Laplacian Growth and Random Matrices

Razvan Teodorescu
Center for Nonlinear Studies
Los Alamos National Laboratory

July 16, 2007

Acknowledgments

Acknowledgments

- Paul Wiegmann (Univ. of Chicago)

Acknowledgments

- Paul Wiegmann (Univ. of Chicago)
- Anton Zabrodin (ITEP, Moscow)

Acknowledgments

- Paul Wiegmann (Univ. of Chicago)
- Anton Zabrodin (ITEP, Moscow)
- Eldad Bettelheim (Hebrew Univ., Jerusalem)

Acknowledgments

- Paul Wiegmann (Univ. of Chicago)
- Anton Zabrodin (ITEP, Moscow)
- Eldad Bettelheim (Hebrew Univ., Jerusalem)
- Igor Krichever (Columbia Univ.)

Acknowledgments

- Paul Wiegmann (Univ. of Chicago)
- Anton Zabrodin (ITEP, Moscow)
- Eldad Bettelheim (Hebrew Univ., Jerusalem)
- Igor Krichever (Columbia Univ.)
- Mihai Putinar (UCSB)

Matrices in physics - random history

Matrices in physics - random history

- 1925 - W. Heisenberg "rediscovers" matrix multiplication

Matrices in physics - random history

- 1925 - W. Heisenberg "rediscovers" matrix multiplication
- 1950 - E. Wigner and F. Dyson: hermitian random matrix theory

Matrices in physics - random history

- 1925 - W. Heisenberg "rediscovers" matrix multiplication
- 1950 - E. Wigner and F. Dyson: hermitian random matrix theory
- 1972 - G. 't Hooft: large $N S U(N)$ gauge theory

Matrices in physics - random history

- 1925 - W. Heisenberg "rediscovers" matrix multiplication
- 1950 - E. Wigner and F. Dyson: hermitian random matrix theory
- 1972 - G. 't Hooft: large $N S U(N)$ gauge theory
- 1978 - F. Wegner: disordered electronic systems

Matrices in physics - random history

- 1925 - W. Heisenberg "rediscovers" matrix multiplication
- 1950 - E. Wigner and F. Dyson: hermitian random matrix theory
- 1972 - G. 't Hooft: large $N S U(N)$ gauge theory
- 1978 - F. Wegner: disordered electronic systems
- 1983 - K. Efetov: supersymmetric random matrix theory

Matrices in physics - random history

- 1925 - W. Heisenberg "rediscovers" matrix multiplication
- 1950 - E. Wigner and F. Dyson: hermitian random matrix theory
- 1972 - G. 't Hooft: large $N S U(N)$ gauge theory
- 1978 - F. Wegner: disordered electronic systems
- 1983 - K. Efetov: supersymmetric random matrix theory
- 1990 - present: "continuum" of contributions

Matrices in physics - random history

- 1925 - W. Heisenberg "rediscovers" matrix multiplication
- 1950 - E. Wigner and F. Dyson: hermitian random matrix theory
- 1972 - G. 't Hooft: large $N S U(N)$ gauge theory
- 1978 - F. Wegner: disordered electronic systems
- 1983 - K. Efetov: supersymmetric random matrix theory
- 1990 - present: "continuum" of contributions

Other applications of RMT

The ubiquitous RMT

Other applications of RMT

Beyond physics ...

Other applications of RMT

Beyond physics ...

- Integrable hierarchies (Toda, Kadomtsev-Petviashvilii, ...)

Other applications of RMT

Beyond physics ...

- Integrable hierarchies (Toda, Kadomtsev-Petviashvilii, ...)
- Riemann hypothesis: the Montgomery-Odlyzko law

Other applications of RMT

Beyond physics ...

- Integrable hierarchies (Toda, Kadomtsev-Petviashvilii, ...)
- Riemann hypothesis: the Montgomery-Odlyzko law
- MIMO communication systems (cell phones)

Other applications of RMT

Beyond physics ...

- Integrable hierarchies (Toda, Kadomtsev-Petviashvilii, ...)
- Riemann hypothesis: the Montgomery-Odlyzko law
- MIMO communication systems (cell phones)
- Modeling the bus system in Cuernavaca, Mexico

Other applications of RMT

Beyond physics ...

- Integrable hierarchies (Toda, Kadomtsev-Petviashvilii, ...)
- Riemann hypothesis: the Montgomery-Odlyzko law
- MIMO communication systems (cell phones)
- Modeling the bus system in Cuernavaca, Mexico
- A "modern tool" in the movie Proof (2005, A. Hopkins, G. Paltrow)

Other applications of RMT

Beyond physics ...

- Integrable hierarchies (Toda, Kadomtsev-Petviashvilii, ...)
- Riemann hypothesis: the Montgomery-Odlyzko law
- MIMO communication systems (cell phones)
- Modeling the bus system in Cuernavaca, Mexico
- A "modern tool" in the movie Proof (2005, A. Hopkins, G. Paltrow)
- Why not Laplacian Growth?

Other applications of RMT

Beyond physics ...

- Integrable hierarchies (Toda, Kadomtsev-Petviashvilii, ...)
- Riemann hypothesis: the Montgomery-Odlyzko law
- MIMO communication systems (cell phones)
- Modeling the bus system in Cuernavaca, Mexico
- A "modern tool" in the movie Proof (2005, A. Hopkins, G. Paltrow)
- Why not Laplacian Growth?

Basic problem

- Let M be an $N \times N$ matrix from a group $\mathcal{G} \in G L(N)$

Basic problem

- Let M be an $N \times N$ matrix from a group $\mathcal{G} \in G L(N)$
- $\mathrm{d} \mu(M)$ is an invariant measure on \mathcal{G}

Basic problem

- Let M be an $N \times N$ matrix from a group $\mathcal{G} \in G L(N)$
- $\mathrm{d} \mu(M)$ is an invariant measure on \mathcal{G}
- Compute expectation values

Basic problem

- Let M be an $N \times N$ matrix from a group $\mathcal{G} \in G L(N)$
- $\mathrm{d} \mu(M)$ is an invariant measure on \mathcal{G}
- Compute expectation values

$$
\langle f(z \mid M)\rangle_{\mu}:=\frac{\int_{\mathcal{G}} f\left(z_{1}, z_{2}, \ldots \mid M\right) \mathrm{d} \mu(M)}{\int_{\mathcal{G}} \mathrm{d} \mu(M)}
$$

Basic problem

- Let M be an $N \times N$ matrix from a group $\mathcal{G} \in G L(N)$
- $\mathrm{d} \mu(M)$ is an invariant measure on \mathcal{G}
- Compute expectation values

$$
\langle f(z \mid M)\rangle_{\mu}:=\frac{\int_{\mathcal{G}} f\left(z_{1}, z_{2}, \ldots \mid M\right) \mathrm{d} \mu(M)}{\int_{\mathcal{G}} \mathrm{d} \mu(M)}
$$

- Example: $f(z \mid M)=$ density $=\operatorname{Tr} \delta(z-M)$

Basic problem

- Let M be an $N \times N$ matrix from a group $\mathcal{G} \in G L(N)$
- $\mathrm{d} \mu(M)$ is an invariant measure on \mathcal{G}
- Compute expectation values

$$
\langle f(z \mid M)\rangle_{\mu}:=\frac{\int_{\mathcal{G}} f\left(z_{1}, z_{2}, \ldots \mid M\right) \mathrm{d} \mu(M)}{\int_{\mathcal{G}} \mathrm{d} \mu(M)}
$$

- Example: $f(z \mid M)=$ density $=\operatorname{Tr} \delta(z-M)$

The Ginibre-Girko ensembles: uniform density laws

- Ginibre (1965): complex matrices M with i.i.d. gaussian entries

The Ginibre-Girko ensembles: uniform density laws

- Ginibre (1965): complex matrices M with i.i.d. gaussian entries
- $\mathrm{d} \mu(M)$ is flat measure

The Ginibre-Girko ensembles: uniform density laws

- Ginibre (1965): complex matrices M with i.i.d. gaussian entries
- $\mathrm{d} \mu(M)$ is flat measure
- For $N \rightarrow \infty$,

The Ginibre-Girko ensembles: uniform density laws

- Ginibre (1965): complex matrices M with i.i.d. gaussian entries
- $\mathrm{d} \mu(M)$ is flat measure
- For $N \rightarrow \infty$,

$$
\begin{gathered}
\rho(z)=\operatorname{Tr} \delta(z-M) \rightarrow \chi(|z| \leq \sqrt{N}) \\
\text { Circular Law }
\end{gathered}
$$

The Ginibre-Girko ensembles: uniform density laws

- Ginibre (1965): complex matrices M with i.i.d. gaussian entries
- $\mathrm{d} \mu(M)$ is flat measure
- For $N \rightarrow \infty$,

$$
\begin{gathered}
\rho(z)=\operatorname{Tr} \delta(z-M) \rightarrow \chi(|z| \leq \sqrt{N}) \\
\text { Circular Law }
\end{gathered}
$$

- Girko (1986): Elliptical Law

The Ginibre-Girko ensembles: uniform density laws

- Ginibre (1965): complex matrices M with i.i.d. gaussian entries
- $\mathrm{d} \mu(M)$ is flat measure
- For $N \rightarrow \infty$,

$$
\begin{gathered}
\rho(z)=\operatorname{Tr} \delta(z-M) \rightarrow \chi(|z| \leq \sqrt{N}) \\
\text { Circular Law }
\end{gathered}
$$

- Girko (1986): Elliptical Law

Laplacian Growth: an inverse problem of moments (Gustafsson, Putinar)

Find domain D of area πt_{0} and exterior harmonic moments

Laplacian Growth: an inverse problem of moments (Gustafsson, Putinar)

Find domain D of area πt_{0} and exterior harmonic moments

$$
t_{k \geq 1}=\frac{-1}{\pi k} \int_{\mathbb{C} \backslash D} z^{-k} \mathrm{~d}^{2} z
$$

Laplacian Growth: an inverse problem of moments (Gustafsson, Putinar)

Find domain D of area πt_{0} and exterior harmonic moments

$$
t_{k \geq 1}=\frac{-1}{\pi k} \int_{\mathbb{C} \backslash D} z^{-k} \mathrm{~d}^{2} z
$$

Single connected: conformal map $z(w):\{|w|>1\} \rightarrow \mathbb{C} \backslash D$

Laplacian Growth: an inverse problem of moments (Gustafsson, Putinar)

Find domain D of area πt_{0} and exterior harmonic moments

$$
t_{k \geq 1}=\frac{-1}{\pi k} \int_{\mathbb{C} \backslash D} z^{-k} \mathrm{~d}^{2} z
$$

Single connected: conformal map $z(w):\{|w|>1\} \rightarrow \mathbb{C} \backslash D$

$$
z(w)=r w+\sum_{k>0} u_{k} w^{-k}, \quad r, u_{k}\left(t_{0}, t_{k}\right)
$$

Laplacian Growth: an inverse problem of moments (Gustafsson, Putinar)

Find domain D of area πt_{0} and exterior harmonic moments

$$
t_{k \geq 1}=\frac{-1}{\pi k} \int_{\mathbb{C} \backslash D} z^{-k} \mathrm{~d}^{2} z
$$

Single connected: conformal map $z(w):\{|w|>1\} \rightarrow \mathbb{C} \backslash D$

$$
z(w)=r w+\sum_{k>0} u_{k} w^{-k}, \quad r, u_{k}\left(t_{0}, t_{k}\right)
$$

Area law: $t_{0}=r^{2}-\sum_{k} k\left|u_{k}\right|^{2}$

Schwarz functions and Schottky doubles H. Shapiro, B. Gustafsson, A. Vasil'ev

Schwarz functions and Schottky doubles H. Shapiro, B. Gustafsson, A. Vasil'ev

- Schwarz function $S(z)=\bar{z}$ on boundary $\Gamma=\partial D$, with expansion

Schwarz functions and Schottky doubles H. Shapiro, B. Gustafsson, A. Vasil'ev

- Schwarz function $S(z)=\bar{z}$ on boundary $\Gamma=\partial D$, with expansion

$$
S(z)=\frac{t_{0}}{z}+V^{\prime}(z)+O\left(z^{-2}\right), \quad z \rightarrow \infty
$$

(meromorphic - quadrature domains, analytic - generalized QD)

Schwarz functions and Schottky doubles H. Shapiro, B. Gustafsson, A. Vasil'ev

- Schwarz function $S(z)=\bar{z}$ on boundary $\Gamma=\partial D$, with expansion

$$
S(z)=\frac{t_{0}}{z}+V^{\prime}(z)+O\left(z^{-2}\right), \quad z \rightarrow \infty
$$

(meromorphic - quadrature domains, analytic - generalized QD)

- Laplacian Growth law: $\partial_{t} S(z, t)=\mathrm{i} \partial_{z} \phi(z, t), p=\Im \phi$

Schwarz functions and Schottky doubles H. Shapiro, B. Gustafsson, A. Vasil'ev

- Schwarz function $S(z)=\bar{z}$ on boundary $\Gamma=\partial D$, with expansion

$$
S(z)=\frac{t_{0}}{z}+V^{\prime}(z)+O\left(z^{-2}\right), \quad z \rightarrow \infty
$$

(meromorphic - quadrature domains, analytic - generalized QD)

- Laplacian Growth law: $\partial_{t} S(z, t)=\mathrm{i} \partial_{z} \phi(z, t), p=\Im \phi$
- Holomorphic potential $V(z)=\sum_{k} t_{k} z^{k}, z \rightarrow 0$

Schwarz functions and Schottky doubles H. Shapiro, B. Gustafsson, A. Vasil'ev

- Schwarz function $S(z)=\bar{z}$ on boundary $\Gamma=\partial D$, with expansion

$$
S(z)=\frac{t_{0}}{z}+V^{\prime}(z)+O\left(z^{-2}\right), \quad z \rightarrow \infty
$$

(meromorphic - quadrature domains, analytic - generalized QD)

- Laplacian Growth law: $\partial_{t} S(z, t)=\mathrm{i} \partial_{z} \phi(z, t), p=\Im \phi$
- Holomorphic potential $V(z)=\sum_{k} t_{k} z^{k}, z \rightarrow 0$
- Complex curve $f(z, \zeta)=0, \Gamma: \zeta=\bar{z}$ - Schottky double

Laplacian Growth: constrained variational problem

Find support D of distribution $\rho(z)$ solving

Laplacian Growth: constrained variational problem

Find support D of distribution $\rho(z)$ solving $\int_{D} \rho(z) \mathrm{d}^{2} z=t_{0}$, and

Laplacian Growth: constrained variational problem

Find support D of distribution $\rho(z)$ solving $\int_{D} \rho(z) \mathrm{d}^{2} z=t_{0}$, and

$$
\frac{\delta}{\delta \rho(z)} \int_{D} \rho(z)\left[-|z|^{2}+V(z)+\overline{V(z)}+\int_{D} \rho(\zeta) \log |z-\zeta|^{2} \mathrm{~d}^{2} \zeta\right] \mathrm{d}^{2} z=0
$$

Laplacian Growth: constrained variational problem

Find support D of distribution $\rho(z)$ solving $\int_{D} \rho(z) \mathrm{d}^{2} z=t_{0}$, and

$$
\frac{\delta}{\delta \rho(z)} \int_{D} \rho(z)\left[-|z|^{2}+V(z)+\overline{V(z)}+\int_{D} \rho(\zeta) \log |z-\zeta|^{2} \mathrm{~d}^{2} \zeta\right] \mathrm{d}^{2} z=0
$$

- Smooth solution: characteristic function of $D, \rho(z)=\chi_{D}(z)$

Laplacian Growth: constrained variational problem

Find support D of distribution $\rho(z)$ solving $\int_{D} \rho(z) \mathrm{d}^{2} z=t_{0}$, and

$$
\frac{\delta}{\delta \rho(z)} \int_{D} \rho(z)\left[-|z|^{2}+V(z)+\overline{V(z)}+\int_{D} \rho(\zeta) \log |z-\zeta|^{2} \mathrm{~d}^{2} \zeta\right] \mathrm{d}^{2} z=0
$$

- Smooth solution: characteristic function of $D, \rho(z)=\chi_{D}(z)$
- Equivalent exterior potential created by distribution of singularities of the Schwarz function (poles, cuts) $\rho_{s}(z)$

Laplacian Growth: constrained variational problem

Find support D of distribution $\rho(z)$ solving $\int_{D} \rho(z) \mathrm{d}^{2} z=t_{0}$, and

$$
\frac{\delta}{\delta \rho(z)} \int_{D} \rho(z)\left[-|z|^{2}+V(z)+\overline{V(z)}+\int_{D} \rho(\zeta) \log |z-\zeta|^{2} \mathrm{~d}^{2} \zeta\right] \mathrm{d}^{2} z=0
$$

- Smooth solution: characteristic function of $D, \rho(z)=\chi_{D}(z)$
- Equivalent exterior potential created by distribution of singularities of the Schwarz function (poles, cuts) $\rho_{s}(z)$

$$
\int f(z) \rho(z) \mathrm{d}^{2} z=\int f(z) \rho_{s}(z) \mathrm{d}^{2} z, \quad f(z) \text { integrable }
$$

Laplacian Growth as hydrodynamic (equilibrium) limit

Laplacian Growth as hydrodynamic (equilibrium) limit

Find ensemble of random matrices M such that for $N \rightarrow \infty$,

Laplacian Growth as hydrodynamic (equilibrium) limit

Find ensemble of random matrices M such that for $N \rightarrow \infty$,

- Density $\rho_{N}(z) \rightarrow \chi_{D}(z)$ (characteristic function of domain D)

Laplacian Growth as hydrodynamic (equilibrium) limit

Find ensemble of random matrices M such that for $N \rightarrow \infty$,

- Density $\rho_{N}(z) \rightarrow \chi_{D}(z)$ (characteristic function of domain D)
- Increasing N preserves the conservation laws of Laplacian Growth

Laplacian Growth as hydrodynamic (equilibrium) limit

Find ensemble of random matrices M such that for $N \rightarrow \infty$,

- Density $\rho_{N}(z) \rightarrow \chi_{D}(z)$ (characteristic function of domain D)
- Increasing N preserves the conservation laws of Laplacian Growth
- Formal solution: normal ensemble $\left[M, M^{\dagger}\right]=0$,

Laplacian Growth as hydrodynamic (equilibrium) limit

Find ensemble of random matrices M such that for $N \rightarrow \infty$,

- Density $\rho_{N}(z) \rightarrow \chi_{D}(z)$ (characteristic function of domain D)
- Increasing N preserves the conservation laws of Laplacian Growth
- Formal solution: normal ensemble $\left[M, M^{\dagger}\right]=0$,

$$
\mathrm{d} \mu(M)=\exp \left\{\operatorname{Tr}\left[-N\left(M \bar{M}+\sum_{k \geq 1} t_{k} M^{k}+\sum_{k \geq 1} \overline{t_{k} M^{k}}\right)\right]\right\} \mathrm{d} \tilde{\mu}(M)
$$

Normal matrices and LG: a physicist's proof

Integration over normal matrices: Vandermonde of eigenvalues

Normal matrices and LG: a physicist's proof

Integration over normal matrices: Vandermonde of eigenvalues

- $\mathrm{d} \mu(M) \rightarrow \prod_{i<j}\left|z_{i}-z_{j}\right|^{2} \prod_{i} \exp \left\{-N\left[\left|z_{i}\right|^{2}-V\left(z_{i}\right)-\overline{V\left(z_{i}\right)}\right]\right\} \mathrm{d}^{2} z_{i}$

Normal matrices and LG: a physicist's proof

Integration over normal matrices: Vandermonde of eigenvalues

- $\mathrm{d} \mu(M) \rightarrow \prod_{i<j}\left|z_{i}-z_{j}\right|^{2} \prod_{i} \exp \left\{-N\left[\left|z_{i}\right|^{2}-V\left(z_{i}\right)-\overline{V\left(z_{i}\right)}\right]\right\} \mathrm{d}^{2} z_{i}$
- Equilibrium distribution: extremum of entropy $\mathbb{E}[\log P(M)]_{M}$

Normal matrices and LG: a physicist's proof

Integration over normal matrices: Vandermonde of eigenvalues

- $\mathrm{d} \mu(M) \rightarrow \prod_{i<j}\left|z_{i}-z_{j}\right|^{2} \prod_{i} \exp \left\{-N\left[\left|z_{i}\right|^{2}-V\left(z_{i}\right)-\overline{V\left(z_{i}\right)}\right]\right\} \mathrm{d}^{2} z_{i}$
- Equilibrium distribution: extremum of entropy $\mathbb{E}[\log P(M)]_{M}$
- Distribution of eigenvalues:

Normal matrices and LG: a physicist's proof

Integration over normal matrices: Vandermonde of eigenvalues

- $\mathrm{d} \mu(M) \rightarrow \prod_{i<j}\left|z_{i}-z_{j}\right|^{2} \prod_{i} \exp \left\{-N\left[\left|z_{i}\right|^{2}-V\left(z_{i}\right)-\overline{V\left(z_{i}\right)}\right]\right\} \mathrm{d}^{2} z_{i}$
- Equilibrium distribution: extremum of entropy $\mathbb{E}[\log P(M)]_{M}$
- Distribution of eigenvalues:

$$
\frac{\delta}{\delta \rho\left(z_{i}\right)} \mathbb{E} \sum_{i} \rho\left(z_{i}\right)\left\{-\left|z_{i}\right|^{2}+V\left(z_{i}\right)+\overline{V\left(z_{i}\right)}+\frac{1}{N} \sum_{j \neq i} \rho\left(z_{j}\right) \log \left|z_{i}-z_{j}\right|^{2}\right\}=0
$$

Normal matrices and LG: a physicist's proof

Integration over normal matrices: Vandermonde of eigenvalues

- $\mathrm{d} \mu(M) \rightarrow \prod_{i<j}\left|z_{i}-z_{j}\right|^{2} \prod_{i} \exp \left\{-N\left[\left|z_{i}\right|^{2}-V\left(z_{i}\right)-\overline{V\left(z_{i}\right)}\right]\right\} \mathrm{d}^{2} z_{i}$
- Equilibrium distribution: extremum of entropy $\mathbb{E}[\log P(M)]_{M}$
- Distribution of eigenvalues:

$$
\frac{\delta}{\delta \rho\left(z_{i}\right)} \mathbb{E} \sum_{i} \rho\left(z_{i}\right)\left\{-\left|z_{i}\right|^{2}+V\left(z_{i}\right)+\overline{V\left(z_{i}\right)}+\frac{1}{N} \sum_{j \neq i} \rho\left(z_{j}\right) \log \left|z_{i}-z_{j}\right|^{2}\right\}=0
$$

- Continuum limit $=$ Laplacian Growth variational formulation

Resolving finite-time singularities of Hele-Shaw flows (Saffman, Taylor, Sakai, Kadanoff, Bensimon, Howison, King, Tanveer, Crowdy, ...)

Resolving finite-time singularities of Hele-Shaw flows (Saffman, Taylor, Sakai, Kadanoff, Bensimon, Howison, King, Tanveer, Crowdy, ...)

A closer look at finite-time singularities

A closer look at finite-time singularities

Non-trivial example: $t_{3} \neq 0$, all others vanish:

A closer look at finite-time singularities

Non-trivial example: $t_{3} \neq 0$, all others vanish:

$$
z(w)=r w+3 t_{3} r^{2} w^{-2}, \quad t_{0}=r^{2}-18\left|t_{3}\right|^{2} r^{4}, \quad t_{0} \leq t_{c}=\frac{1}{2}
$$

A closer look at finite-time singularities

Non-trivial example: $t_{3} \neq 0$, all others vanish:

$$
\begin{gathered}
z(w)=r w+3 t_{3} r^{2} w^{-2}, \quad t_{0}=r^{2}-18\left|t_{3}\right|^{2} r^{4}, \quad t_{0} \leq t_{c}=\frac{1}{2} \\
\frac{\mathrm{~d} t_{0}}{\mathrm{~d} r}=0, \quad \text { at } t_{0}=t_{c}
\end{gathered}
$$

A closer look at finite-time singularities

Non-trivial example: $t_{3} \neq 0$, all others vanish:

$$
\begin{gathered}
z(w)=r w+3 t_{3} r^{2} w^{-2}, \quad t_{0}=r^{2}-18\left|t_{3}\right|^{2} r^{4}, \quad t_{0} \leq t_{c}=\frac{1}{2} \\
\frac{\mathrm{~d} t_{0}}{\mathrm{~d} r}=0, \quad \text { at } t_{0}=t_{c} \\
\frac{\mathrm{~d} z}{\mathrm{~d} w}=0, \quad \text { at } w=1
\end{gathered}
$$

A closer look at finite-time singularities

Non-trivial example: $t_{3} \neq 0$, all others vanish:

$$
\begin{gathered}
z(w)=r w+3 t_{3} r^{2} w^{-2}, \quad t_{0}=r^{2}-18\left|t_{3}\right|^{2} r^{4}, \quad t_{0} \leq t_{c}=\frac{1}{2} \\
\frac{\mathrm{~d} t_{0}}{\mathrm{~d} r}=0, \quad \text { at } t_{0}=t_{c} \\
\frac{\mathrm{~d} z}{\mathrm{~d} w}=0, \quad \text { at } w=1 \\
w^{\prime}(z) \rightarrow \infty, \quad z \in \partial D
\end{gathered}
$$

How to make a boundary cusp

How to make a boundary cusp

Actually, ...

How to make a boundary cusp

Actually, ... interior branch point $w^{\prime}(z) \rightarrow \infty$ meets exterior double point $S_{1}(z)=S_{2}(z)$

Laplacian Growth and singular perturbations

Laplacian Growth and singular perturbations

Various regularization attempts

Laplacian Growth and singular perturbations

Various regularization attempts

- Surface tension: Saffman and Taylor

Laplacian Growth and singular perturbations

Various regularization attempts

- Surface tension: Saffman and Taylor
- Compressibility: Howison, Lacey, Ockendon, King

Laplacian Growth and singular perturbations

Various regularization attempts

- Surface tension: Saffman and Taylor
- Compressibility: Howison, Lacey, Ockendon, King
- Both: Tanveer, Crowdy

Laplacian Growth and singular perturbations

Various regularization attempts

- Surface tension: Saffman and Taylor
- Compressibility: Howison, Lacey, Ockendon, King
- Both: Tanveer, Crowdy
- Often dynamics remains under-determined

Resolving singular hydrodynamics: stochastic model

The plan
Resolving singular hydrodynamics: stochastic model

- Laplacian growth law $\partial_{t} S(z, t)=\mathrm{i} \partial \phi(z, t)=$ conservation laws of hyperbolic type

Resolving singular hydrodynamics: stochastic model

- Laplacian growth law $\partial_{t} S(z, t)=\mathrm{i} \partial \phi(z, t)=$ conservation laws of hyperbolic type
- Machinery for selecting the correct weak (shock) solution:

Resolving singular hydrodynamics: stochastic model

- Laplacian growth law $\partial_{t} S(z, t)=\mathrm{i} \partial \phi(z, t)=$ conservation laws of hyperbolic type
- Machinery for selecting the correct weak (shock) solution:

Rankine-Hugoniot condition (velocity selection)

Resolving singular hydrodynamics: stochastic model

- Laplacian growth law $\partial_{t} S(z, t)=\mathrm{i} \partial \phi(z, t)=$ conservation laws of hyperbolic type
- Machinery for selecting the correct weak (shock) solution:

Rankine-Hugoniot condition (velocity selection)
Lax-Oleinik entropy condition (density selection)

Resolving singular hydrodynamics: stochastic model

- Laplacian growth law $\partial_{t} S(z, t)=\mathrm{i} \partial \phi(z, t)=$ conservation laws of hyperbolic type
- Machinery for selecting the correct weak (shock) solution:

Rankine-Hugoniot condition (velocity selection)
Lax-Oleinik entropy condition (density selection)

- Need equivalent conditions from stochastic model (RMT)

Resolving singular hydrodynamics: stochastic model

- Laplacian growth law $\partial_{t} S(z, t)=\mathrm{i} \partial \phi(z, t)=$ conservation laws of hyperbolic type
- Machinery for selecting the correct weak (shock) solution:

Rankine-Hugoniot condition (velocity selection)
Lax-Oleinik entropy condition (density selection)

- Need equivalent conditions from stochastic model (RMT)

Problem: find the equivalent of Rankine-Hugoniot and Lax-Oleinik conditions for Laplacian Growth dynamics in a weak sense, from stochastic (RMT) formulation.

Normal matrix model and biorthogonal polynomials

Normal matrix model and biorthogonal polynomials

Proper measures - biorthogonal polynomials

$$
\int P_{n}(z) \overline{P_{m}(z)} e^{-N\left[|z|^{2}-V(z)-\overline{V(z)}\right]} \mathrm{d}^{2} z \sim \delta_{n m}
$$

Normal matrix model and biorthogonal polynomials

Proper measures - biorthogonal polynomials

$$
\int P_{n}(z) \overline{P_{m}(z)} e^{-N\left[|z|^{2}-V(z)-\overline{V(z)}\right]} \mathrm{d}^{2} z \sim \delta_{n m}
$$

Projected on orthogonal functions $\psi_{n}(z)=P_{n}(z) e^{N V(z)}$, operator identity

$$
\left\langle\psi_{n}\right| \bar{z}\left|\psi_{m}\right\rangle=\left\langle\psi_{n}\right| N^{-1} \partial_{z}\left|\psi_{m}\right\rangle
$$

Normal matrix model and biorthogonal polynomials

Proper measures - biorthogonal polynomials

$$
\int P_{n}(z) \overline{P_{m}(z)} e^{-N\left[|z|^{2}-V(z)-\overline{V(z)}\right]} \mathrm{d}^{2} z \sim \delta_{n m}
$$

Projected on orthogonal functions $\psi_{n}(z)=P_{n}(z) e^{N V(z)}$, operator identity

$$
\left\langle\psi_{n}\right| \bar{z}\left|\psi_{m}\right\rangle=\left\langle\psi_{n}\right| N^{-1} \partial_{z}\left|\psi_{m}\right\rangle
$$

Heisenberg algebra:

$$
[\bar{z}, z]=\frac{1}{N}
$$

Normal matrix model and biorthogonal polynomials

Proper measures - biorthogonal polynomials

$$
\int P_{n}(z) \overline{P_{m}(z)} e^{-N\left[|z|^{2}-V(z)-\overline{V(z)}\right]} \mathrm{d}^{2} z \sim \delta_{n m}
$$

Projected on orthogonal functions $\psi_{n}(z)=P_{n}(z) e^{N V(z)}$, operator identity

$$
\left\langle\psi_{n}\right| \bar{z}\left|\psi_{m}\right\rangle=\left\langle\psi_{n}\right| N^{-1} \partial_{z}\left|\psi_{m}\right\rangle
$$

Heisenberg algebra:

$$
[\bar{z}, z]=\frac{1}{N}
$$

Equivalent to spectral theory of Putinar and Gustafsson.

Circular symmetry: electrons in uniform magnetic field

- Potential, wave functions: $V(z)=0, \psi_{n}(z)=P_{n}(z)=\sqrt{\frac{N^{n+1}}{\pi n!}} z^{n}$

Circular symmetry: electrons in uniform magnetic field

- Potential, wave functions: $V(z)=0, \psi_{n}(z)=P_{n}(z)=\sqrt{\frac{N^{n+1}}{\pi n!}} z^{n}$
- Conformal map, area law: $z(w)=\sqrt{N} w, \quad t_{0}=N$

Circular symmetry: electrons in uniform magnetic field

- Potential, wave functions: $V(z)=0, \psi_{n}(z)=P_{n}(z)=\sqrt{\frac{N^{n+1}}{\pi n!}} z^{n}$
- Conformal map, area law: $z(w)=\sqrt{N} w, \quad t_{0}=N$
- "Raising and lowering" operators:

$$
\sqrt{\frac{N}{N+1}} z \Psi_{N}=\Psi_{N+1}, \quad \frac{1}{\sqrt{N(N-1)}} \frac{\partial}{\partial z} \Psi_{N}=\Psi_{N-1}
$$

Circular symmetry: electrons in uniform magnetic field

- Potential, wave functions: $V(z)=0, \psi_{n}(z)=P_{n}(z)=\sqrt{\frac{N^{n+1}}{\pi n!}} z^{n}$
- Conformal map, area law: $z(w)=\sqrt{N} w, \quad t_{0}=N$
- "Raising and lowering" operators:

$$
\sqrt{\frac{N}{N+1}} z \Psi_{N}=\Psi_{N+1}, \quad \frac{1}{\sqrt{N(N-1)}} \frac{\partial}{\partial z} \Psi_{N}=\Psi_{N-1}
$$

- Density $\rho(\sqrt{N} x)=e^{-x^{2}} \sum_{n=1}^{N} \frac{x^{2 n}}{n!} \rightarrow \theta(x-1)$ as $N \rightarrow \infty$

Circular symmetry: electrons in uniform magnetic field

- Potential, wave functions: $V(z)=0, \psi_{n}(z)=P_{n}(z)=\sqrt{\frac{N^{n+1}}{\pi n!}} z^{n}$
- Conformal map, area law: $z(w)=\sqrt{N} w, \quad t_{0}=N$
- "Raising and lowering" operators:

$$
\sqrt{\frac{N}{N+1}} z \Psi_{N}=\Psi_{N+1}, \quad \frac{1}{\sqrt{N(N-1)}} \frac{\partial}{\partial z} \Psi_{N}=\Psi_{N-1}
$$

- Density $\rho(\sqrt{N} x)=e^{-x^{2}} \sum_{n=1}^{N} \frac{x^{2 n}}{n!} \rightarrow \theta(x-1)$ as $N \rightarrow \infty$

Singularities of Schwarz function and zeros of polynomials

Singularities of Schwarz function and zeros of polynomials

Circular case:

$$
\psi_{n}(z)=0 \text { at } z=0 \text { (multiple) }
$$

Singularities of Schwarz function and zeros of polynomials

Circular case:

$$
\begin{gathered}
\psi_{n}(z)=0 \text { at } z=0 \text { (multiple) } \\
S(N, z)=\frac{N}{z}
\end{gathered}
$$

Singularities of Schwarz function and zeros of polynomials

Circular case:

$$
\begin{gathered}
\psi_{n}(z)=0 \text { at } z=0 \text { (multiple) } \\
S(N, z)=\frac{N}{z}
\end{gathered}
$$

- As $N \rightarrow \infty$, distribution of zeros of polynomial $P_{N}(z)$ becomes distribution of singularities of $S(N, z), \rho_{s}(z)$

Singularities of Schwarz function and zeros of polynomials

Circular case:

$$
\begin{gathered}
\psi_{n}(z)=0 \text { at } z=0 \text { (multiple) } \\
S(N, z)=\frac{N}{z}
\end{gathered}
$$

- As $N \rightarrow \infty$, distribution of zeros of polynomial $P_{N}(z)$ becomes distribution of singularities of $S(N, z), \rho_{s}(z)$
- Valid for generalized quadrature domains

Singularities of Schwarz function and zeros of polynomials

Circular case:

$$
\begin{gathered}
\psi_{n}(z)=0 \text { at } z=0 \text { (multiple) } \\
S(N, z)=\frac{N}{z}
\end{gathered}
$$

- As $N \rightarrow \infty$, distribution of zeros of polynomial $P_{N}(z)$ becomes distribution of singularities of $S(N, z), \rho_{s}(z)$
- Valid for generalized quadrature domains

Ellipse and Hermite polynomials

- Potential, wave functions: $V(z)=t_{2} z^{2}, \psi_{n}(z)=H_{n}\left(\sqrt{\frac{N}{1-2 t_{2}} z}\right) e^{N t_{2} z^{2}}$,

Ellipse and Hermite polynomials

- Potential, wave functions: $V(z)=t_{2} z^{2}, \psi_{n}(z)=H_{n}\left(\sqrt{\frac{N}{1-2 t_{2}} z}\right) e^{N t_{2} z^{2}}$,
- Conformal map, area law: $z(w)=r_{n} w+u_{n} w^{-1}, \quad N=r_{n}^{2}\left[1-4\left|t_{2}\right|^{2} r_{n}^{2}\right]$

Ellipse and Hermite polynomials

- Potential, wave functions: $V(z)=t_{2} z^{2}, \psi_{n}(z)=H_{n}\left(\sqrt{\frac{N}{1-2 t_{2}} z}\right) e^{N t_{2} z^{2}}$,
- Conformal map, area law: $z(w)=r_{n} w+u_{n} w^{-1}, \quad N=r_{n}^{2}\left[1-4\left|t_{2}\right|^{2} r_{n}^{2}\right]$
- "Raising and lowering" operators:

$$
z \psi_{n}=r_{n} \psi_{n+1}+u_{n} \psi_{n-1}, \quad N^{-1} \partial_{z} \psi_{n}=r_{n-1} \psi_{n-1}+\bar{u}_{n+1} \psi_{n+1}
$$

Ellipse and Hermite polynomials

- Potential, wave functions: $V(z)=t_{2} z^{2}, \psi_{n}(z)=H_{n}\left(\sqrt{\frac{N}{1-2 t_{2}} z}\right) e^{N t_{2} z^{2}}$,
- Conformal map, area law: $z(w)=r_{n} w+u_{n} w^{-1}, \quad N=r_{n}^{2}\left[1-4\left|t_{2}\right|^{2} r_{n}^{2}\right]$
- "Raising and lowering" operators:

$$
z \psi_{n}=r_{n} \psi_{n+1}+u_{n} \psi_{n-1}, \quad N^{-1} \partial_{z} \psi_{n}=r_{n-1} \psi_{n-1}+\bar{u}_{n+1} \psi_{n+1}
$$

- Distribution of zeros of polynomials (branch cut of Schwarz function): $z \in\left[-a_{n}, a_{n}\right], a_{n}=\sqrt{2\left|t_{2}\right| r_{n} r_{n+1}}$

Discretized (stochastic) growth law

$$
\rho_{N}(z)-\rho_{N-1}(z)=\left|\psi_{N}(z)\right|^{2} e^{-N|z|^{2}}
$$

Discretized (stochastic) growth law

$$
\rho_{N}(z)-\rho_{N-1}(z)=\left|\psi_{N}(z)\right|^{2} e^{-N|z|^{2}}
$$

- Makarov-Hedenmalm theorem (2005)

Discretized (stochastic) growth law

$$
\rho_{N}(z)-\rho_{N-1}(z)=\left|\psi_{N}(z)\right|^{2} e^{-N|z|^{2}}
$$

- Makarov-Hedenmalm theorem (2005)
- Large N limit - becomes continuous growth law

$$
\left|\psi_{N}(z)\right|^{2} e^{-N|z|^{2}} \rightarrow \delta_{\partial D}(z)
$$

Boundary singularities from orthogonal wavefunctions

Boundary singularities from orthogonal wavefunctions

Generic boundary singularity: branch point (inside) meets double point (outside)

Boundary singularities from orthogonal wavefunctions

Generic boundary singularity: branch point (inside) meets double point (outside)

- Local boundary: elliptic curve

$$
y^{2}=-4(\zeta-u)^{2}(\zeta+2 u), \quad u \sim \sqrt{N}
$$

Boundary singularities from orthogonal wavefunctions

Generic boundary singularity: branch point (inside) meets double point (outside)

- Local boundary: elliptic curve

$$
y^{2}=-4(\zeta-u)^{2}(\zeta+2 u), \quad u \sim \sqrt{N}
$$

- Equation for wavefunction:

$$
\psi^{\prime \prime}=\frac{\psi^{\prime}}{\zeta-u}+\text { regular } \Rightarrow \psi(\zeta)=(\zeta-u)^{2}+O\left((\zeta-u)^{3}\right)
$$

Boundary singularities from orthogonal wavefunctions

Generic boundary singularity: branch point (inside) meets double point (outside)

- Local boundary: elliptic curve

$$
y^{2}=-4(\zeta-u)^{2}(\zeta+2 u), \quad u \sim \sqrt{N}
$$

- Equation for wavefunction:

$$
\psi^{\prime \prime}=\frac{\psi^{\prime}}{\zeta-u}+\text { regular } \Rightarrow \psi(\zeta)=(\zeta-u)^{2}+O\left((\zeta-u)^{3}\right)
$$

Isomonodromic deformations and weak solutions of Laplacian Growth

Isomonodromic deformations and weak solutions of Laplacian Growth

- Commutation relation $[\bar{z}, z]=N^{-1}$ be understood as isomonodromic deformation condition, using position of branch point $u(N)$ as scaling function.

Isomonodromic deformations and weak solutions of Laplacian Growth

- Commutation relation $[\bar{z}, z]=N^{-1}$ be understood as isomonodromic deformation condition, using position of branch point $u(N)$ as scaling function.
- Becomes the Boutroux condition for complex curve

Isomonodromic deformations and weak solutions of Laplacian Growth

- Commutation relation $[\bar{z}, z]=N^{-1}$ be understood as isomonodromic deformation condition, using position of branch point $u(N)$ as scaling function.
- Becomes the Boutroux condition for complex curve

$$
\Re \oint y(z, N) \mathrm{d} z=0 .
$$

Cusps and horns, shocks and Stokes

- Boutroux condition is usually transcendental ...

Cusps and horns, shocks and Stokes

- Boutroux condition is usually transcendental ...

Further generalizations

Further generalizations

- Relations between one-matrix models and normal matrix models (Bargman, FBI transforms)

Further generalizations

- Relations between one-matrix models and normal matrix models (Bargman, FBI transforms)
- Higher order cusps

Further generalizations

- Relations between one-matrix models and normal matrix models (Bargman, FBI transforms)
- Higher order cusps
- Asymptotics of wavefunctions near cusps

