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Definition of Risk Measures

Notation: (€2, (F;)o<t<T, P) a filtered probability space
with the usual assumptions.

L>(Q, F,P) space of bounded random variables,
LY(Q, F,P) space of integrable RV.

Liabilities are with — sign!! Wealth is with + sign.
Bankruptcy means “under zero”.

Utility functions are defined on random variables, not
on “lotteries”.



Definition. u: L> — R is called a monetary utility
function if u(& +a) = u(&) + a for all a € R.

Definition. u: L — R is called a (Fatou) monetary
concave utility function if

(1) u(€) =0if =0

1S concave

(2) u

(3) u(+a)=u(&)+a for alla € R

(4) Fatou property.  If sup, [[nllc < 00, if
£, — & in probability, then u(&) > limsup u(&,).



A utility u is characterised by the acceptance set
A= {€]u(€) > 0}, u(¢) = max{a € R | £ —a € A}.
In case u is a monetary utility function we define

p(§) = —u(§)

and call it a convex risk measure. It describes the

amount of money to be added to become acceptable,
i.e. to be in A.

p(€+p(€) =0 and u(—u(f)) =0.



P = {Q <« P | Qis a probability}. The Fenchel-
Legendre transform of u satisfies (Follmer-Schied)

c: P — Ry U{4o0} is a convex function, for each
k€ R, the set {Q | c(Q) < k} is convex and closed.

infoep c(Q) = 0, we will suppose c¢(P) = 0.

Characterisation of such utility functions. For
given u (Fatou) there is ¢ as above such that

u(§) = inf{Eql¢] +¢(Q) | Q € P}

Conversely such a function c defines a Fatou utility
function.



Depending on ¢ we get different examples, some of them
easy to calculate some are more difficult. Essentially it
becomes a linear programme in infinite dimensions.

The proof is essentially the Hahn-Banach theorem to-
gether with the Krein-Smulian theorem (needed to get
weak™ closed sets in L>°). We also need that on bounded
sets of L*° the topology of convergence in measure is the
Mackey topology, a result that goes back to Grothen-
dieck and which is based on the characterisation of rel-
atively weakly compact sets (in L') as the uniformly
integrable sets, the so-called Dunford-Pettis theorem.



u is positively homogeneous (coherent) if and only if
there is a closed convex set § C P such that ¢(Q) = 0
on S and ¢(Q) =400 if Q ¢ S.

u(§) = infiEql{] | Q € S}



In continuous time we need to add an extra assumption:
time consistency (Koopmans 1960). This means that
we have the following decomposition property (for each
stopping time o):

(1) A7={e€A| forall Ae F,: 14£ € A}
(2) A, = AN L>®(F,)
(3) A=A+ A,
For each stopping we can define a utility function
ug(§) = ess.sup{n € L™(F,) [ —n € A%}

This means that time consistency and ug completely
define the process u;.



This gives, in the usual way (duality theory) a penalty
function ¢, (Q). The process ¢; can be made cadlag as
well as the process u:(£). (Jocelyne Bion-Nadal)

The prootf uses the decomposition property.

Time consistency is usually defined as:

it &, € L°, it for stopping times ¢ < 7 we have
u- (&) < ur(n) then also uy (&) < ugs(n).

On finite time intervals the time consistency is equiv-
alent to the Bellman dynamic programming principle.
On infinite time intervals this is wrong!!



Duffie-Epstein
Epstein-Schneider

Frittelli, Scandolo, Biagini
Maccheroni-Marinacci-Rustichini
Berlin-school, Detlefsen

Cheridito
Kupper



We take the case of d—dimensional Brownian Motion
B, with the usual filtration. Finite time interval [0, T.
Time consistent (with Fatou property) utility functions
can be defined via convex optimisation.

There is a function f(,w,x) such that
(1) for all z € RY, the function f(-,-,x) is pre-
dictable

(2) for (t,w) the function is convex, takes values in
R, U {400} and is proper

(3) f(-,0)=0
(4) g is the Fenchel-Legendre transform of f



For Q ~ P and dQ = &(q - B)r we have

c:(Q) = Eq {ft (qu) du | Fy| < 400

Uses previous characterisations of Chen, Peng, El Karoui-
Quenez-Peng. However we do not suppose any domi-
nance of u by a g—expectation (some kind of hidden
weak compactness)

ut (&) = ess.infqop Eq {ﬁ + ft (qu) du | ft}



We will suppose (for simplicity) that g is real valued
(< +o0) and that f and g do not depend on (¢t,w). In
this case we have precise results

Theorem. For all Q < P we have that us (& —I—fT/\t
is a Q—submartingale, T=inf{t | L; =Ep {W | ft}—()}.

If there is Q < P with up(&¢) = Eq [ﬁ - fo (qu du}
then us (&) + fTAt f(qu) du is a Q—martingale.



For the Doob-Meyer decomposition (under P) we get

t
ut(§) = uo(§) + Ar — / Zy dBy
0
It is easy to see that Z - B is BMO and that Ap has
exponential moments.
Furthermore, duality shows that dA; > g(Z;) dt.

Theorem. Suppose that forf e L° there is Q ~ P
with up(§) = Eq [f—l—fo (qu du} then dA; = g(Zy) dt.

ug(€) = up(€) + /Otg(Zt) dt — /Ot Z, dB,



Theorem. Are equivalent

(1) g has at most quadratic growth
g(x) < k(1 + |z|*).

(2) f(x) > cx?® —c for some ¢ > 0

(3) for all & € LOO there is Q < P with ug(§) =
Eq £—|—f0 (qu) du

(4) for all € € L™ there is Q ~ P with ug(¢) =
EQ f—l—fo qu du

(5) V€ € L™ the BSDE dY, = g(Z;) dt — Z, dB; has
a (unique) bounded solution with Yr = &

(6) for all k >0, the set {Q | co(Q) < k} is weakly

compact.




This is a combination of James’ theorem, Jouini-Schachermayer-
Touzi and the “martingale” theorem. Results of Barrieu-

El Karoui are also used. The new part is the equivalence

of 5 and 1. There is a relation with entropy:.

BSDE with subquadratic driver were considered by Koby-
lanski, Briand-Coquet-Hu, Imkeller, ...

One can easily see (convexity theory) that bounded so-
lutions Y of the BSDE satisty

Y < ug(§)



Theorem. Are equivalent

(1) limsup, .. gg) = 00 or liminf, . fg) =0

(2) there is € € L*> such that the BSDE has no
bounded solution. The set of & for which there
1S a solution is not norm dense in L.

(3) «f the BSDE has a bounded solution Y for £ €
L°°, then for each y < Yy, there are infinitely
many bounded solutions with Y5 = y.

(4) for some &, there are infinitely many bounded
solutions with Yy = ug(€)

(5) the wutility function ug is NOT strictly mono-
tone.




Theorem. If & is minimal, i.e. n < & and Pln < &] >
0 imply ug(n) < uog(§), then for £ there is a bounded
solution Y .

The converse 1s not true.

Remark. The fact that there is Q ~ P with ¢(Q) = 0 is
equivalent to 0 being minimal, some kind of relevance
axiom. It says that for all A with P[A] > 0, we must
have u(—14) < 0.



In all the “bad” examples, & depends on the history of
B.

What happens if £ = ¢(Br), i.e. the Markov case. In
this case the process u; is a function of By, say u(t, By).

1tO0 calculus leads to

1
Oru + 5833.%’“ — g(—awu) = 0, U(T7 x) — qb(ZIZ),



The related quasi-linear PDE has a bounded solution.

1
Oru + §amu —g(—0u) =0, u(T,z)=¢(x),

for bounded ¢ with ¢" € L>°(R).

The proof uses BSDE techniques. As an example look
at (8 > 2)

1
Oru + §amu — \8xu|ﬁ =0, u(T,z)=j(x)



