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Ad Hoc Networking

• There may not be any infrastructure:

– remote areas

– ad-hoc meetings

– disaster areas

• Cost can be an argument against infrastructure:

– battery resources

– number of sensors

• Not every host can hear every other host:

– Data needs to be forwarded in a “multi-hop” manner.
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Location Oblivious/Aware

• Location Oblivious

– Hosts have no knowledge of network layout.

– Is this assumption “too minimalist”?

– How can effective communication principles be established?

• Location Aware

– Overhearing, Localization, GPS, etc., are often available.

– Simple communication exchanges can be used to establish
an underlying topological structure.

– Can this be used to our advantage?

Question: How location oblivious/aware should one be?
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Locality

Locality in Distributed Graph Algorithms (Linial, 1992)

• A distributed algorithm is called local if each node of the
network makes decisions based only on information obtained
from nodes located no more than a constant (independent of
the size of the network) number of hops from it.

• Not the same as distributed: No host is ever aware of the
existence of the parts of the network further away than this
constant number of hops.

There are several reasons why such local algorithms are practical
for wireless, ad hoc networks.
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Importance of Locality

1. Changes in the network outside a constant-size neighborhood
do not influence the computation.

2. Adapting to a change in the network requires solely a local
recalculation of the solution.

3. It is possible to calculate only a part of the required
subnetwork that is really needed without necessarily having to
calculate a complete solution (this can be important in cases of
disaster recovery).

4. Messages do not propagate indefinitely throughout the network
and the algorithm terminates in a constant number of steps.

5. A solution is consistent regardless of the order in which the
nodes or edges are considered in the calculations.
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Location Awareness and Locality

An important question:

• Given the limitations of locality, and

• Assuming location awareness

• Can we improve communication efficiency in ad hoc networks?
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Communication Paradigms

• Two important paradigms are being used in “location aware”
ad hoc networks.

– Local → Global

– Global → Local

• Local → Global
An algorithm is suitable for local computation provided that it
attains good global connectivity and spanning characteristics.

• Global → Local
Use global algorithms restricted to a geographically local
vicinity.
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Communication
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Face-Routing in Planar Networks

Routing from u to v.

1. Starting at c := u determine face F := F0 incident to c

intersected by the line segment !st.

2. Select any of the two edges of F0 incident to c and start
traversing the edges of F0 until we find the second edge, say
xy, of F0 intersected by !uv.

3. Update face F to the new face of the graph containing edge uv,
and vertex v to either of the vertices x or y.

4. Iterate until v is found.
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Routing from s to t (Example 1)

s

t
c

Initially c := s.

Update c and repeat.
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Face Routing (Example 2)

v

u
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Properties

Source must have knowledge (geographic coordinates) of
destination.

• It is a local algorithm.

• It is guaranteed to succeed.

Unfortunately, it works only for planar graphs!
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Simplifying

the

Infrastructure
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Why Simplify the Infrastructure?

• Remember,...,we want to establish efficient communication in a
“locality setting” meaning we do not have global knowledge of
the ad hoc network!

• How do you establish communication (e.g., routing) with
guaranteed delivery? Can do it with flooding...but doesn’t
seem to be a good idea!

• Accepted method: Find a planar spanner of the original ad
hoc network.

• Question: But how do you find a good spanner satisfying the
“locality” requirement?
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Half-Space Proximal: Idea

This test resembles the Yao test in that each point u patitions the
plane around it (in this case in two parts).

The idea is the following.

1. u selects the point closest to it, say v.

2. u draws the line L perpendicular to uv at its midpoint.

3. Removes from consideration all vertices in the half-plane
determined by L that contains v.

4. Iterate.
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Example

u selects edges uv2, uv5, uv7.
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Bounded Degree ≤ 6

Let uv be the shortest edge from u and let v′ be next shortest edge.

The angle ∠vuv′ must be ≥ π/3,
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Strongly Connected

Let uv be the shortest counterexample of an edge of G with no
directed path from u to v. By construction, there must exist an
edge uz selected and v is in the forbidden region.

Therefore ∠vuz ≥ π/3. However, |zv| < |uv|. Since G is a UDG, zv

must be an edge of G. Since uv is the shortest counterexample
there must exist a directed path from z to v. Contradiction!
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Stretch Factor ≤ 2π + 1

Suppose that an edge uv of length r ≤ 1 is excluded by u.
This means that there is an
edge uu1 in G which is selected
by u such that |uu1| ≤ |uv| and
∠u1uv < π/2. Thus the edge
uu1 makes the vertex v to be in
the forbidden area. If the edge
u1v is selected then the stretch
factor is less than 3, else we
can argue inductively that there
exists a sequence of vertices
u0 = u, u1, u2, u3, ..., uk+1 = v

such that . . . Look in the paper for the proof!
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Spanner with Dilation 5π/3 + 1

Look in the paper for the proof.
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Half-Space Proximal

1. If G is a connected UDG then the digraph
→

HSP (G) has
out-degree at most 6 (can be made to have degree at most 5)
and is strongly connected.

2. Let G be a geometric UDG and
→

HSP (G) be the digraph
constructed from G by the above algorithm. Then the stretch

factor of
→

HSP (G) is at most 2π + 1.

3. If G is a connected unit disk graph then a geometric minimum
spanning tree of G is a subgraph of HSP (G).

4. The Half-Space Proximal is not necessarily planar.
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From Algorithm to k-Local-Algorithm

Take any algorithm A such that on input a UDG G, the algorithm
outputs a spanner A(G) of G.

Algorithm k-Local.
Input: G.
Output: G′.

1. For any node u,

(a) u collects its distance k neighborhood Nk(u).

(b) u constructs A(Nk(u)).

2. A link {u, v} is accepted in G′ if it is in both A(Nk(u)) and
A(Nk(v)).

Changes to (2) are also possible.
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From Algorithm to k-Local-Algorithm

k k
N  (u) N  (v)

u v
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UDGs with Irregularity r

Two nodes at distance at most r can communicate directly, but no
nodes at distance more than 1 can communicate directly.

1r

u

Nodes u, v may or may not communicate directly if r < d(u, v) ≤ 1.

For a given a set P of points in the plane and for each r,
UDG(P ; r) is the resulting class of graphs.

Each G ∈ UDG(P ; r) contains (resp., is contained in) the UDG on
P with radius r (resp., 1).
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k-Local Spanning Trees

Algorithm: LocalMSTk

Input: Connected geometric graph G with the linear order ≺;

Output: Graph G≺k

Run the following algorithm at each node v of G:

1. Learn your distance k neighborhood Nk[v].

2. Construct locally the unique MST Tk(v) of Nk[v].

3. Broadcast in N1[v] the edges of N1[v] which have been re-
tained in Tk(v) (i.e. N1[v] ∩ Tk(v)).

4. The output graph G≺k is defined as follows: an edge is se-
lected into G≺k if and only if it was retained by both of its
incident nodes.
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Connectivity

Assume on the contrary {u, v} is retained in MST T , but rejected
in G≺k (wlog assume rejected in Tk(v)): there exists a path, say p,
in Tk(v) joining u and v and using only edges smaller than {u, v}.

w

u v
w’

Let {w,w′} be an edge in p such that {w,w′} /∈ T : hence, there is a
path in T joining w and w′ and using only edges smaller than the
edge {w,w′}.

This contradicts the fact that the edge {u, v} was retained in T .
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Planarity, if Min distance ≥
√

1− r2 (1/2)

Assume on the contrary G≺k not planar and {u, v}, {w, t} be two
crossing edges in G≺k (wlog, largest angle in quadrilateral, say
∠uwv, is ≥ π/2).

t

u

v

w

We have |u, w|2 + |w, v|2 ≤ |u, v|2 ≤ 1. Since |w, v| ≥
√

1− r2,
|u, w|2 ≤ 1− |w, v|2 ≤ r2. Hence, {u, w} ∈ G. Similarly, {w, v} ∈ G.

Claim: {u, v} will not be selected into G≺k by u.
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Planarity, if Min distance ≥
√

1− r2 (2/2)

Node u computes Tk(u) using Kruskal’s algorithm. Either {u, w} is
retained in Tk(u), or there already exists a path in Tk(u) consisting
of smaller edges connecting u and w. Same is true for {w, v}.

t

u

v

w

So when {u, v} is being considered by u for inclusion into Tk(u),
there already exists a path in Tk(u) connecting u and v and hence
{u, v} will be rejected by u, which contradicts the fact that edge
{u, v} is in G≺k .
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k-Local Spanning Trees

• The resulting spanner has maximum degree at most
3 + 6

πr + r+1
r2 , when 0 < r < 1 (and at most five, when r = 1).

• The spanner is planar provided that the distance between any
two nodes is at least

√
1− r2.

• For k ≥ 2 the sum of the euclidean lengths of the edges of the
spanner is at most kr+1

kr−1 times the sum of the euclidean lengths
of the edges of a minimum weight euclidean spanning tree if
the spanner is planar.
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