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FIGURE 1. Evolutionary Dynamics

Computational Biology Group at Nankai

• sequence to structure maps

• combinatorial representation of biomolecules

• new generation folding algorithms of biomolecules



Sequences and Shapes

FIGURE 2. The neutral network of a structure. Sequence space (right) and

shape space (left) represented as lattices. We draw the edges between two

sequences bold if they map into the one particular structure on the left. The

two key properties of neutral nets are their connectivity and percolation. They

allow sequences to move while maintaining a shape through sequence space.



Sequences and Shapes: Neutral Networks
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FIGURE 3. Neutral network. Sequence space is represented as lattice and

the neutral net is an induced subgraph (bold edges). We label the pairs of

sequences representing antipodal pairs by (A,B) and (C,D). The two key

properties of neutral nets are their connectivity and percolation.

Theorem 1. Let Qn2,λn be the random graph consisting of Qn2 -subgraphs, Γn, induced

by selecting each Qn2 -vertex with independent probability λn = 1+χn
n , where χn =

ǫn
a−1
2 , where 0 < ǫ and 0 < a ≤ 1. Then we have

(0.1) ∃ κa > 0; lim
n→∞

P( |C(1)
n | ≥ κa n

a−1|Γn| and C(1)
n is unique ) = 1 .

Christian M. Reidys Large components in random induced subgraphs of n-cubes Dis-

crete Math. submitted, 2007.
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FIGURE 4. RNA secondary structure. Watson-Crick base-pairs (gray),

tertiary contacts (black)



RNA secondary structures or better: 2-noncrossing RNA

FIGURE 5. RNA secondary structures. Diagram representation (top): the

primary sequence, GAGAGCCUUUGGACCUCA , is drawn horizontally and

its backbone bonds are ignored. All bonds are drawn in the upper halfplane

and secondary structures have the property that no two arcs intersect and all

arcs have minimum length 2. Outer planar graph representation (bottom).



3-noncrossing RNA structures

FIGURE 6. k-noncrossing RNA structures. (a) secondary structure , (b)

planar 3-noncrossing RNA structure , (c) the smallest non-planar 3-

noncrossing structure

Definition 1. An RNA structure (of pseudoknot type k− 2), Sk,n, is a digraph in which

all vertices have degree ≤ 1, that does not contain a k-set of mutually intersecting

arcs and 1-arcs, i.e. arcs of the form (i, i+ 1), respectively.



3-noncrossing RNA structures: What is new?

FIGURE 7. A 3-noncrossing RNA structure, as a planar graph (top) and as a

diagram (bottom)

FIGURE 8. The proposed SRV-1 frame-shift is a 10-noncrossing RNA struc-

ture motif.



Combinatorics of 3-noncrossing RNA structures

Theorem 2. Let k ∈ N, k ≥ 2, let fk(n, ℓ) be the number of k-noncrossing digraphs

over n vertices with exactly ℓ isolated vertices. Then the number of RNA structures

with ℓ isolated vertices, Sk(n, ℓ), is

(0.2) Sk(n, ℓ) =
(n−ℓ)/2

∑
b=0

(−1)b
(

n− b
b

)

fk(n− 2b, ℓ) .

Furthermore the number of k-noncrossing RNA structures, Sk(n) is given by

(0.3) Sk(n) =
⌊n/2⌋
∑
b=0

(−1)b
(

n− b
b

)

{

n−2b
∑
ℓ=0

fk(n− 2b, ℓ)
}

Emma Y. Jin, Jing Qin and Christian M. Reidys Combinatorics of RNA Structures with

Pseudoknots, Bulletin of Math. Bio., 2007, in press.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S3(n) 1 1 2 5 13 36 105 321 1018 3334 11216 38635 135835 486337 1769500

Table 1. The first 15 numbers of 3-noncrossing RNA structures.



Combinatorics of 3-noncrossing RNA structures: Main idea

FIGURE 9. A 5-noncrossing structure corresponding to the oscillating tableau

below and subsequently the corresponding walk γa,a in Z
4.
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Why 3-noncrossing RNA structures is so different: recursions

Corollary 1. The number of RNA secondary structures having exactly ℓ isolated vertices,

S2(n, ℓ), is given by

(0.4) S2(n, ℓ) =
2

n− ℓ

( n+ℓ

2
n−ℓ

2 + 1

)( n+ℓ

2 − 1
n−ℓ

2 − 1

)

.

Furthermore S2(n, ℓ) satisfies the recursion

(0.5) (n− ℓ)(n− ℓ + 2) · S2(n, ℓ) − (n+ ℓ)(n+ ℓ− 2) · S2(n− 2, ℓ) = 0 .

Corollary 2. The number of 3-noncrossing RNA structures having exactly ℓ isolated vertices,

S3(n, ℓ), satisfies the 4-term recursion

p1(n, ℓ) S3(n− 6, ℓ) − p2(n, ℓ) S3(n− 4, ℓ) − p3(n, ℓ)S3(n− 2, ℓ) + p4(n, ℓ) S3(n, ℓ) = 0 ,

(0.6)

where the coefficients p1(n, ℓ), p2(n, ℓ) p3(n, ℓ) and p4(n, ℓ) are given by

p1(n, ℓ) =
1

2
n(n− 1)(n− 10+ ℓ)(n− 4+ ℓ)(n− 8+ ℓ)

p2(n, ℓ) =
1

2
n(n− 3)(13n3 − 126n2 + 13n2ℓ− 88nℓ + 392n+ 3nℓ2 + 216ℓ − 384− 42ℓ2 + 3ℓ3)

p3(n, ℓ) = (n− 1)(1
2
n− 2)(13n3 − 30n2 − 13n2ℓ + 8n+ 16nℓ + 3nℓ2 + 30ℓ2 − 72ℓ − 3ℓ3)

p4(n, ℓ) = (n− 3)(1
2
n− 2)(n− ℓ)(n− ℓ + 6)(n− ℓ + 4) .



Asymptotic numbers of 3-noncrossing RNA structures
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FIGURE 10. The numbers of RNA structures for large n. 2-noncrossing RNA

structures, 3-noncrossing RNA structures and restricted 3-noncrossing RNA

structures. Numerically exponential growth rates: S2(n) ∼ 2.5913n (n =

1000), S3(n) ∼ 4.6542n (n = 1000), and S
(r)
3 (n) ∼ 4.2741n (n = 400).



Asymptotic Combinatorics: Toroidal Harmonics

FIGURE 11. Toroidal harmonics and its singular expansion. We display

the analytic continuation of ∑n≥0 S3(n)z
n, the generating function of 3-

noncrossing RNA structures (left) and its singular expansion (right) at the

dominant singularity ρ3 = 5−
√
21
2 .



Asymptotic Combinatorics: Toroidal Harmonics

Lemma 1. Let z be an indeterminant over R and w ∈ R a parameter. Let furthermore ρk(w)

denote the radius of convergence of the power series ∑n≥0[∑h≤n/2 Sk(n, h)w
2h]zn. Then for

|z| < ρk(w) holds

(0.7) ∑
n≥0

∑
h≤n/2

S′
k(n, h)w

2hzn =
1

w2z2 − z+ 1 ∑
n≥0
fk(2n, 0)

(

wz

w2z2 − z+ 1

)2n

.

In particular we have for w = 1,

(0.8) ∑
n≥0

Sk(n)z
n =

1

z2 − z+ 1 ∑
n≥0
fk(2n, 0)

(

z

z2 − z+ 1

)2n

.

Theorem 3. The number of 3-noncrossing RNA structures is asymptotically given by

S3(n) ∼ 10.4724 · 4!
n(n− 1) . . . (n− 4)

(

5+
√
21

2

)n

.

Emma Y. Jin and Christian M. Reidys Asymptotics of RNA Structures with Pseudoknots, Bul-

letin of Math. Bio., 2007, accepted.



Central and Local Limit Theorems for RNA structures

FIGURE 12. Central limit theorem and local limit theorem for 3-noncrossing

RNA structures of length n = 100 with exactly h arcs: we display the

central limit theorem (left) for S′
3(100, h), h = 1, 2, · · · 50 (labeled by red

dots) with mean 0.39089 · 100 = 39.089 and variance 0.041565 · 100 =

4.1565, and for the local limit theorem (right), we display the difference√
4.1565 P

(

Xn−39.089√
4.1565

= x
)

− 1√
2π
e−

x2

2 which is maximal close to the peak

of the distribution.



Central and Local Limit Theorems for RNA structures

Theorem 4. (Central Limit Theorem) Let S′
3(n, h) be the number of 3-noncrossing RNA

structures with exactly h arcs. Let Xn be the r.v. having the distribution

(0.9) ∀ h = 0, 1, . . . ⌊n
2
⌋, P(Xn = h) =

S′
3(n, h)

S3(n)

Then the random variable Xn−µn√
σ2n

has asymptotically normal distribution with parameter (0, 1),

i.e.

(0.10) lim
n→∞

P

(

Xn − µn√
σ2n

< x

)

=
1√
2π

∫ x

−∞
e−

1
2 t
2
dt

and µ, σ2 are given by

(0.11) µ = −− 32 + 13
42

√
21

5
2 − 1

2

√
21

= 0.39089 and σ2 = µ2 − 1−
94
441

√
21

5−
√
21
2

= 0.041565 .

Theorem 5. (Local Limit Theorem) Let S′
3(n, h) be the number of 3-noncrossing RNA struc-

tures with exactly h arcs. Let Xn be the r.v. having the distribution

(0.12) ∀ h = 0, 1, . . . ⌊n
2
⌋, P(Xn = h) =

S′
3(n, h)

S3(n)

Then we have for set S = {x | x = o(
√
n)}

(0.13) lim
n→∞
sup
x∈S

∣

∣

∣

∣

√
σ2n P

(

Xn − n µ√
σ2n

= x

)

− 1√
2π
e−

x2

2

∣

∣

∣

∣

= 0 ,

where µ = 0.39089 and σ2 = 0.041565.

Emma Y. Jin and Christian M. Reidys Central and Local Limit Theorems of RNA Stuctures,

Journal of theor. Bio., 2007, submitted



Central and Local Limit Theorems for RNA structures: the Shift

FIGURE 13. Central limit theorem of 2-noncrossing and 3-noncrossing RNA

structures: both random variables are normalized to S′
2(n, h)/S2(n)and

S′
3(n, h)/S3(n), respectively. In case of n = 100, for 2-noncrossing

RNA structures we have a mean of 0.276393 n = 27.6393 and variance

0.044721 n = 4.4721 (left curve), while for 3-noncrossing RNA structures

mean 0.39089 n = 39.089 and variance 0.041565 n = 4.1565 (right curve).

The red dots and magenta dots represent the values S′
2(n, h)/S2(n) and

S′
3(n, h)/S3(n), respectively.



Folding of k-noncrossing RNA structures

FIGURE 14. A 5-noncrossing structure corresponding to the oscillating

tableau below and subsequently the corresponding walk γa,a in Z
4.
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