Reconstruction in Doppler tomography

Victor Palamodov
Tel Aviv University

BIRS
29 October 2009

1 Introduction

Doppler tomography is applied for
imaging of liquid or gas flows, ultrasound diagnostic, optics, plasma physics etc.
Physical background:

A Doppler spectroscopy (projection of ion velocity),
A Zeeman effect polarimetry (projection of the poloidal magnetic field),
A Doppler effect in moving medium:

1.1 Travel time measurements

¢ - the sound speed,
v - the local velocity of the medium,
s =0, s = S are the positions of the source and the receiver,

T - the travel time:
/S ds
T = ,
o c(x)+(0,v(x))
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2 Differential forms and integrals

v Let =5 f;, idwy, A ... Ada;, be a k-differential form in V =2 R? k =0,1,2,3.

0-form a = a (z);

1-form f = fi (z) dzy + fo () doe + f3 () das;

2-form g = g12 (l‘) diL‘l A dxg + g23 (I) dﬂ?g VAN dﬂfg + gs31 ($) dl‘g A d$1;

3-form h = hja3 (z) dzy A dagy A das.

Exterior differential: f = da, g = df, h = dg; dd= 0.

Coordinateless notations:

f(ZL‘, 6) = f1 ([E) 91 + f2 (I) 02 + f3 (ZE) 83, xT, 0= (01, 02, 83) S V,

g(x,0,n) = % (912 (0112 — O2m1) + go3 (O2ms — O3m2) + g31 (O3 — O1m3)]

h(z,0,n,8) = ¢...

Doppler transform: 7

v A function a defined on V is fast decreasing, if a(z) = O (|z|™?), as |z| — oo in V for
qg=0,1,2,....

v S, is the space of 1-forms f such that the function f (z;6) is fast decreasing as well as all
x-derivatives up to the order m for any fixed 6.

For a 1-form f € Sy the integral

is defined for any oriented curve p in V.
We have R (da, \) = 0 for any fast decreasing function a.
A A vector field v = (vy, vg,v3) is replaced by the 1-form f = v1dx; + vodzy + vsdas, so that

/(H,U)dSZ/)\f

Write R (z,0) = R (p(x,0)), where p (z,0) = {y = x + 0, t > 0}, that is

R(a:;@):/ f(x+s0;0)ds, x,0€ V.
0

We have R (z,t0) = sgnt R (z, ) for any t > 0.

The sum L (z,0) = R(z,0) — R(z,—6) is equal to the integral of f over the line A (z,0) =
{y=x+10,t €R}.

A The Doppler transform R (x,#) is invariant with respect to the gauge transformation f + da,
where a an arbitrary ast decreasing function, since R (da) = 0.

A The differential df of a 1-form f is gauge invariant.

Inversion problem: to recover the form df from knowledge of integrals R (f,p) on a n-dimensional
manifold A of rays p in V™.



2.1 The case n =2

Norton, Braun-Hauck, Juhlin, Sparr-Strdhlénm,...Howard-Wells,...Osman-Prince,...
Proposition For an arbitrary 1-form f € Sy on a Euclidean plane V and any x € V, 6 € V\{0}

L(J;,Q):/ Fds—a, [ df, (1)
A(z,0)

Hw,p

where H is the half-plane such that OH = X\ (z,6).
<« Apply the Cauchy-Green formula. »

A Write df = F'dS, where dS is the area element and F is a fast decreasing function in V.

9, [ daf=9, | Fds= Fds
H,p H,p A(z,0)

The right-hand side equals to the Radon transform of the function F.

2.2 The case n =3

A In the 3D case the complete 4D-data of line integrals are redundant.

The variety of lines that are parallel to either of two given planes has dimension 3; a reconstruction
can be done by reduction to 2D case: Schuster, Vertgeim (2000) .

3D case: Vertgeim, Denisjuk.

Let I' C V - the set of sources.



Stability condition: for any point q € supp f and any plane H through q there is at least one
point pe HNT.

This condition is sufficient for a reconstruction, if the first derivatives of R (p) are known for all
rays p with sources on I'. In particular, the reconstruction is possible on any chord of a curve I'.

Notations: Fix a Euclidean structure in V, denote H,, = {y € V;(w,y) = p} for any w, |w| =1
and p € R.

For any vector £ # 0 the directional derivatives are

ae () = (€.da (@), Re (2:60) = (6, d,R (50)) . O¢R (236) = (€, iR (2:0))..

Proposition. Let f be a 1-form of the class S3. For an arbitrary plane H an arbitrary point y € H
and any vector & parallel to H we have

O [ At (@) Al (@) = [ R (50) a0 (0). 2)

where dH 1s the Fuclidean area element on H,
dy is the angular measure on the unit circle S C H.

Theorem. Let f be a 1-form of the class So and I' C 'V be a set such that any hyperplane H
that meets the support of f meets also I'.
The form df can be reconstructed from data of first derivatives of the integral R (z,0) for rays p (z,0),
rel |0 =1

<« For arbitrary vectors 7, € V and a plane H we set

i (0.9) =ap/de(x;n,5>dH
5



The function I can be determined from the given integral data. If both vectors 7, £ are parallel to H,
the equation Iy (n,&) = 0 follows from partial integration. If n parallel to H and £ = w it is known
by the formula (2) applied to a point y € H NT.

For arbitrary vectors (7, §), we can write £ = aw + ¢, and n = b + 1 for some numbers a and b,
where &', 1 are parallel to H.

If a=b=0,then Iy (n,&) =0.

Suppose that a # 0. We have the equation

IH (Uaf) = IH (77/76) = IH (U’a@w) = aIH (77/@)7

where the right-hand side is known.
The form df can be reconstructed from data of integrals Iy (1, ) by means of the classical formula

of Lorentz:
1
dfx:——/ 02/ df (y)dH
(z) 572 ) 7 J (y)

We only need to know these integrals for hyperplanes H that meet the support of df. Otherwise the
integral vanishes.

dw.

p= <w7x>

3 Range conditions

3.1 Line integrals of functions

The function

J(x,@):/w¢(x+7"9)dr

is called X-ray (or the John) transform of ¢ € Sy, where z,0 € V. It fulfils J (z,t0) = t1J (x,0) ,t # 0
and the John equations

0? 0?
— J(x,0)=0, i, =1,2,3. 3
(aez-axj aejaxi) (z,6) J 3)

The inverse statement John(1938) :

Theorem Any smooth fast decreasing function J (x,0) that satisfies these conditions is equal to
X-ray transform of a function ¢ € Sy .

Remark: Given a curve I' in V3, the variety A of lines \ that meet T is characteristic for the
John equation. In the chart z3 = 3 = 1 the system is reduced to the only equation

0? 02
(aelaxg N 8928:701) T(w,6) =0
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A 3-variety A the equation ® (x1, z9,0;,05) = 0 is characteristic for the John equation if

00 0 0D 0D

92,00, 02,00, "

3.2 Integrals of forms

The line integrals L = L (z, 0) of a 1-form f fulfil the homogeneity condition L (z,t0) = +L (x, ) for
+¢ > 0 and the system of equations

(aelax]_80]a$l> L(%Q):O, Z,j:1,2,3, (4)

The same equations hold at a point z for the ray integrals R (x, #) provided the form f vanishes
in a neighborhood of the point z.

¥ The inverse statement is due to Gelfand-Gindikin-Graev(1980,2000):

Theorem An arbitrary smooth function L (x,0) that decreases fast as |r x 0| — oo with all
derivatives that fulfils (4), is equal to the line transform of a 1-form f with coefficients in the Schwartz
space (and vice versa).

The variety A of lines A that touch a curve I' is a "double" characteristic for (4). The "initial"
data on A are the functions and its first derivatives.

4 Rays tangent to a surface

The variety A of rays tangent to a surface S is characteristic for the John equation and double
characteristic for (4). A simple reconstruction formula for the Doppler transform is as follows:
Theorem Let S be a smooth surface in an oriented Fuclidean space 'V,
H be a plane nowhere tangent to S. For an arbitrary f € S3 we have

3p/ df (x;ﬁ,w)dH:/ [K0pwR (y59') — [0, w, Y| Ruw (y;9)] ds,
H C

where
1) y=y(s),0<s<s. isthe equation of the curve C =S N H such that |y'| =1, y = dy/0s,

(
(
(

ii) k =y, y",w] >0 is the curvature of C,
iii) supp f N H is contained in the image of the map Y : (0,s.) x (0,00) — H, (s,7) — y(s) +

"(s).

ry



Rays tangent to the curve S N H
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