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Definition of Risk Measures

Notation: (Ω, (Ft)0≤t≤T ,P) a filtered probability space
with the usual assumptions.

L∞(Ω,F ,P) space of bounded random variables,
L1(Ω,F ,P) space of integrable RV.

Liabilities are with − sign!! Wealth is with + sign.
Bankruptcy means “under zero”.

Utility functions are defined on random variables, not
on “lotteries”.



Definition. u:L∞ → R is called a monetary utility
function if u(ξ + a) = u(ξ) + a for all a ∈ R.

Definition. u:L∞ → R is called a (Fatou) monetary
concave utility function if

(1) u(ξ) ≥ 0 if ξ ≥ 0
(2) u is concave
(3) u(ξ + a) = u(ξ) + a for all a ∈ R

(4) Fatou property. If supn ‖ξn‖∞ < ∞, if
ξn → ξ in probability, then u(ξ) ≥ lim supu(ξn).



A utility u is characterised by the acceptance set

A = {ξ | u(ξ) ≥ 0} , u(ξ) = max{a ∈ R | ξ − a ∈ A}.

In case u is a monetary utility function we define

ρ(ξ) = −u(ξ)

and call it a convex risk measure. It describes the
amount of money to be added to become acceptable,
i.e. to be in A.

ρ(ξ + ρ(ξ)) = 0 and u(ξ − u(ξ)) = 0.



P = {Q � P | Q is a probability}. The Fenchel-
Legendre transform of u satisfies (Föllmer-Schied)

c : P → R+ ∪ {+∞} is a convex function, for each
k ∈ R+ the set {Q | c(Q) ≤ k} is convex and closed.

infQ∈P c(Q) = 0, we will suppose c(P) = 0.

Characterisation of such utility functions. For
given u (Fatou) there is c as above such that

u(ξ) = inf{EQ[ξ] + c(Q) | Q ∈ P}.
Conversely such a function c defines a Fatou utility
function.



Depending on c we get different examples, some of them
easy to calculate some are more difficult. Essentially it
becomes a linear programme in infinite dimensions.

The proof is essentially the Hahn-Banach theorem to-
gether with the Krein-Smulian theorem (needed to get
weak∗ closed sets in L∞). We also need that on bounded
sets of L∞ the topology of convergence in measure is the
Mackey topology, a result that goes back to Grothen-
dieck and which is based on the characterisation of rel-
atively weakly compact sets (in L1) as the uniformly
integrable sets, the so-called Dunford-Pettis theorem.



u is positively homogeneous (coherent) if and only if
there is a closed convex set S ⊂ P such that c(Q) = 0
on S and c(Q) = +∞ if Q /∈ S.

u(ξ) = inf{EQ[ξ] | Q ∈ S}.



In continuous time we need to add an extra assumption:
time consistency (Koopmans 1960). This means that
we have the following decomposition property (for each
stopping time σ):

(1) Aσ = {ξ ∈ A | for all A ∈ Fσ : 1Aξ ∈ A}
(2) Aσ = A ∩ L∞(Fσ)
(3) A = Aσ + Aσ

For each stopping we can define a utility function

uσ(ξ) = ess.sup{η ∈ L∞(Fσ) | ξ − η ∈ Aσ}
This means that time consistency and u0 completely
define the process ut.



This gives, in the usual way (duality theory) a penalty
function cσ(Q). The process ct can be made càdlàg as
well as the process ut(ξ). (Jocelyne Bion-Nadal)

The proof uses the decomposition property.

Time consistency is usually defined as:

if ξ, η ∈ L∞, if for stopping times σ ≤ τ we have
uτ (ξ) ≤ uτ (η) then also uσ(ξ) ≤ uσ(η).

On finite time intervals the time consistency is equiv-
alent to the Bellman dynamic programming principle.
On infinite time intervals this is wrong!!
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We take the case of d−dimensional Brownian Motion
B, with the usual filtration. Finite time interval [0, T ].
Time consistent (with Fatou property) utility functions
can be defined via convex optimisation.

There is a function f(t, ω, x) such that
(1) for all x ∈ R

d, the function f(·, ·, x) is pre-
dictable

(2) for (t, ω) the function is convex, takes values in
R+ ∪ {+∞} and is proper

(3) f(·, ·, 0) = 0
(4) g is the Fenchel-Legendre transform of f



For Q ∼ P and dQ
dP = E(q · B)T we have

ct(Q) = EQ

[∫ T

t
f(qu) du | Ft

]
≤ +∞

Uses previous characterisations of Chen, Peng, El Karoui-
Quenez-Peng. However we do not suppose any domi-
nance of u by a g−expectation (some kind of hidden
weak compactness)

ut(ξ) = ess.infQ∼P EQ

[
ξ +

∫ T

t
f(qu) du | Ft

]



We will suppose (for simplicity) that g is real valued
(< +∞) and that f and g do not depend on (t, ω). In
this case we have precise results

Theorem. For all Q � P we have that ut(ξ)+
∫ τ∧t

0
f(qu) du

is a Q−submartingale, τ=inf{t |Lt =EP

[
dQ
dP | Ft

]
=0}.

If there is Q � P with u0(ξ) = EQ

[
ξ +

∫ τ

0
f(qu) du

]
,

then ut(ξ) +
∫ τ∧t

0
f(qu) du is a Q−martingale.



For the Doob-Meyer decomposition (under P) we get

ut(ξ) = u0(ξ) + At −
∫ t

0

Zu dBt

It is easy to see that Z · B is BMO and that AT has
exponential moments.

Furthermore, duality shows that dAt ≥ g(Zt) dt.

Theorem. Suppose that for ξ ∈ L∞ there is Q ∼ P
with u0(ξ) = EQ

[
ξ +

∫ τ

0
f(qu) du

]
, then dAt = g(Zt) dt.

ut(ξ) = u0(ξ) +
∫ t

0

g(Zt) dt −
∫ t

0

Zu dBt



Theorem. Are equivalent

(1) g has at most quadratic growth
g(x) ≤ k(1 + |x|2).

(2) f(x) ≥ c x2 − c for some c > 0
(3) for all ξ ∈ L∞ there is Q � P with u0(ξ) =

EQ

[
ξ +

∫ τ

0
f(qu) du

]
(4) for all ξ ∈ L∞ there is Q ∼ P with u0(ξ) =

EQ

[
ξ +

∫ τ

0
f(qu) du

]
(5) ∀ξ ∈ L∞ the BSDE dYt = g(Zt) dt−Zt dBt has

a (unique) bounded solution with YT = ξ
(6) for all k ≥ 0, the set {Q | c0(Q) ≤ k} is weakly

compact.



This is a combination of James’ theorem, Jouini-Schachermayer-
Touzi and the “martingale” theorem. Results of Barrieu-
El Karoui are also used. The new part is the equivalence
of 5 and 1. There is a relation with entropy.

BSDE with subquadratic driver were considered by Koby-
lanski, Briand-Coquet-Hu, Imkeller, ...

One can easily see (convexity theory) that bounded so-
lutions Y of the BSDE satisfy

Yt ≤ ut(ξ)



Theorem. Are equivalent
(1) lim supx→∞

g(x)
x2 = ∞ or lim infx→∞

f(x)
x2 = 0

(2) there is ξ ∈ L∞ such that the BSDE has no
bounded solution. The set of ξ for which there
is a solution is not norm dense in L∞.

(3) if the BSDE has a bounded solution Y for ξ ∈
L∞, then for each y < Y0, there are infinitely
many bounded solutions with Y ′

0 = y.
(4) for some ξ, there are infinitely many bounded

solutions with Y0 = u0(ξ)
(5) the utility function u0 is NOT strictly mono-

tone.



Theorem. If ξ is minimal, i.e. η ≤ ξ and P[η < ξ] >
0 imply u0(η) < u0(ξ), then for ξ there is a bounded
solution Y .

The converse is not true.

Remark. The fact that there is Q ∼ P with c(Q) = 0 is
equivalent to 0 being minimal, some kind of relevance
axiom. It says that for all A with P[A] > 0, we must
have u(−1A) < 0.



In all the “bad” examples, ξ depends on the history of
B.

What happens if ξ = φ(BT ), i.e. the Markov case. In
this case the process ut is a function of Bt, say u(t, Bt).

Itô calculus leads to

∂tu +
1
2
∂xxu − g(−∂xu) = 0, u(T, x) = φ(x),



The related quasi-linear PDE has a bounded solution.

∂tu +
1
2
∂xxu − g(−∂xu) = 0, u(T, x) = φ(x),

for bounded φ with φ′ ∈ L∞(R).

The proof uses BSDE techniques. As an example look
at (β > 2)

∂tu +
1
2
∂xxu − |∂xu|β = 0, u(T, x) = j(x)


