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Introduction

• We are interested in numerically solving hyperbolic conservation laws

ut + f(u)x + g(u)y + h(u)z = 0 (1)

where ξ1f
′(u) + ξ2g

′(u) + ξ3h
′(u) is diagonalizable with real

eigenvalues for any real ξ = (ξ1, ξ2, ξ3). The solution may have

discontinuous solutions (shocks, contact discontinuities, etc.) even if

the initial and boundary conditions are smooth.
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• Selected list of applications:

– Traffic flows

– Computational fluid dynamics, especially high speed flows

– Electro-magnetic waves, aeroacoustics

– Astrophysics

– Semiconductor device simulations

– Certain problems in computational biology

– · · ·
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In many applications, we often encounter the so-called convection

dominated problems. i.e. the PDEs (1) with additional terms rather than

zero on the right hand side, however these additional terms have a small

coefficient.

• For example, a one dimensional convection dominated

convection-diffusion equation is given by

ut + f(u)x = ε(a(u)ux)x

where a(u) ≥ 0 and 0 < ε � 1.
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• A one dimensional convection dominated convection-dispersion

equation is given by

ut + f(u)x = εa(u)xxx

where a(u) is an arbitrary function and 0 < ε � 1. For

f(u) = αu + βu2 and a(u) = u this is the famous Korteweg-de

Vries (KdV) equation.

• Another good example is the compressible Navier-Stokes equation

with high Reynolds numbers, which is the Euler equation plus a

diffusion right hand side with a small coefficient 1
Re

where Re is the

Reynolds number.
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For convection dominated problems, the main difficulty for the numerical

solutions is the treatment of the convection terms.

Importance of high order methods for convection dominated problems:

• For smooth solutions, especially for time dependent problems with

large time, high order methods are much more efficient than lower

order ones to reach the same error tolerance. The smaller this

tolerance, the longer the simulation time, the more efficient high order

methods will be (Kreiss).
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• For non-smooth or even discontinuous solutions of linear PDEs, such

as the Maxwell equations in computational electro-magnetism and

linearized Euler equations in aeroacoustics, it can be proved that a

high order scheme is still high order accurate, measured in a suitable

negative norm. Then a suitable post-processor can recover high order

accuracy in a strong norm such as the L2 norm (Mock and Lax,

Majda, McDonough and Osher, Cockburn, Luskin, Shu and Süli, etc.).
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• For non-smooth or even discontinuous solutions of nonlinear PDEs,

such as the Euler equations of compressible gas dynamics:

– A rigorous mathematical proof of the high order convergence in a

suitable negative norm of high order schemes is not known.

– It is also true that many of the unmodulated high order schemes

such as the spectral method and high order compact schemes may

become nonlinearly unstable when computing solutions containing

strong discontinuities, rendering the computer codes to crash.
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– However, there are still reasons to believe that high order accurate

schemes, especially those modern high order accurate, “high

resolution” schemes which have nonlinear mechanisms to control

spurious oscillations, such as the WENO schemes, are suitable

choices for solving nonlinear PDEs with discontinuous solutions,

especially when the solutions contain both discontinuities and

complicated smooth region structure.

– Lax (1978) argued that, for a nonlinear system, high order

information is retained by a high order scheme and may be

extracted by postprocessing. In fact, Lax’s argument indicates that

more high order information is retained in high order solutions of

nonlinear systems than of linear ones, since in the nonlinear case

the solution operator is contractive.
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Brief comparison of several high order methods

If the solution of the PDE is smooth:

• The spectral method is the most efficient numerical method. The error

is smaller than O(N−k) for any finite k, if the solution is Ck+1. If the

solution is analytic, then the error is exponential, that is, the error

decays as O(e−αN) for some constant α > 0.

An example: a Fourier spectral method applied to linear convection

with a smooth initial condition with N = 16 already produces an error

of 10−11, while a second order accurate finite difference scheme with

the same number of unknowns produces an error of 10−1 and a fourth

order finite difference scheme is barely better at the error level of

10−2.
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• High order accurate compact schemes, which can give “spectral-like”

resolution for many wave problems, are also popular for solving PDEs

with smooth solutions.

• If the computational domain is not a box, then the spectral element

method, which combines the advantages of the spectral method in its

high order accuracy and the finite element method in its flexibility for

arbitrary geometry, would be a good choice.

The discontinuous Galerkin method, because of its flexibility in

meshes, adaptivity, and parallel implementation, is also a good choice.
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If the solution of the PDE has discontinuities or sharp gradient regions:

• High order methods (spectral, compact scheme, etc.) with filtering.

The filtering can be linear or nonlinear.

– Advantages: Simple to code: the base algorithm and the filtering

can be coded separately and applied sequentially.

– Disadvantages: Usually there are parameters in the filtering to be

tuned. If not tuned well, the result could be either too dissipative or

too oscillatory.
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• High order WENO finite difference scheme.

– Advantages: Robust, no user-tuned parameters. Very stable for

strong shocks. The code for multi-dimensions is essentially the

same as the one for one dimension.

– Disadvantages: Can only be used on rectangular uniform meshes

or smooth curvilinear meshes (to have both conservation and at

least third order accuracy). Needs local characteristic

decomposition to avoid oscillations during wave interactions. The

CPU cost is 4 to 10 times that of a second order scheme

depending on the specific equation and implementation.
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An example where the solution contains both discontinuities and rich

structures in smooth regions: This is the problem of a strong shock

interacting with a pair of vortices (Zhang, Zhang and Shu, Physics of

Fluids 2006), simulated by the fifth order finite difference WENO

scheme on the compressible Navier-Stokes equations. In Figure 1 we

plot the shadowgraphs (contours of ∇2ρ where ρ is the density) of an

oblique Mach 1.2 shock with a strong colliding vortex pair. We can see

clearly that complicated flow structure from the shock vortex

interaction is resolved well by the fifth order WENO scheme.
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(a) t = 5.0 (b) t = 7.0

Figure 1: Fifth order WENO simulation of the evolution of an oblique shock

and a colliding vortex pair interaction. Shock Mach number Ms = 1.2,

vortex Mach number Mν = 0.8, and angle of the oblique shock wave

α = 45◦. Division of Applied Mathematics, Brown University
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(c) t = 9.0 (d) t = 13.0

Figure 2: Continued.
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• High order WENO finite volume scheme.

– Advantages: Robust, no user-tuned parameters. Very stable for

strong shocks. Can be applied to non-smooth meshes and

arbitrary triangulations. The code for multi-dimensional tensor

product meshes (do not need to be smooth) is similar as the one

for one dimension.

– Disadvantages: Very expensive for multi-dimensional calculation. It

is up to 4 times more expensive than a finite difference WENO

scheme on the same mesh with the same order of accuracy for 2D,

and up to 9 times for 3D. The algorithm formulation and coding are

both very complicated for arbitrary (not tensor product)

triangulation.
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• Discontinuous Galerkin finite element method.

– Advantages: Applies to very general geometry, triangulation and

boundary conditions. Easy for adaptive computation and parallel

implementation. Very good wave resolution capability. Can

simulate solutions with strong shocks when suitable limiters are

used. Much more theoretical stability results available than finite

difference and finite volume WENO schemes.

– Disadvantages: Coding more complicated than finite difference

schemes. Limiters to control oscillations not as robust as the

WENO methodology (however recently WENO limiters have been

designed by Qiu and Shu). Computer memory is a problem for 3D

computation.
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An example to show the excellent wave resolution capability of the DG

method: we solve the linear convection equation

ut + ux = 0, or ut + ux + uy = 0,

on the domain (0, 2π) × (0, T ) or (0, 2π)2 × (0, T ) with the

characteristic function of the interval (π
2
, 3π

2
) or the square (π

2
, 3π

2
)2

as initial condition and periodic boundary conditions.
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Figure 3: Transport equation: Comparison of the exact and the RKDG so-

lutions at T = 100π with second order (P 1, left) and seventh order (P 6,

right) RKDG methods. One dimensional results with 40 cells, exact solution

(solid line) and numerical solution (dashed line and symbols, one point per

cell)
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Figure 4: Transport equation: Comparison of the exact and the RKDG so-

lutions at T = 100π with second order (P 1, left) and seventh order (P 6,

right) RKDG methods. Two dimensional results with 40 × 40 cells.
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For nonlinear problems with shocks: an example is the double Mach

reflection problem for the two dimensional compressible Euler

equations.
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Figure 5: Double Mach reflection. ∆x = ∆y = 1
240

. Top: P 1; bottom:

P 2.
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Figure 6: Double Mach reflection. Zoomed-in region. Top: P 2 with ∆x =

∆y = 1
240

; bottom: P 1 with ∆x = ∆y = 1
480

.
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Figure 7: Double Mach reflection. Zoomed-in region. P 2 elements. Top:
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; bottom: ∆x = ∆y = 1
480

.
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A final example is the flow past a forward-facing step problem for the

two dimensional compressible Euler equations. No special treatment

is performed near the corner singularity.
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Figure 8: Forward facing step. Zoomed-in region. ∆x = ∆y = 1
320

. Left:

P 1 elements; right: P 2 elements.
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Examples of a few recent developments on high order methods

For WENO schemes:

• High order weighted compact schemes (Zhang and Shu, JCP to

appear)

– Combines the compact schemes and WENO finite difference

schemes.

– Based on weighted interpolation of fluxes, the main subroutine

similar to finite difference WENO schemes.

– Similar to finite difference WENO scheme in shock resolution,

better dissipation and dispersion error control than finite difference

WENO scheme of the same order of accuracy.
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– Towards direct numerical simulation of compressible turbulence.

An example: Rayleigh-Taylor instability. It happens on an interface

between fluids with different densities when an acceleration is directed

from the heavy fluid to the light one. The instability has a fingering

nature, with bubbles of light fluid rising into the ambient heavy fluid

and spikes of heavy falling into the light fluid.

We can observe that the weighted compact schemes can produce

more small vortices in the shear layer than the regular finite difference

WENO scheme, indicating that the weighted compact schemes have

better resolution to capture small scale structures.
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(a) (Left to right) WENO5; WCOMP4; WCOMP6; WCOMP8. ∆x = ∆y = 1
240
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480

Division of Applied Mathematics, Brown University



HIGH ORDER SHOCK CAPTURING SCHEMES — AN OVERVIEW

X

Y

0.20

0.2

0.4

0.6

0.8

1

X

Y

0.20

0.2

0.4

0.6

0.8

1

X
Y

0.20

0.2

0.4

0.6

0.8

1

X

Y

0.20

0.2

0.4

0.6

0.8

1

(c) (Left to right) WENO5; WCOMP4; WCOMP6; WCOMP8. ∆x = ∆y = 1
960

Figure 9: Rayleigh-Taylor Instability. Density ρ; 15 equally spaced contour

lines from ρ = 0.952269 to ρ = 2.14589.
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• Well balanced WENO schemes (Xing and Shu, JCP 05; JSC 06; JCP

06; CiCP 06; Noelle, Xing and Shu, JCP 07).

– A hyperbolic balance law (conservation law with source term)

ut + f(u, x)x = g(u, x) (2)

admits steady state solutions in which the source term g(u, x) is

exactly balanced by the flux gradient f(u, x)x. The objective of

well balanced schemes is to preserve exactly some of these steady

state solutions.

– This is a non-trivial task because such steady state solutions are

usually not polynomials or other simple functions and their explicit

formulas are of course unknown.
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– Most schemes would therefore only be able to resolve such steady

states to the level of truncation errors of the schemes. But a well

balanced scheme aims at resolving such steady states exactly, up

only to round-off errors.

– The main reason that such well balanced schemes might be of

interest is that often we have physical applications of a solution

which is very close to the relevant steady state, i.e. a small

perturbation from the steady state, and we are interested in

resolving such small perturbations.

– Until recently, most well balanced schemes are only at most

second order accurate. We have developed a general framework

via source term splitting to design high order WENO and DG well

balanced schemes.
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We will demonstrate the advantage of a well balanced scheme

through some figures. We can see from Figure 10, which is the

solution of a well balanced WENO scheme for a shallow water

equation with moving water, that the very small perturbation (which

can be hardly observed in the original picture without zooming) is

captured well without spurious oscillations by a relatively coarse mesh

of 200 points. For this example, if we use a non well-balanced WENO

scheme with the same number of mesh points, we will not be able to

resolve the small bumps at all.
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Figure 10: Small perturbation of the transcritical flow.
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In Figure 11, which is a two dimensional simulation, we can clearly

see that the result of the high order well balanced WENO scheme

(left) is very clean, while that of the non well-balanced WENO scheme

has “large” spurious waves at this grid resolution. Of course, if we

refine the mesh sufficiently, these spurious waves will diminish and

eventually disappear (to visual observation), as they are at the level of

truncation errors which will decay with a refinement of the mesh.
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• WENO schemes for kinetic and Boltzmann type equations (Carrillo,

Gamba, Majorana and Shu, JCP 03 and 06; Qiu, Shu, Fang et al. New

Astronomy 07 and 08; Astrophysical J. 07).

– Kinetic and Boltzmann type equations are usually scalar equations

for the evolution of a (unscaled) probability density function, which

is a convection equation with a collision source term.

– The convective nature of these equations makes the usual linear

schemes subject to numerical oscillations and instability, especially

when the meshes are coarse and hence there are “sharp

transitions” (on the mesh level) in the numerical solution.

– The dimension of the kinetic and Boltzmann type equations is

usually very high: in the most general case it is 6D + time. We can

now solve 5D + time. Only a coarse mesh can be afforded.
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Our WENO solver is stable and quite accurate on coarse meshes.

For example, in the MOSFET simulation (in semiconductor device

simulations) shown in Figure 12, our WENO solver, using a mesh of

49 × 33 × 66 × 12 × 12 grid points can produce very accurate

results comparing well with the benchmark DSMC data (the oscillatory

curves in the figure).

The simulation of this five dimensional plus time problem took about 3

days on a standard PC, indicating that our WENO solver is quite

efficient. A parallel implementation of this solver is also worked out

and used to compute larger problems.
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Figure 12: MOSFET device. WENO Boltzmann versus DSMC at t = 5 ps

and y = 0.12.
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• High order ENO conservative Lagrangian type schemes for the

compressible Euler equations (Cheng and Shu, JCP 07; CiCP to

appear).

– Based on conservative ENO reconstructions over quadrilateral

meshes (second order) or over curved quadrilateral meshes with

quadratic curve boundaries (third order).

– The scheme is conservative and demonstrates the designed

second and third order accuracy in two dimensions.

– The advantage of Lagrangian type schemes is that they resolve

material interfaces (contact discontinuities) more sharply than

Eulerian type schemes.
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For DG schemes:

• DG method for solving nonlinear high order PDEs.

– Local DG (LDG) methods for nonlinear PDEs containing higher

order spatial derivatives.

– A careful design of numerical fluxes is the key for the success of

the resulting LDG scheme. Patterns do exist.

– Typical theoretical results include a nonlinear stability of the

numerical solution either in the L2 norm or in a physically relevant

energy. This stability is valid regardless of the regularity of the

solution. Error estimates can also be obtained for smooth solutions.
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– Recent results include the design and analysis of LDG schemes for

the following nonlinear PDEs:

∗ Cahn-Hilliard type equations (Xia, Xu and Shu, JCP 07);

∗ Allen-Cahn/Cahn-Hilliard system (Xia, Xu and Shu, CiCP to

appear);

∗ Camassa-Holm equation (Xu and Shu, SINUM 08);

∗ Hunter-Saxton equation (Xu and Shu, SISC submitted);

∗ Surface diffusion and Willmore flow of graphs (Xu and Shu, JSC

submitted).
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Example: We solve the Cahn-Hilliard equation with an initial condition

which is a random perturbation of uniform state u = 0.63 with a

fluctuation no larger than 0.05. We use the P 1 elements on a uniform

mesh with 80 × 80 cells. The concentration evolution can be

categorized in two stages. The first stage is governed by spinodal

decomposition and phase separation (the first four figures in Fig. 13).

The second stage is governed by grain coarsening (from

t = 8 × 10−6 onwards).
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t = 0 t = 2×10-6 t = 4×10-6

t = 8×10-6 t = 1.6×10-5 t = 3.2×10-5

t = 6.4×10-5 t = 1.28×10-4 t = 2.56×10-4

Figure 13: The contours evolution of u(x, t) for the Cahn-Hilliard equa-

tion at different time from a randomly perturbed initial condition with P 1

elements on the uniform mesh with 80 × 80 cells.
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• Multiscale solvers based on DG schemes.

– Heterogeneous multiscale method (HMM) + DG

∗ Linear hyperbolic and parabolic equations (Chen, E and Shu,

SIMMS 05)

∗ Nonlinear Euler equations (Chen, E and Shu, SIMMS 05)

∗ Dynamics of crystalline solids (Wang, Li and Shu, SIMMS 08)

– Domain decomposition (Chen, E, Liu and Shu, JCP 07)

∗ Euler equations / BGK model

∗ Semiconductor devices: hydrodynamic (HD) model / kinetic

model
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– DG method with multiscale basis

∗ Elliptic equations with oscillatory coefficients (Yuan and Shu,

IJNME 08)

∗ Semiconductor devices: Schrödinger-Poisson system (Wang and

Shu, JSC submitted)
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We consider the Euler equation of compressible gas dynamics

uε
t + f(uε)x = 0, (3)

where uε = [ρε, ρεvε, Eε]T ,

f(uε) = [ρεvε, ρε(vε)2 + pε, vε(Eε + pε)]T , and

pε = aε(x)[(Eε
−

1

2
ρε(vε)2)(γ − 1)] (4)

where γ is a constant. This is clearly equivalent to having an

oscillatory γ

γε = 1 + (γ − 1)aε(x).

In the numerical test, we take

aε(x) =
1

1 + 0.1 sin(x
ε
) + 0.1 sin(x)

. (5)
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We will use the following notations:

– uε: the solution of (3)-(4), with aε given by (5);

– ūε: the local average of uε, obtained by convolving uε with a

mass-one local kernel of width O(ε);

– ũ: the solution of (3)-(4) with aε(x) in (4) replaced by a simple

average

ã(x) =
1

2π

∫ 2π

0

1

1 + 0.1 sin(y) + sin(x)
dy.

– ū = lim
ε→0

ūε. This limit will serve as our “exact” solution of the

homogenized Euler problem, which is not explicitly known.
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Figure 14: Density ρ. The HMM-DG solution with N = 38 and N = 76

uniform elements for ε = 10−6, versus the “converged” local average solu-

tion ū to the nonlinear oscillatory Euler equations (denoted by “exact” in the

figures). The solution ũ of the simply averaged Euler equations (denoted

by “simple average” in the figures) is also plotted as a reference. Left: the

solutions in the whole interval; right: zoomed around x = 2.5.
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Figure 15: Sod’s Shock tube problem. Density ρ. The HMM-DG solution

with N = 19, 38 and 76 uniform elements for ε = 10−6, versus the

converged “exact” locally averaged solution ū to the nonlinear oscillatory

Euler equations. The solution ũ of the simply averaged Euler equations

(simple average) is also plotted as a reference. Left: the solutions in the

whole interval; right: zoomed around x = −1.5.
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• Superconvergence and time evolution of errors.

– DG approximation to smooth solutions of one and two dimensional

conservation laws

ut + f(u)x = b(x, t), (6)

and

ut + f(u)x + g(u)y = b(x, y, t). (7)
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∗ The error between the DG solution and a particular projection of

the exact solution superconverges. For P k elements this error is

typically hk+2 (one order higher than usual).

∗ As a consequence, the error between the DG solution and the

exact solution does not grow with time, for a long time period

0 ≤ t ≤ O(h−1).

∗ The conclusion can be proved for linear problems and seems to

hold also for nonlinear problems using upwind fluxes.

∗ The conclusion also holds for convection-diffusion equations.
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Table 1: Example. Linear convection with esin(x) initial condition. P 3 poly-

nomials, uniform meshes.

T = 10 T = 100 T = 500

N L2 error order L2 error order L2error order

ē

5 5.40E-03 - 2.86E-02 - 6.70E-02 -

10 8.70E-05 5.96 7.65E-04 5.22 3.24E-03 4.37

20 1.11E-06 6.30 7.50E-06 6.67 3.71E-05 6.45

40 2.61E-08 5.40 6.57E-08 6.84 3.04E-07 6.93

e

5 5.50E-03 - 2.89E-02 - 6.70E-02 -

10 2.09E-04 4.72 7.88E-04 5.19 3.24E-03 4.37

20 1.22E-05 4.09 1.43E-05 5.79 3.91E-05 6.38

40 7.65E-07 4.00 7.67E-07 4.22 8.22E-07 5.57Division of Applied Mathematics, Brown University
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Concluding remarks

• High order methods have a good potential for large scale simulation of

complex applications.

• Multiscale, adaptivity, and numerical methods obeying as many

physical properties (invariants, asymptotics) would be under intensive

research.

• Mathematics can play an essential role in multiscale modeling and

algorithms, error indicators for adaptivity, structure-preserving

numerical methods, etc.
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