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Coordination Polyhedra

@ The growth rate is based on a coordinate polyhedron model

@ This is capable of naturally explaining the different growth
rates between the positive and negative directions in a polar
crystal such as the |1I-V semiconductors

o If AB is the Ill-V semiconductor under consideration, then its
anion-coordination polyhedra are ABg_ tetrahedra
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Coordination Polyhedra

C
Shown are the four tetrahedra of an AB unit cell. To the left only
the B atoms in the unit cell are shown. B atoms in the unit cell
but not included in the four growth units are represented with
hollow circles. At the centre of each tetrahedral growth unit is a A
atom accounting for all the atoms in the AB unit cell. On the
right only the tetrahedra are shown.
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Coordination Polyhedra
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For a crystal pulled in the [001] direction,

@ [001] is into the melt gives Vyyia = 1.7321

® Viateral has four-fold symmetry
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Constrained Growth

Crystal
r=R(z)
Gas
é . ~\\ Meniscus
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@ If not constrained by the meniscus then tan(f — 6.) = “ateral

Vaxial

@ For growing a cone 6 — 0. is 1/2 the opening angle of the cone
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Constrained Growth
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Pulling in the [111] direction
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Pulling in

the [211] direction

Pull=[-2 1 1]
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Equilibrium Crystal Shapes
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Equilibrium Crystal Shapes

For the purpose of computing thermal stress, we assume the
following expression in the case of weak anisotropy (« small)

R(¢,2) = R(2) (1 +a) B COS(”k¢+5k)) ;

k=1

where m, n; < np < --- < np, are positive integers and

ZT:I 513 =1L

@ « is the (small) geometric anisotropy factor

@ 4-fold symmetry (m=1,n; = 4)

@ 6-fold symmetry (m=1,n; = 6)

@ We assume that the lateral shape of the crystal is in
equilibrium
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Basic Equations

Within the crystal Q, the temperature T(x, t) satisfies the heat
equation,

oT
p565§:V*(HSVT), xeQ, t>0

where ps, ¢s and ks are the density, specific heat, and thermal
conductivity of the crystal. The boundary conditions are below,

oT

R = hes(T — Tg) + he(T* — T1), x €Ty,
oT
K‘sa—z = hch(T - Tch)’ zZ = 0’

where hes and hgy, represent the heat transfer coefficients; hr the
radiation heat transfer coefficient; T, Tc, and T} denote the
ambient gas temperature, the chuck temperature and background
temperature respectively.
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Basic Equations

The crystal /melt interface is denoted I's and is where T = T,,, the
melting temperature. Explicitly we denote the melting isotherm by

z—5S5(x,t) =0, x€erls.

The motion of the interface of the phase transition is governed by
the Stefan condition

! o oT o OSk
Ps |Vn| = Ks 8— s — di,n, |Vn| =Vn= E -n
where L is the latent heat, |v,| is the speed of the interface in the
direction of its outward normal n, and g, ,, is the heat flux from the
melt normal to the interface. The speed S /0t is the speed of the
interface S in the k direction.
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Rescaled Equations

Identify the Biot number

(1)
as a small parameter (small lateral heat flux). Rescaling,

1
§@t (r@r)r+ﬁe¢¢+6@zz, XEQ,t>0,

with,

. R? 1/2
-0, + R2R¢@¢—|—€R @z—GF(@) <1+ﬁ+6R2> , X€ Fg,

ez(ov ¢7 ( (0) Qb, t) - ech) 5

t) =
©

x€elg,

CI/F_\>

1 1
©,— 2506, — —-50,=7+5, v=—-"T""_
z B rr = 0AS40) Y+ Y 61/2K,SAT
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Rescaled Equations

B(2) = hgs/hgs, and & = €'/2hey, /hgs and v (q;) is the
non-dimensional (dimensional) heat flux in the liquid across the
crystal/melt interface in the axial direction. Also,

he(Tg — Tp)

. 4hr 5
F(©)= 7/_7gSAT + (ﬁ(z) + P Tg> S)

h
ToAT(6TF +4T,ATE + AT?6%)0%.
gs
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Perturbation Solution

The Biot number for the lateral heat flux is small (e ~ 0.03) and
the geometric anisotropy is weak (o < 1).
Expansion:

O ~ Og(z,t) + €O1(r, d, 2, t) + €Oa(r, dp, 2, t) + - - -,
S~ So(t) + €Si(r, ¢, t) + ESa(r, 1) + -+ - .

Zeroth order model (Fast to compute):
1 2 -,
§@0,t = @o,zz = E (R @o,z = F(@o)) , O0<z< 50(1.‘), t>0,
@0,2(07 t) = (@0(07 t) - @Ch)7 t Z 0,
©0(So(t), t) =1, t >0,

So(t) = ©o,2(So(t), t) — 7, S0(0) = Zp, t>0.
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Perturbation Solution

First order model:
O1(r.6,2,1) = O3(z.t) + POz, t) + aOS(r, 6, 2, ) + O(c?)

where, keeping only those terms to O(«),

O%(z,t) = 5= (R0 ~ F(0)
O5(r,0,2,) = RF(80) Y- 2 (%)™ cos(nuo + 3.
k=1 "k

These last two terms are completely determined by ©¢ and R. CH
does not play a role in the stress.
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Basic Relations

For a crystal with cubic symmetry the stresses
_ T :
0 = (0xx; Oyy, 022, 0yz,0xz,0xy) " and strains
e =€y &y, €22, 26,2, 26z, 2exy)T are related through

i Go G
G CGu G
Co Go (i1

Crectgu Crect -

S|
Il

Caa
Cas
Cas

For an anisotropic material the quantity H = 2Cyq — Ci1 + G2 # 0.
We assume that the z-component of the displacement is zero
because of the free surface at the melt.
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Operator Splitting

Split Cect into a diagonal anisotropic part and an isotropic part
Crect — CO - Ca,rect- Ca,rect - H/4' X dlag(27 27 27 _17 _17 _1)- and
G Q G
Gy Gy G
G & G
CO - CO
44

0
Cay

is isotropic. C, rect i chosen to minimize p(C()_lCaJeCt).
E and v in term of Cj are given by

CGi1 +2C2+ H/2)(Ci1 — Gio + H/2)
Gi1+ Go+H/2
L C2
G+ G + H/2.

o

9
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Operator Splitting

Denote the displacement vector as w, the strain by e = S(w) and
the stress by 0 = CS(w) with C = Gy — C..
The thermoelastic problem becomes

V-CS=(C1+2Gy)VO, xeQ, t>0,
CS~I‘I:(C11+2C12)GI‘I, r= R((b,z)

or by rescaling

1—v H
V‘CS_<1_2V—§>V@, xeQ, t>0,

1—v H
CS-n—<1_2V—§>@n, r=R(¢,z)

with n denoting the outward normal of the surface r = R(¢, z).
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Operator Splitting

Using the form of C,

V- CS=V-GS—-V- -GS =L —L,,
CS n=GS n—CS -n=D8y—B,,

to solve for w(x) one starts with wg given by

11— H
EO(WO)Z(I—;/_E)ve’ xeQ, t>0,
1—v H
Bo(Wo) = <1—2V —§> @n, m= R(gb,z).

wy is the isotropic displacement found previously [Bohun et al.],

T H1-2
multiplied by a factor of 1 — 5 5=~
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Operator Splitting

We know wy explicitly for a given crystal shape R(¢, z).
Having defined wg, we denote by wy 1 = Nwy, with k > 0, the
solution to

ACO(Wk—i-l) = L’a(wk), xeQ, t>0,
BO(Wk—i-l) = Ba(wk), r — R(qb,z).
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Perturbation Series

Continuing this process we have for w(x)
w = wo + Nwg +Nwg + -+ + N"wg + -+ - .
Since ||NV]| < w in a suitable norm, where

_ |H|/2 _ |2Ca4 — Cu1 + Cio|
Ci1—Co+H/2 2G4+ CGi— G

w <1

is an anisotropic factor, the series converges and an error can be

estimated when replaced by a finite sum. For typical cubic
anisotropic materials w ~ 1/3.

Ci1 Cio Caa w
GAaAs 12.16 x 10* 5.43 x 10* 6.18 x 10*  0.295
INP  10.76 x 10* 6.08 x 10* 4.233 x 10* 0.288
INSB  6.70 x 10* 3.65 x 10* 3.02 x 10* 0.329
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Perturbation Series

@ For a given pulling direction Cy is invariant however, the
explicit form of C, depends on the crystal orientation

@ Consequently £, and B, depend on the orientation

@ (, transforms as a fourth rank tensor and includes only
trigonometric factors cos m¢ and sin m¢ where m depends on
the orientation of the crystal

For example, if (ca,54) = (cos4¢,sin 4¢) then

l+¢ 1—c¢ 0 O 0 —S4
1-— Cy 1+ Cy 0 0 0 S4
clooy _ H 0 0 2 0 0 0
BYET g 0 0 0 -1 0 0
0 0 0O 0 -1 0

—54 S4 0 0 0 —C4
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Plane Strain

To illustrate the procedure assume that the displacement is only in
the (r, ¢) plane.
Stress strain relation for the [001] direction becomes

Oa,rr H 1+ag 1-ca —s €rr
Tage | =7 |1-a@ 1ta s s
Oard —S4 Sy —cy 2er4
For the [111] direction
Tergiy H 0 2 0 e
Oagd | = E 2 0 0 €pop
Carg 0 0 —1 2e4
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A Canonical Problem

To find wg + w; = wg + Nwg the thermoelastic equations

ﬁo(wl) = ﬁa(WO), xeQ, t>0,
Bo(w1) = Ba(wo), r=R(¢,z)

reduce to finding sequence of solutions of the form

80,, 4 180}(1, 4 Orr — Ogg _
or r 0¢ r
80,¢ + 180’¢¢ + 2Urq5 _
or r 0¢ r

with integers n > 0, kK > 1, and

f,r*2cos(ng + ), r < R(2),

for*=2sin(ng + ), r< R(2),

o = g r* 1 cos(ng + 0), r=R(z),
01 = gpr* Lsin(ng + 6), r = R(2),

where f,, fy, gr, 84 depend on C,.
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A Canonical Problem

We solve this with a two stage approach.

© Find a particular solution that does not necessarily satisfy the
boundary condition

@ Find a homogeneous solution with a (perhaps) modified
boundary condition

The point here is that the solution can be written out explicitly for
general f,, fy, gr, 84 so that the problem becomes a bookkeeping
problem.

Fast
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Results - Geometric [001]: Total Resolved Stress

a = 0: max|oid’| = 9.23 a = 0: max|ci’| = 9.23
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Results - Geometric [111]: Total Resolved Stress

a = 0: max|oid| = 6.07 a = 0.123: max|cdt| = 13.4
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Results - Geometric [211]: Total Resolved Stress

a=0: max|oid’| = 8.19 a = 0.089: max|cid’| =8.78

s s
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Results - Anisotropy [001]: Total Resolved Stress

w = 0: max|of*| =9.23 w = 0.329: max |0t = 7.66

rs Is
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Results - Anisotropy [111]: Total Resolved Stress

w = 0: max|otot| = 13.4 w = 0.329: max ot = 12.0
rs rs
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Results - Anisotropy [211]: Total Resolved Stress

w = 0: max|of*| = 8.19 w = 0.329: max |0t = 8.78



Conclusions

Conclusions

@ A simple argument based on the crystal lattice structure
predicts facets that depend on both the crystal orientation
and growth angle

@ Small opening angles tend to suppress the formation of facets

@ The model naturally incorporates the polarity of I1I-V
semiconductors

@ Facet formation greatly affects the thermal stress distribution
@ Anisotropy has a lesser effect when the crystal has facets

@ The industry preference of the [211] pulling direction,
determined by trial and error, produces facets yet avoids the
drastic increase in the stress seen in the [111] orientation.
Furthermore, effect of the material anisotropy is negligible in
this case



Thank you
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