ω). Then AΛ = Id− K, where K is compact in HD(Ω), and ‖K‖HD (Ω) < 1.
In particular, Id− K is invertible on HD(Ω), and the inverse thermoacoustic problem has
an explicit solution of the form

f =
∞X

m=0

KmAh, h := Λf .

Some numerical experiments (with Peijun Li, see next slide) show that even the first term
Ah only works quite well. In the case, we have the following error estimate:

Corollary 2

‖f − AΛf ‖HD (Ω) ≤
„

EΩ(u, T )

EΩ(u, 0)

« 1
2

‖f ‖HD (Ω), ∀f ∈ HD(Ω), f 6= 0,

where u is the solution with Cauchy data (f , 0).
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Preliminary numerical results

Here, Ω = B(0, 1), T = 2. Based on the 1st term only. Original:
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Measurements on a part of the boundary

Measurements on a part of the boundary

Assume that P = −∆ outside Ω. Let Γ ⊂ ∂Ω be a relatively open subset of ∂Ω. Set

G := {(t, x); x ∈ Γ, 0 < t < s(x)} ,

where s is a fixed continuous function on Γ. This corresponds to measurements taken at
each x ∈ Γ for the time interval 0 < t < s(x). The special case studied so far is
s(x) ≡ T , for some T > 0; then G = [0, T ]× Γ.

We assume now that the observations are made on G only, i.e., we assume we are given

Λf |G .

We consider f ’s with
supp f ⊂ K,

where K ⊂ Ω is a fixed compact.

Uniqueness?

Stability?

Reconstruction?
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Measurements on a part of the boundary Uniqueness

Uniqueness

Heuristic arguments for uniqueness: To recover f from Λf on G, we must at least be
able to get a signal from any point, i.e., we want for any x ∈ K, at least one signal from
x to reach some z ∈ Γ for t < s(z). In other words, we should at least require that

Condition A

∀x ∈ K, ∃z ∈ Γ so that dist(x , z) < s(z).

Theorem 3

Let P = −∆ outside Ω, and let ∂Ω be strictly convex. Then under Condition A, if
Λf = 0 on G for f ∈ HD(Ω) with supp f ⊂ K, then f = 0.

Proof based on Tataru’s uniqueness continuation results. Generalizes a similar result for
flat geometry by Finch et al.

It is worth mentioning that without Condition A, one can recover f on the reachable part
of K. Of course, one cannot recover anything outside it, by finite speed of propagation.
Thus, up to replacing < with ≤,

Condition A is an “if and only if” condition for uniqueness.
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Measurements on a part of the boundary Λ is an FIO

Stability

Heuristic arguments for stability: To be able to recover f from Λf on G in a stable
way, we should be able to recover all singularities. In other words, we should require that

Condition B

∀(x , ξ) ∈ S∗K, (τσ(x , ξ), γx,ξ(τσ(x , ξ)) ∈ G for either σ = + or σ = − (or both).

We show next that this is an “if and only if” condition (up to replacing an open set by a
closed one, as before) for stability. Actually, we show a bit more.

Proposition 1

Assume formally T = ∞. Then Λ = Λ+ + Λ−, where Λ± are elliptic Fourier Integral
Operators of zeroth order with canonical relations given by the graphs of the maps

(y , ξ) 7→
`
τ±(y , ξ), γy,±ξ(τ±(y , ξ)), |ξ|, γ̇′y,±ξ(τ±(y , ξ))

´
,

where |ξ| is the norm in the metric c−2g, and the prime in γ̇′ stands for the tangential
projection of γ̇ on T∂Ω.

Plamen Stefanov (Purdue University ) Thermoacoustic tomography, variable sound speed 13 / 18



Measurements on a part of the boundary Λ is an FIO

Stability

Heuristic arguments for stability: To be able to recover f from Λf on G in a stable
way, we should be able to recover all singularities. In other words, we should require that

Condition B

∀(x , ξ) ∈ S∗K, (τσ(x , ξ), γx,ξ(τσ(x , ξ)) ∈ G for either σ = + or σ = − (or both).

We show next that this is an “if and only if” condition (up to replacing an open set by a
closed one, as before) for stability. Actually, we show a bit more.

Proposition 1

Assume formally T = ∞. Then Λ = Λ+ + Λ−, where Λ± are elliptic Fourier Integral
Operators of zeroth order with canonical relations given by the graphs of the maps

(y , ξ) 7→
`
τ±(y , ξ), γy,±ξ(τ±(y , ξ)), |ξ|, γ̇′y,±ξ(τ±(y , ξ))

´
,

where |ξ| is the norm in the metric c−2g, and the prime in γ̇′ stands for the tangential
projection of γ̇ on T∂Ω.

Plamen Stefanov (Purdue University ) Thermoacoustic tomography, variable sound speed 13 / 18



Measurements on a part of the boundary Λ is an FIO

Stability

Heuristic arguments for stability: To be able to recover f from Λf on G in a stable
way, we should be able to recover all singularities. In other words, we should require that

Condition B

∀(x , ξ) ∈ S∗K, (τσ(x , ξ), γx,ξ(τσ(x , ξ)) ∈ G for either σ = + or σ = − (or both).

We show next that this is an “if and only if” condition (up to replacing an open set by a
closed one, as before) for stability. Actually, we show a bit more.

Proposition 1

Assume formally T = ∞. Then Λ = Λ+ + Λ−, where Λ± are elliptic Fourier Integral
Operators of zeroth order with canonical relations given by the graphs of the maps

(y , ξ) 7→
`
τ±(y , ξ), γy,±ξ(τ±(y , ξ)), |ξ|, γ̇′y,±ξ(τ±(y , ξ))

´
,

where |ξ| is the norm in the metric c−2g, and the prime in γ̇′ stands for the tangential
projection of γ̇ on T∂Ω.

Plamen Stefanov (Purdue University ) Thermoacoustic tomography, variable sound speed 13 / 18



Measurements on a part of the boundary Λ is an FIO

Let us say that c = 1, and we take measurements on [0, T ]× Γ, T > diam(Ω). Then
Condition B is equivalent to the following:

Every line through K intersects Γ.

GK
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Measurements on a part of the boundary Recovery of f is a Fredholm problem

Choose and fix T > supΓ s. Let A be the “time reversal” operator as before (φ will be 0
because of χ below). Let χ(t) ∈ C∞ be a cutoff equal to 1 near [0, T (Ω)], and equal to
0 close to t = T .

Theorem 4

AχΛ is a zero order classical ΨDO in some neighborhood of K with principal symbol

1

2
(χ(γx,ξ(τ+(x , ξ))) + χ(γx,ξ(τ−(x , ξ)))) .

If G satisfies Condition B, then
(a) AχΛ is elliptic,
(b) AχΛ is a Fredholm operator on HD(K), and
(c) there exists a constant C > 0 so that

‖f ‖HD (K) ≤ C‖Λf ‖H1(G).

(b) follows by building a parametrix, and (c) follows from (b) and from the uniqueness
result.
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Measurements on a part of the boundary Reconstruction

Reconstruction

One can constructively write the problem in the form

Reducing the problem to a Fredholm one

(Id− K)f = BAχΛf with the r.h.s. given,

i.e., B is an explicit operator (a parametrix), where K is compact with 1 not an
eigenvalue.
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Reconstructing c; and c and f

Reconstructing the acoustic speed c

Let f be known first. Linearize Λ near some background c. Then δΛ[f , δc] is a bilinear
form. Then

∆f 6= 0 on supp δc

is a sufficient condition for δΛ[f , ·] to be Fredholm. On the other hand, if ∆f = 0 in an
open set inside supp δc, then that map, even if it happens to be injective, will be
unstable in any pair of Sobolev spaces.

We still do not know if δΛ[f , ·] is injective. If so, one would have local uniqueness and
Hölder stability.

The recovery of both f and c is not so clear. Preliminary calculations show that the
linearization δΛ may have a huge kernel. One could try to use more than one
measurements but how realistic is that?
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Reconstructing c; and c and f

An alternative way to recover c

Recovery of sound speed and more generally, a metric, from travel times is well developed
and there are numerical results. Why not reduce the problem to this one?

Place a small object with thermoacoustic properties “f0” different from the surrounding
media. That means: replace f by f + f0 with supp f0 non intersecting supp f . Take your
measurements Λ(f + f0). Subtract Λf from that. Then we get

Λf0

without the need to alter the patient. Now, from Λf0, we can get the travel times from
∂ supp f through Ω. If supp f0 is small enough, then just measure the first arrival time at
each point on the boundary.

Then repeat this with f0 supported elsewhere, etc. Then recover c from the travel times.
Moreover, we do not need to know f for that. Once we know c, we can recover f .
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Moreover, we do not need to know f for that. Once we know c, we can recover f .
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