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# |ntroduction T
s The differentially heated rotating annulus experiment

# Bifurcation analysis
» Numerical continuation
s Eigenvalue computation

# Examples
s differentially heated rotating annulus
s differentially heated rotating spherical shell

& Summary
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A differentially heated rotating annulus
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A differentially heated rotating planet
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A differentially heated rotating annulus
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Wave flow In the annulus
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Vacillating

BIRS — p.8/48




log(Thermal Rossby number)

Regime diagram

upper symmetric

knee

vacillation

lower symmetric irregular

log(Taylor number)

|

BIRS — p.9/48



Bifurcation analysis
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. d
# Nonlinear DE: d_:; = G(x,a),z € R, a € RL.

# Steady solution zg = x¢(«) when: G(xg,a) = 0.

#® Look for bifurcations from steady solution
s linear stability of steady solution

» from eigenvalues, ), of the linearization of dynamical
equation about the steady solution:

Gy(x = x0, ).

s Real(N\;) <Oforall j — =x0is linearly stable
s Real()\;j) > 0forone j — =xgis linearly unstable
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Numerical computations
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#® Steady solutions
» Use pseudo-arclength continuation

# Linear stability: eigenvalues
s Implicitly restarted Arnoldi method
» with Cayley transformations
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Steady solution: continuation
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# Look for steady solutions

s discretization reduces PDE to system of nonlinear
algebraic equations

s needtosolve G(z,a) =0,z € R",a e€R

#® Use Newton’s method with continuation
» nheed to have a good guess
s assume we know zq at ag such that G(zq, ag) =0
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Natural parameterization




Natural parameterization




Pseudo-arclength continuation
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#® Consider the parameter o as an unknown
# predictor: new guess (z1,a1) given by

AS @) A (a)

9 O/\fl = o0+
Ik
s to = [t £] is the tangent to the solution curve
s the step size As measures arclength along tangent
line
# for corrector, add an extra condition to get new system:

G(r,a) = 0
flx,a) = 0

o |

BIRS — p.15/48



Pseudo-arclength continuation
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Eigenvalue approximation
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# Eigenvalue problem
s Linearize about steady solution
s get generalized eigenvalue problems

ABO = A

» discretization leads to matrix eigenvalue problems
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Eigenvalue approximation
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#® For eigenvalues use ‘Implicitly restarted Arnoldi method
s Iterative
o memory efficient
s finds extremal eigenvalues
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Eigenvalue approximation

-

#® Use generalized Cayley transform
C(A,B)= (A —B)"' (A — 5»B)

s ) are eigenvalues from A\Bz = Ax
s 1 are eigenvalues from px’ = Ca’

s Real(\) > 2 ‘2“’2

> p] > 1
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Eigenvalue approximation

-

#® Use generalized Cayley transform
C(A,B)= (A —B)"' (A — 5»B)

# Don’t need to form the matrix C explicitly
» only need the matrix-vector product w = Cuv

w=Cuv=(A—-0B) (A -5B)v
s multiple by (A — 0;B) get:
(A —o0B)w= (A —02B)v

l.e. a system of linear equations
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Centre manifold reduction
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# Apply centre manifold reduction at bifurcation points

» gives a low-dimensional model of dynamics
s get existence and stability of bifurcating solutions
» gives results close to a bifurcation point (local
dynamics)
#» Write ODE (reduced equation) in normal form
s compute the coefficients of the normal form
equations

# Deduce dynamics of PDE from low-dimensional ODE
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A differentially heated rotating annulus
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Model of fluid in the annulus

-

Navier-Stokes equations in the Boussinesq
approximation

Cylindrical coordinates and rotating frame of reference
No-slip boundary conditions
Insulating top and bottom of annulus

Differential heating: AT =T, — T,
Inner cylinder cooled; outer cylinder heated

Quantitatively accurate results
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Analysis
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# Look for steady flows invariant under rotation

s primary transitions
s reduces to problem in two-spatial dimensions

# Bifurcations from steady solutions
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Transition curve
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thermal Rossby number

Regions of bi-stability
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Spherical Shell




°

© o o o

Model of fluid in a spherical shell

-

Navier-Stokes equations in the Boussinesq
approximation

Spherical polar coordinates and rotating frame of
reference

No-slip boundary conditions at inner sphere
Stress-free boundary condition at outer sphere
Insulating outer sphere

Differential heating imposed on inner sphere:
atr =rg, T =Ty — AT cos(20).
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Spherical shell
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Analysis
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# Look for steady flows invariant under rotation and
reflection about equator

» Reduces to problem in two-spatial dimensions

s Introduces additional boundary conditions at pole
and equator

# Bifurcations of steady solutions
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Steady Solution: n = R/ry = 1/2, AT = 0.004
- o

stream function azimuthal fluid velocity temperature deviation
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Steady Solution: n» = R/rg = 1/2, AT = 0.026
- -

stream function azimuthal fluid velocity temperature deviation
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Steady Solution: » = R/ry = 1/2, AT = 0.0483
- -

stream function azimuthal fluid velocity temperature deviation
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Steady Solution: » = R/rg = 1, AT = 0.002
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stream function azimuthal fluid velocity temperature deviation
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Steady Solution: » = R/rg = 1, AT = 0.029
- -

stream function azimuthal fluid velocity temperature deviation
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Bifurcation Diagram: n = R/r; =1
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Steady Solution: n = R/ry = 3.5, AT = 0.001
- o

stream function azimuthal fluid velocity temperature deviation
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Steady Solution: » = R/ry = 3.5, AT = 0.019
- -

stream function azimuthal fluid velocity temperature deviation
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Bifurcation Diagram: » = R/ry = 3.5
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Cusp bifurcation
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Cusp bifurcation (schematic)
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Computation of cusp point

- N

# Codimension two bifurcation
» Need two parameters: AT and ¢

# \Write equations as:
U= LU+ N(U,U)

where U is dependent variable,
LU is linear part, N(U, U) is nonlinear part,

and U is derivative with respect to time
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3.

#® Cusp point is characterized by:
1.
2.

Computation of cusp point

-

LUy + N(Uy,Up) =0

zero eigenvalue of Ly where

LoV =LV + N(V,Uy) + N(Up, V)

vanishing of the coefficient of 2nd-order term of
equation on centre manifold (or reduced equation)
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Reduced eguation

f # Reduced equation T

w = B + Bow + aw? + cw?
where
a=1/2(®*, N(®,P)) =0

d Is the eigenfunction corresponding to A = 0,

o* Is the corresponding adjoint eigenfunction,
(-,-) I1s the inner product
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Defining system

- N

LU()—I—N(U(),U()):O, g =0, g/:O

where g and ¢’ are scalars given by
LoV 4+ gB =0, <C,V>:1

LoV +¢B=—N(V,V), (C, V") =0

where B not in range of Ly,
and C not in range of the adjoint operator Lj,.

® Solvetogeta=0atn=3.46, AT =0.011
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Summary

-

# Application of numerical bifurcation analysis

s compute flow regimes
s compute details of flow transitions

# Could apply same ideas to industrial problems
# Applied to transitions from steady flows

#® Could also apply similar ideas to transitions from
periodic flows

s HPC
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