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Probability and Climate

Toward this end, a natural language of climate physics is

dynamical systems

stochastic processes

random dynamical systems (where they meet)

Triple goals of probabilistic climate dynamics:

1. characterise distributions of climate states

2. understand how these distributions arise from the underlying
physics

3. use pdfs to improve forecasts/predictions
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Overview

Why is climate complex?

Origins of stochasticity in the climate system.

Case Study I: Stochastic dynamics of sea-surface winds.

Case Study II: Stochastic dynamics of El Niǹo/Southern Oscillation.
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Why is Climate Complex? Coupling Across Scales

From von Storch and Zwiers, 1999
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Why is Climate Complex? Coupling Across Scales

Generic dynamical equation for climate state

dz

dt
= Lz + N(z, z) + F

Decompose state into “slow” and “fast” variables x and y

⇒ coupled dynamics

dx

dt
= Lxxx + Lxyy +N (x)

xx (x,x) +N (x)
xy (x,y) +N (x)

yy (y,y) + Fx

dy

dt
= Lyxx + Lyyy +N (y)

xx (x,x) +N (y)
xy (x,y) +N (y)

yy (y,y) + Fy

Averaging to project on “slow” dynamics retains “upscale” influence
of eddies on resolved flow (“closure problem”)

dx

dt
= Lxxx +N (x)

xx (x,x) +N
(x)
yy (y,y) + Fx
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Why is Climate Complex? Coupling Across Systems

From IPCC Third Assessment Report
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Why is Climate Complex? Feedback Loops

From http://eesc.columbia.edu/courses/ees/slides/climate/
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Why is Climate Complex? Non-Stationarity
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Why is Climate Complex? Data Surfeit & Paucity
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From ERA-40 Project Report Series 19
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Origins of Stochasticity: Multiscale Dynamics

Climate system displays variability over broad range of space and
time scales

From Saltzman, 2002
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Origins of Stochasticity: Multiscale Dynamics

When modelling slower components of system, don’t want (need?)
to explicitly simulate faster components

⇒ “subgrid-scale parameterisations” (closure)

Analogy with statistical mechanics; can talk about “pressure” and
“temperature” of gas without accounting for state of each molecule

Can also consider separation of scales in space; parameterisation
problem arises because of finite gridsize of operational models

Nonlinear dynamics⇒ fast dynamics has upscale effect on slow

Coarse-graining results not only in unresolved scales, but also
unresolved processes (e.g. internal gravity waves, convection, cloud
mircophysics)
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Origins of Stochasticity: Multiscale Dynamics

State of unresolved processes/scales conditioned on resolved scales
not unique: adopt distributional perspective on subgrid-scale

Formally decompose climate state z into slow and fast variables x

and y (resp. “climate” and “weather”):

dx

dt
= f(x,y, t)

dy

dt
=

1

ε
g(x,y, t)

Obtain effective stochastic dynamics for “climate” as ε→ 0

In many (most?) climate applications, ε is not small

Fast/slow decomposition not unique;
“one person’s noise is another person’s signal”
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Origins of Stochasticity: Model Uncertainty

All models of climate (or subsystems) contain both

model error, and

poorly constrained (sometimes unphysical) parameters

Ideally: given pdf of parameters and model structure, obtain pdf of
climate state

Reality:

full climate state pdf cannot be computed; must adopt
Monte-Carlo or ensemble forecast approach in which pdf is
sampled; “curse of dimensionality”

parameter pdfs generally not well known a priori

Building large ensembles computationally expensive
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Parameter Uncertainty: Ensemble Prediction

climateprediction.net uses idle private CPUs to integrate
ensembles with different parameter settings

http://www.climateprediction.net
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Initial Condition Uncertainty: Ensemble Forecasting

Model uncertainties can also include initial conditions

http://chrs.web.uci.edu/images/ensemble_large_atmo.jpg
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Stochastic Climate Models: Case Studies

Two distinct end-member approaches to modelling pdfs of climate
variables:

running fully complex general circulation models

considering physically-motivated idealised models

First approach has benefit of being more realistic, but is also much
more complex; mechanisms are not always clear

Second approach not always quantitatively accurate, but important
for developing understanding and elucidating mechanism

Will now consider two “idealised” stochastic models for:

stochastic dynamics of sea-surface winds

stochastic dynamics of El Niño-Southern Oscillation
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stochastic dynamics of sea-surface winds

stochastic dynamics of El Niño-Southern Oscillation
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Sea Surface Winds: Why Should We Care?

Air/Sea Exchange

ocean and atmosphere interact through respective boundary
layers, exchanging momentum, energy, freshwater, and gases

fluxes depend on surface winds, in general nonlinearly

ocean currents largely driven by surface winds

Sea State

sea state important for shipping, recreation

determined by both local and remote winds

Power Generation

wind power potentially significant source of energy

generation rate scales as cube of wind speed; extreme events
important
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Vector Wind Moments
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Mean and Skewness of Vector Wind

Joint pdfs of mean and skew for zonal and meridional winds
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Wind Speed Moments
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Wind Speed pdf: Weibull distribution

The pdf of wind speed w has traditionally (and empirically) been
represented by 2-parameter Weibull distribution:
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a is the scale parameter (pdf centre)

b is the shape parameter (pdf tilt)

pw(w) is unimodal
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Wind Speed pdfs: Observed

Observed speed moments fall around Weibull curve
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Boundary Layer Dynamics

Horizontal momentum equations:

∂u

∂t
+ u · ∇u = −1

ρ
∇p− f k̂× u− 1

ρ

∂(ρu′u′3)

∂z

Momentum tendency due to:

advection (transport by flow; secondary importance on daily
timescales )

pressure gradient force

Coriolis force

turbulent momentum flux (in vertical)

Integrated momentum budget for slab of thickness h:

du

dt
= −1

ρ
∇p− f k̂× u +

1

h

(
u′u′3(0)− u′u′3(h)

)
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Surface Wind Stress

Surface wind stress is turbulent momentum flux across air/sea
interface:

τs = ρau′u′3(0)

where

u = along-mean wind component

v = cross-mean wind component

u = (u, v)

u3 = vertical wind component

Flux parameterised in terms of u by bulk drag formula:

τs = ρacdwu

where w =‖ u ‖ is the wind speed.
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Drag Coefficient

Drag coefficient influenced by

surface roughness z0

Obukhov length L (buoyancy flux, stratification)

cd = k2

[
ln

(
za
z0

)
− ψm

(za
L

)]−2

where

ψm is an empirical function

za is the anemometer height, typically 10 m

Surface winds modify surface wave field

⇒ z0 depends on w
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Neutral Drag Coefficient: Observations
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Surface Momentum Budget

To close momentum budget, need parameterisation of turbulent
momentum flux at z = h

Use “finite-differenced” eddy viscosity:

u′u′3(h) =
K

h
(U− u)

⇒ Surface layer momentum budget

du

dt
= −1

ρ
∇p− f k̂× u− cd

h
wu +

K

h2
(U− u)

= Π− cd
h
wu− K

h2
u

where
Π = −1

ρ
∇p− f k̂× u +

K

h2
U
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u′u′3(h) =
K

h
(U− u)

⇒ Surface layer momentum budget

du

dt
= −1

ρ
∇p− f k̂× u− cd

h
wu +

K

h2
(U− u)

= Π− cd
h
wu− K

h2
u

where
Π = −1

ρ
∇p− f k̂× u +

K

h2
U
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Mechanistic Model: SDE

Decomposing Π into mean and fluctuations:

Πu(t) = 〈Πu〉+ σẆ1(t)

Πv(t) = σẆ2(t)

where Ẇi is Gaussian white noise
〈
Ẇi(t1)Ẇj(t2)

〉
= δijδ(t1 − t2)

we obtain stochastic differential equation

du

dt
= 〈Πu〉 −

cd
h
wu− K

h2
u+ σẆ1

dv

dt
= −cd

h
wv − K

h2
v + σẆ2
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Mechanistic Model: pdf

Solution of associated Fokker-Planck equation for stationary pdf:

puv(u, v) = N1 exp

(
2

σ2

{
〈Πu〉u−

K

2h2
(u2 + v2)

−1

h

∫ √u2+v2

0
cd(w

′)w′2 dw′
})

Changing to polar coordinates and integrating over angle gives wind
speed pdf:

pw(w) = NwI0

(
2 〈Πu〉w
σ2

)
exp

(
− 2

σ2

{
K

2h2
w2 +

1

h

∫ w

0
cd(w

′)w′2 dw′
})
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Mechanistic Model: Predictions
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Mechanistic Model: Comparison with Observations
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Case Study I: Conclusions

Sea surface wind pdfs characterised by relationships between
moments

These moment relationships reflect physical processes producing
distributions

Idealised stochastic models can be constructed from basic physical
principles to (qualitatively) explain physical origin of pdf structure

More accurate quantitative simulation requires a more sophisticated
model; qualitative utility of relatively simple model suggests it
captures essential physics
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El Niño - Southern Oscillation (ENSO)

ENSO is the dominant mode of climate variability on interannual
timescales, involving coupled interactions between the ocean and the
atmosphere

Dynamics primarily contained in equatorial Pacific; impacts felt
globally

Skillful ENSO forecasts are believed to be primary potential source
of skill for seasonal climate forecasting
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Tropical Pacific: Mean State

From www.pmel.noaa.gov/tao/elnino/nino-home.html
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Tropical Pacific: El Niño State

From www.pmel.noaa.gov/tao/elnino/nino-home.html
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Tropical Pacific: La Niña State

From www.pmel.noaa.gov/tao/elnino/nino-home.html
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ENSO Indices: SOI and East Pacific SST

From www.pmel.noaa.gov/tao/elnino/nino-home.html
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El Niño Growth: Bjerknes’ Hypothesis

E. Pacific
Thermocline
Depth

Temperature of
Upwelled Water

E. Pacific SST

E. Pacific SLP

(Rising Air, Precip.)

Strength of
Trade Winds

SEC and
Upwelling

Bjerknes’ Hypothesis

(+)
(+)

(+)

(−)

(−)

(−)
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ENSO Cycles: Delayed Oscillator Mechanism

From Chang and Battisti, Physics World, 1998.

Probabilistic Perspectives on Climate Dynamics – p. 42/63



ENSO Irregularity: Stochastic Oscillator Mechanism

From www.pmel.noaa.gov/tao/elnino/nino-home.html

Probabilistic Perspectives on Climate Dynamics – p. 43/63



El Niño Impacts: Northern Hemisphere Winter

From iri.columbia.edu/climate/ENSO/
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ENSO Impacts: Changes in Mean Climate

Adapted from Sardeshmukh et al., J. Clim (2000)
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ENSO Impacts: Changes in Climate Variability

From Sardeshmukh et al., J. Clim (2000)
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ENSO Impacts: Extreme Events

From Bove et al., J. Clim (1998)
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ENSO Dynamics

As a first approximation, ENSO dynamics modelled as stable linear
dynamical system driven by noise:

dx

dt
= Ax +B(x) ◦ Ẇ

where
x is the state vector (e.g. sea surface temperature field)

A is the linearised dynamical operator

B(x) is the noise amplitude matrix

Ẇ is a vector of independent white noise processes

For simplicity, will assume that B is state-independent (additive
noise)
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Ẇ is a vector of independent white noise processes

For simplicity, will assume that B is state-independent (additive
noise)

Probabilistic Perspectives on Climate Dynamics – p. 48/63



ENSO Dynamics

As a first approximation, ENSO dynamics modelled as stable linear
dynamical system driven by noise:

dx

dt
= Ax +B(x) ◦ Ẇ
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ENSO Dynamics

Analytic solution to SDE:

x(t) = P (t)x(0) +

∫ t

0
P (t− t′)BẆ(t′)dt′

where
P (t) = exp(At)

Evolution of moments:

〈x(t)〉 = P (t)x(0) ;
〈
x(t+ τ)x(t)T

〉
= P (τ) < x(t)x(t)T >

Assuming max(Re(eig(A)))< 0, stationary covariance

C =
〈
xxT

〉

satisfies fluctuation-dissipation relationship

AC + CAT = −BBT

Probabilistic Perspectives on Climate Dynamics – p. 49/63



ENSO Dynamics

Analytic solution to SDE:

x(t) = P (t)x(0) +

∫ t

0
P (t− t′)BẆ(t′)dt′
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Optimal Perturbations

Linearised operator A will generally be non-normal, i.e.

AAT 6= ATA

so eigenvectors of A are not orthogonal, with consequences:

eigenvectors of covariance C (EOFs) do not coincide with
eigenvectors of A (dynamical modes)

perturbation norm (with metric M )

N(t) = x(t)TMx(t) = x(0)TP (t)TMP (t)x(0)

may grow (by potentially large amount) over finite times even
though asymptotically stable:

lim
t→∞

N(t) = 0
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Optimal Perturbations

Defining amplification factor

n(t) =
x(0)TP (t)TMP (t)x(0)

x(0)TMx(0)

optimal perturbation e maximises n(t) subject to constraint
x(0)TMx(0) = 1⇒ generalised eigenvalue problem:

P (t)TMP (t)e = λMe

Response to fluctuating forcing:

var(X(t)) = BT

(∫ t

0
P (s)TMP (s)ds

)
B

⇒ importance of projection of noise structure on “average” optimals for
maintaining variance;

“stochastic optimals”
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Stochastic ENSO Models

How are A and B determined?

1. Empirical: Linear Inverse Modelling

estimate covariances from observations and compute

A =
1

τ
ln
(〈

x(t+ τ)x(t)T
〉 〈

x(t)x(t)T
〉−1
)

Compute B from Lyapunov equation

A
〈
xxT

〉
+
〈
xxT

〉
AT = −BBT

Issues:
i. if x(t) not truly Markov, estimates will depend on lag τ

ii. must enforce positive-definiteness of BBT
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LIM: Optimal Perturbations from Observations

Optimal perturbation e

Perturbation P (t)e at t = 7 months

From Penland and Sardeshmukh (1995)
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LIM: Response to Stochastic Forcing

From Penland and Sardeshmukh (1995)
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Stochastic ENSO Models

2. Mechanistic: Stochastic Reduction of Tangent Linear Model

Partition dynamics into “slow” and “fast” variables x and y:

dx

dt
= f(x,y)

dy

dt
=

1

ε
g(x,y)

Reduce coupled system to effective stochastic dynamics for x:

dx

dt
= Lx +N(x,x) + S(x) ◦ Ẇ

(many ways of doing this; some formal, some ad hoc)

Linearise model around appropriate state (e.g. climatological
mean)

Probabilistic Perspectives on Climate Dynamics – p. 55/63



Stochastic ENSO Models

2. Mechanistic: Stochastic Reduction of Tangent Linear Model

Partition dynamics into “slow” and “fast” variables x and y:

dx

dt
= f(x,y)

dy

dt
=

1

ε
g(x,y)

Reduce coupled system to effective stochastic dynamics for x:

dx

dt
= Lx +N(x,x) + S(x) ◦ Ẇ
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Mechanistic Model: 6-Month Stochastic Optimals

From Kleeman and Moore, J. Atmos. Sci., 1997.
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Prediction Utility

Can assess “utility” of ensemble prediction p(x) by comparing
forecast pdf with “climatological” pdf q(x), using relative entropy

R =

∫
p(x) ln

(
p(x)

q(x)

)
dx

Assuming p and q are both Gaussian, can decompose R:

R = Signal + Dispersion

where
Signal =

1

2
(µp − µq)TΣ−2

q (µp − µq)−
n

2

Disp =
1

2
ln

(
det(Σ2

q)

det(Σ2
p)

)
+ tr(Σ2

pΣ
−2
q )
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“Observed” Prediction Utility

From Tang, Kleeman, & Moore, J. Atmos. Sci., 2005.
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Individual Forecast Contributions to Correlation

From Tang, Kleeman, & Moore, J. Atmos. Sci., 2005.

Predictive utility relates well to “skillful” forecasts

ENSO forecast skill derives mostly from initial conditions
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Case Study II: Conclusions

State of Tropical Pacific has influence on “weather” and “climate”
pdfs globally

Linearised stochastic dynamics can be constructed giving insight to:

maintenance of ENSO variability

sources of predictability

importance of “non-normal” dynamics

Other studies have relaxed some of the above assumptions, allowing
for e.g. multiplicative noise and nonlinearity
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Overall Conclusions

Climate science is fundamentally probabilistic

Need for probabilistic approach arises from essential complexity of
system; some of these complexities can be addressed by better
models or observations, but some are irreducible

Fundamental challenges:

characterise climate state pdfs

understand physical origin of pdfs

use pdfs to improve forecasts/predictions

Individual processes/phenomena have been investigated with
considerable success, but much remains to be done
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