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Laplacian Growth: an inverse problem of moments
(Gustafsson, Putinar)

Find domain D of area πt0 and exterior harmonic moments

tk≥1 =
−1
πk

∫
C\D

z−kd2z

Single connected: conformal map z(w) : {|w| > 1} → C \D

z(w) = rw +
∑
k>0

ukw
−k, r, uk(t0, tk)

Area law: t0 = r2 −
∑
k k|uk|2
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Schwarz functions and Schottky doubles
H. Shapiro, B. Gustafsson, A. Vasil’ev

• Schwarz function S(z) = z̄ on boundary Γ = ∂D, with expansion

S(z) =
t0
z

+ V ′(z) +O(z−2), z →∞

(meromorphic - quadrature domains, analytic - generalized QD)

• Laplacian Growth law: ∂tS(z, t) = i∂zφ(z, t), p = =φ

• Holomorphic potential V (z) =
∑
k tkz

k, z → 0

• Complex curve f(z, ζ) = 0, Γ : ζ = z̄ - Schottky double
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Laplacian Growth: constrained variational problem

Find support D of distribution ρ(z) solving
∫
D
ρ(z)d2z = t0, and

δ

δρ(z)

∫
D

ρ(z)
[
−|z|2 + V (z) + V (z) +

∫
D

ρ(ζ) log |z − ζ|2d2ζ

]
d2z = 0

• Smooth solution: characteristic function of D, ρ(z) = χD(z)

• Equivalent exterior potential created by distribution of singularities of the
Schwarz function (poles, cuts) ρs(z)∫

f(z)ρ(z)d2z =
∫
f(z)ρs(z)d2z, f(z) integrable
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“Mind the gap” (limit) Laplacian Growth ...

Laplacian Growth as hydrodynamic (equilibrium) limit

Find ensemble of random matrices M such that for N →∞,

• Density ρN(z)→ χD(z) (characteristic function of domain D)

• Increasing N preserves the conservation laws of Laplacian Growth

• Formal solution: normal ensemble [M,M†] = 0,

dµ(M) = exp

Tr

−N
MM +

∑
k≥1

tkM
k +

∑
k≥1

tkMk

dµ̃(M)
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Normal matrices and LG: a physicist’s proof

Integration over normal matrices: Vandermonde of eigenvalues

• dµ(M)→
∏
i<j |zi − zj|2

∏
i exp{−N [|zi|2 − V (zi)− V (zi)]}d2zi

• Equilibrium distribution: extremum of entropy E[logP (M)]M

• Distribution of eigenvalues:

δ

δρ(zi)
E
∑
i

ρ(zi)

−|zi|2 + V (zi) + V (zi) +
1
N

∑
j 6=i

ρ(zj) log |zi − zj|2
 = 0

• Continuum limit = Laplacian Growth variational formulation

Banff 2007 10



Why it’s useful Laplacian Growth ...

Resolving finite-time singularities of Hele-Shaw flows
(Saffman,Taylor, Sakai, Kadanoff, Bensimon, Howison,

King, Tanveer, Crowdy, ...)



Why it’s useful Laplacian Growth ...

Resolving finite-time singularities of Hele-Shaw flows
(Saffman,Taylor, Sakai, Kadanoff, Bensimon, Howison,

King, Tanveer, Crowdy, ...)

Banff 2007 11



When it happens Laplacian Growth ...

A closer look at finite-time singularities



When it happens Laplacian Growth ...

A closer look at finite-time singularities

Non-trivial example: t3 6= 0, all others vanish:



When it happens Laplacian Growth ...

A closer look at finite-time singularities

Non-trivial example: t3 6= 0, all others vanish:

z(w) = rw + 3t3r2w−2, t0 = r2 − 18|t3|2r4, t0 ≤ tc =
1
2
.



When it happens Laplacian Growth ...

A closer look at finite-time singularities

Non-trivial example: t3 6= 0, all others vanish:

z(w) = rw + 3t3r2w−2, t0 = r2 − 18|t3|2r4, t0 ≤ tc =
1
2
.

dt0
dr

= 0, at t0 = tc



When it happens Laplacian Growth ...

A closer look at finite-time singularities

Non-trivial example: t3 6= 0, all others vanish:

z(w) = rw + 3t3r2w−2, t0 = r2 − 18|t3|2r4, t0 ≤ tc =
1
2
.

dt0
dr

= 0, at t0 = tc

dz
dw

= 0, at w = 1.



When it happens Laplacian Growth ...

A closer look at finite-time singularities

Non-trivial example: t3 6= 0, all others vanish:

z(w) = rw + 3t3r2w−2, t0 = r2 − 18|t3|2r4, t0 ≤ tc =
1
2
.

dt0
dr

= 0, at t0 = tc

dz
dw

= 0, at w = 1.

w′(z)→∞, z ∈ ∂D
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Details of singularities Laplacian Growth ...

How to make a boundary cusp

Actually, ... interior branch point w′(z)→∞ meets exterior double point
S1(z) = S2(z)
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Which regularization? Laplacian Growth ...

Laplacian Growth and singular perturbations

Various regularization attempts

• Surface tension: Saffman and Taylor

• Compressibility: Howison, Lacey, Ockendon, King

• Both: Tanveer, Crowdy

• Often dynamics remains under-determined
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Resolving singular hydrodynamics: stochastic model

• Laplacian growth law ∂tS(z, t) = i∂φ(z, t) = conservation laws of

hyperbolic type

• Machinery for selecting the correct weak (shock) solution:

? Rankine-Hugoniot condition (velocity selection)
? Lax-Oleinik entropy condition (density selection)

• Need equivalent conditions from stochastic model (RMT)

Problem: find the equivalent of Rankine-Hugoniot and Lax-Oleinik
conditions for Laplacian Growth dynamics in a weak sense, from stochastic
(RMT) formulation.
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Normal matrix model and biorthogonal polynomials

Proper measures – biorthogonal polynomials∫
Pn(z)Pm(z)e−N [|z|2−V (z)−V (z)]d2z ∼ δnm

Projected on orthogonal functions ψn(z) = Pn(z)eNV (z), operator identity

〈ψn|z|ψm〉 = 〈ψn|N−1∂z|ψm〉

Heisenberg algebra:

[z̄, z] =
1
N

Equivalent to spectral theory of Putinar and Gustafsson.
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Ellipse and Hermite polynomials

• Potential, wave functions: V (z) = t2z
2, ψn(z) = Hn(

√
N

1−2t2
z)eNt2z

2
,

• Conformal map, area law: z(w) = rnw+unw
−1, N = r2n[1− 4|t2|2r2n]

• “Raising and lowering” operators:

zψn = rnψn+1 + unψn−1, N−1∂zψn = rn−1ψn−1 + un+1ψn+1

• Distribution of zeros of polynomials (branch cut of Schwarz function):
z ∈ [−an, an], an =

√
2|t2|rnrn+1
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Stochastic view Laplacian Growth ...

Discretized (stochastic) growth law

ρN(z)− ρN−1(z) = |ψN(z)|2e−N |z|
2

• Makarov-Hedenmalm theorem (2005)

• Large N limit - becomes continuous growth law

|ψN(z)|2e−N |z|
2
→ δ∂D(z)
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The solution Laplacian Growth ...

Isomonodromic deformations and weak solutions of
Laplacian Growth

• Commutation relation [z̄, z] = N−1 be understood as isomonodromic
deformation condition, using position of branch point u(N) as scaling
function.

• Becomes the Boutroux condition for complex curve

<
∮
y(z,N)dz = 0.
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Perspectives Laplacian Growth ...

Further generalizations

• Relations between one-matrix models and normal matrix models
(Bargman, FBI transforms)

• Higher order cusps

• Asymptotics of wavefunctions near cusps
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