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Probability and Climate

“Climate 1s what you expect, weather 1s what you get.”
- Robert A. Heinlein

= “‘expectation” lies at heart of notion of climate
= this is a fundamentally probabilistic perspective
The ultimate goal of climate physics is the “measure” of the climate
system, with emphasis on
characterisation
physical understanding

predictability
(evolution of trajectory and response of measure to forcing)
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Probability and Climate

Toward this end, a natural language of climate physics is
W dynamical systems
W stochastic processes

® random dynamical systems (where they meet)

Triple goals of probabilistic climate dynamics:
1. characterise distributions of climate states
2. understand how these distributions arise from the underlying
physics

3. use pdfs to improve forecasts/predictions
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Overview

Why is climate complex?
Origins of stochasticity in the climate system.
Case Study I: Stochastic dynamics of sea-surface winds.

Case Study II: Stochastic dynamics of El Nino/Southern Oscillation.
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Generic dynamical equation for climate state

d
d—?:Lz—kN(z,z)—l—F

Decompose state into “slow” and “fast” variables x and y

= coupled dynamics

dX x x x

E — LxxX+Lwa+N:I(3x)(X7X)_|_Na(cy)(xay)+Ng(/y)(YaY)+Fx
dy

E — Lyazx"‘LyyY"'_N:z(:gz)(XaX)+Nx(g)(X>Y)+Ng§Z)(YaY)+Fy

Averaging to project on “slow” dynamics retains “upscale” influence
of eddies on resolved flow (“‘closure problem™)

dx x
— = L%+ NP (XX) + Ny (v,y) + Fi
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Why is Climate Complex? Coupling Across Systems
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Why is Climate Complex? Feedback Loops

CLIMATIC CAUSE-AND-EFFECT (FEEDBACK) LINKAGES
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accounted for in 3 comprehensive climate model.

From http://eesc.columbia.edu/courses/ees/slides/climate/
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Why is Climate Complex? Non-Stationarity

Global Distribution of Atmospheric Carbon Dioxide
NOAA ESRL GMD Carbon Cycle
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Three dimensional representation of the latitudinal distribution of atmospheric carbon dioxide in the marine boundary layer. Data fromthe GMD cooperative
air sampling network were used. The surface represents data smoothed in time and latitude. Contact: Dr. Pieter Tans and Thomas Conway, NOAA ESRL
GMD Carbon Cycle, Boulder, Colorado, (303) 497-6678 (pieter.tans@noaa.gov, http://www.cmdl.noaa.gov/ccgg).
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Why is Climate Complex? Data Surfeit & Paucity
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o From ERA 40 Project Report Series 19
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Origins of Stochasticity: Multiscale Dynamics

@ Climate system displays variability over broad range of space and

time scales
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Origins of Stochasticity: Multiscale Dynamics

When modelling slower components of system, don’t want (need?)

to explicitly simulate faster components
= “‘subgrid-scale parameterisations” (closure)

Analogy with statistical mechanics; can talk about “pressure” and

“temperature” of gas without accounting for state of each molecule

Can also consider separation of scales in space; parameterisation

problem arises because of finite gridsize of operational models
Nonlinear dynamics = fast dynamics has upscale effect on slow

Coarse-graining results not only in unresolved scales, but also
unresolved processes (e.g. internal gravity waves, convection, cloud

mircophysics)

'UVic
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Origins of Stochasticity: Multiscale Dynamics

State of unresolved processes/scales conditioned on resolved scales

not unique: adopt distributional perspective on subgrid-scale

Formally decompose climate state z into slow and fast variables x

and y (resp. “climate” and “weather”):

dx

- f(x oyt
dy 1

—_ — — t

Obtain effective stochastic dynamics for “climate” as € — 0
In many (most?) climate applications, € 1s not small

Fast/slow decomposition not unique;

“one person’s noise 1s another person’s signal”

'UVic
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Origins of Stochasticity: Model Uncertainty

All models of climate (or subsystems) contain both

model error, and

poorly constrained (sometimes unphysical) parameters
Ideally: given pdf of parameters and model structure, obtain pdf of
climate state
Reality:

full climate state pdf cannot be computed; must adopt

Monte-Carlo or ensemble forecast approach in which pdf 1s

sampled; “curse of dimensionality”
parameter pdfs generally not well known a priori

Building large ensembles computationally expensive

@ UVic
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Parameter Uncertainty: Ensemble Prediction

climateprediction.net uses idle private CPUs to integrate

ensembles with different parameter settings

1000
72 I . |
o Long term warming |
O caused by today’s™
= greenhouse gases. |
= Data from
ES Py A
O
=
-
Z _

0 2 4 6 8

Global Temperature Change (°C)

http://www.climateprediction.net
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Initial Condition Uncertainty: Ensemble Forecasting

™ Model uncertainties can also include initial conditions

MULTIPLE FORECAST ENSEMSLE

http://chrs.web.uci.edu/images/ensemble_large_atmo. jpg

@ UVic

Probabilistic Perspectives on Climate Dvnamics — n. 18/63



Stochastic Climate Models: Case Studies

@ Two distinct end-member approaches to modelling pdfs of climate

variables:
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Stochastic Climate Models: Case Studies

Two distinct end-member approaches to modelling pdfs of climate

variables:
running fully complex general circulation models
considering physically-motivated idealised models

First approach has benefit of being more realistic, but is also much

more complex; mechanisms are not always clear

Second approach not always quantitatively accurate, but important

for developing understanding and elucidating mechanism

Will now consider two “idealised” stochastic models for:
stochastic dynamics of sea-surface winds

stochastic dynamics of El Nifio-Southern Oscillation

'UVic
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Sea Surface Winds: Why Should We Care?

W Air/Sea Exchange
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Air/Sea Exchange

ocean and atmosphere interact through respective boundary

layers, exchanging momentum, energy, freshwater, and gases
fluxes depend on surface winds, in general nonlinearly

ocean currents largely driven by surface winds

Sea State
sea state important for shipping, recreation

determined by both local and remote winds

Power Generation

wind power potentially significant source of energy
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Sea Surface Winds: Why Should We Care?

Air/Sea Exchange

ocean and atmosphere interact through respective boundary

layers, exchanging momentum, energy, freshwater, and gases
fluxes depend on surface winds, in general nonlinearly

ocean currents largely driven by surface winds

Sea State
sea state important for shipping, recreation

determined by both local and remote winds

Power Generation
wind power potentially significant source of energy

generation rate scales as cube of wind speed; extreme events

[ieiy e _ 1mportant
@ UVic
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Vector Wind Moments

mean(U) (m/s) mean(V) (m/s)
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Mean and Skewness of Vector Wind

Joint pdfs of mean and skew for zonal and meridional winds
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(note logarithmic contour scale)

Probabilistic Perspectives on Climate Dvnamics — n. 22/63



Wind Speed Moments
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Wind Speed pdf: Weibull distribution

The pdf of wind speed w has traditionally (and empirically) been

represented by 2-parameter Weibull distribution:

0.35

b
0.3 b=3.5 |
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) =2 (4) o[- (2)]
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Wind Speed pdf: Weibull distribution

The pdf of wind speed w has traditionally (and empirically) been

represented by 2-parameter Weibull distribution:

0.35

b
0.3 b=3.5 |
b

) =2 (4) o[- (2)]

0.2r

NN

pdf

0.151

0.1

0.051
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w

a 1s the scale parameter (pdf centre)
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Wind Speed pdf: Weibull distribution

The pdf of wind speed w has traditionally (and empirically) been

represented by 2-parameter Weibull distribution:

0.35

b
b
b

0.3

NN

D |

0.251

0.2r

pdf
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w

a 1s the scale parameter (pdf centre)

b is the shape parameter (pdf tilt)
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Wind Speed pdf: Weibull distribution

The pdf of wind speed w has traditionally (and empirically) been

represented by 2-parameter Weibull distribution:

0.35

0.3

b
b=3.5 |
b

NN

0.251

0.2r

pdf

0.151

0.1

0.051

0O 5 10 15 20 25

w

a 1s the scale parameter (pdf centre)

b is the shape parameter (pdf tilt)

Pw(w) is unimodal
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Wind Speed pdfs: Observed

W Observed speed moments fall around Weibull curve
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Boundary Layer Dynamics

@ Horizontal momentum equations:
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Boundary Layer Dynamics

¥ Horizontal momentum equations:

!,/
0 Vu— —ivp fixou - 22P)
ot 0 p 0z
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¥ Momentum tendency due to:
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Boundary Layer Dynamics

Horizontal momentum equations:

!,/
0 Vu— —ivp fixou - 22P)
ot 0 p 0z

Momentum tendency due to:

W advection (transport by flow; secondary importance on daily

timescales )
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Boundary Layer Dynamics

Horizontal momentum equations:

!,/
0 Vu— —ivp fixou - 22P)
ot 0 p 0z

Momentum tendency due to:

W advection (transport by flow; secondary importance on daily

timescales )

W pressure gradient force
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Boundary Layer Dynamics

Horizontal momentum equations:

!,/
0 Vu— —ivp fixou - 22P)
ot 0 p 0z

Momentum tendency due to:

W advection (transport by flow; secondary importance on daily

timescales )
W pressure gradient force

™ Coriolis force
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Boundary Layer Dynamics

Horizontal momentum equations:

!,/
0 Vu— —ivp fixou - 22P)
ot 0 p 0z

Momentum tendency due to:

W advection (transport by flow; secondary importance on daily

timescales )
W pressure gradient force
® Coriolis force

¥ turbulent momentum flux (in vertical)
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Boundary Layer Dynamics

Horizontal momentum equations:

. !,,!
0 V= —Lvp— fk xou o LP0u)
ot 0 p 0z

Momentum tendency due to:

W advection (transport by flow; secondary importance on daily

timescales )
W pressure gradient force
® Coriolis force

¥ turbulent momentum flux (in vertical)

Integrated momentum budget for slab of thickness h:
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Boundary Layer Dynamics

Horizontal momentum equations:

. !,,!
0 V= —Lvp— fk xou o LP0u)
ot 0 p 0z

Momentum tendency due to:

W advection (transport by flow; secondary importance on daily

timescales )
W pressure gradient force
® Coriolis force

¥ turbulent momentum flux (in vertical)

Integrated momentum budget for slab of thickness h:

du 1 ~ 1
&=,V flout  (Wig(0) - W (h)
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Surface Wind Stress

W Surface wind stress 1s turbulent momentum flux across air/sea

interface:

Ts = paWus(0)
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Surface Wind Stress

Surface wind stress 1s turbulent momentum flux across air/sea

interface:
— l,,!
Ts = Pall u3(0)
uw = along-mean wind component
v = cross-mean wind component
where
u = (u,v)

usz = vertical wind component
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Surface Wind Stress

Surface wind stress 1s turbulent momentum flux across air/sea

interface:

where

u
U
u

us

Ts = paWus(0)

along-mean wind component

cross-mean wind component

(u,v)

vertical wind component

Flux parameterised in terms of u by bulk drag formula:

Ts = PalqWl

where w =|| u || is the wind speed.
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Drag Coefficient

W Drag coefficient influenced by
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Drag Coefficient

W Drag coefficient influenced by

surface roughness zq
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Drag Coefficient

™ Drag coefficient influenced by
surface roughness zq

Obukhov length L (buoyancy flux, stratification)
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Drag Coefficient

™ Drag coefficient influenced by
surface roughness zq

Obukhov length L (buoyancy flux, stratification)

e u(z) )]
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Drag Coefficient

™ Drag coefficient influenced by
surface roughness zq

Obukhov length L (buoyancy flux, stratification)

e u(z) )]

where
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Drag Coefficient

Drag coefficient influenced by
surface roughness zq

Obukhov length L (buoyancy flux, stratification)

e u(z) )]

Yy, 18 an empirical function

where
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Drag Coefficient

Drag coefficient influenced by
surface roughness zq

Obukhov length L (buoyancy flux, stratification)

e u(z) )]

Yy, 18 an empirical function

where

Zq 18 the anemometer height, typically 10 m
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Drag Coefficient

Drag coefficient influenced by
surface roughness zq

Obukhov length L (buoyancy flux, stratification)

e u(z) )]

Yy, 18 an empirical function

where

Zq 18 the anemometer height, typically 10 m

Surface winds modify surface wave field
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Drag Coefficient

Drag coefficient influenced by
surface roughness zq

Obukhov length L (buoyancy flux, stratification)

e u(z) )]

Yy, 18 an empirical function

where

Zq 18 the anemometer height, typically 10 m
Surface winds modify surface wave field

= 2o depends on w
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Neutral Drag Coefficient: Observations
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Surface Momentum Budget

@ To close momentum budget, need parameterisation of turbulent

momentum flux at z = h
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@ To close momentum budget, need parameterisation of turbulent

momentum flux at z = h

W Use “finite-differenced” eddy viscosity:
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Surface Momentum Budget

To close momentum budget, need parameterisation of turbulent

momentum flux at z = h

Use “finite-differenced” eddy viscosity:

Wiy (h) = (U — u)
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Surface Momentum Budget

To close momentum budget, need parameterisation of turbulent

momentum flux at z = h

Use “finite-differenced” eddy viscosity:

Wiy (h) = (U — u)

= Surface layer momentum budget
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Surface Momentum Budget

To close momentum budget, need parameterisation of turbulent

momentum flux at z = h

Use “finite-differenced” eddy viscosity:

Wiy (h) = (U — u)

= Surface layer momentum budget

du 1 . ¢y K
E = —;Vp—kau—zwu—l—ﬁ(U—u)
K
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Surface Momentum Budget

To close momentum budget, need parameterisation of turbulent

momentum flux at z = h

Use “finite-differenced” eddy viscosity:

Wiy (h) = (U — u)

= Surface layer momentum budget

du 1 . ¢y K
K
- H_%wu_ﬁu

1 . K
II=—Vp— fkxu+ U
p h?
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Mechanistic Model: SDE

W Decomposing II into mean and fluctuations:

,(t) = (IL,) + ocWyi(t)
UWQ(t)

—
c
~—~
i
~—

I
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Mechanistic Model: SDE

W Decomposing II into mean and fluctuations:

,(t) = (IL,) + ocWyi(t)
Hv(t) — UWQ(t)

where 1W; 1s Gaussian white noise

(Wilt)Wj(t2) ) = 6,56(t — t2)
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Mechanistic Model: SDE

Decomposing 11 into mean and fluctuations:

,(t) = (IL,) + ocWyi(t)
Hv(t) — JWQ(t)

where WZ- 1s Gaussian white noise
(Wilt)W;(t2) ) = 850 (11 — )

we obtain stochastic differential equation

du Cd K :
il (IT,,) — 5 WU~ 15U + oWy
dv Cd K :

E — —ﬁwv — ﬁ’l} -+ O'WQ

Probabilistic Perspectives on Climate Dvnamics — n. 31/63



Mechanistic Model: pdf

W Solution of associated Fokker-Planck equation for stationary pdf:

2 K
pw(u,v) = N1 exp <§ {<Hu> u — W(lﬂ + ?)2)

1 Vu2+ov2
_E / Cd(w/)w/2 dwl

0
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Mechanistic Model: pdf

Solution of associated Fokker-Planck equation for stationary pdf:

2 K
puv(u,v) = N1 exp (? {<Hu> u — W(UQ + ?)2)

1 Vu2+ov2
_E / Cd(w/)w/2 dw/

0

Changing to polar coordinates and integrating over angle gives wind

speed pdf:

2 (I1,,) w 2 (K I
pw(w)ZN”UJ]O( 5 )eXp<_a2{2h2w2+h/0 cd(w)w2dw}>
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Mechanistic Model: Predictions
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Mechanistic Model: Predictions

mean(u) (ms™) std(u) (ms™) skew(u)
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Mechanistic Model: Comparison with Observations

10.000

Observed
1.2 m—— \Neibull
Model 4.642

2.154
1.000
0.464
10.215
10.100

10.046

10.022

115 2 215 3 315 clt 4i5 5 5i5 0.010
mean(w)/std(w)
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Case Study I: Conclusions

W Sea surface wind pdfs characterised by relationships between

moments
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distributions
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These moment relationships reflect physical processes producing

distributions

Idealised stochastic models can be constructed from basic physical

principles to (qualitatively) explain physical origin of pdf structure
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Case Study I: Conclusions

Sea surface wind pdfs characterised by relationships between

moments

These moment relationships reflect physical processes producing

distributions

Idealised stochastic models can be constructed from basic physical

principles to (qualitatively) explain physical origin of pdf structure

More accurate quantitative simulation requires a more sophisticated
model; qualitative utility of relatively simple model suggests it

captures essential physics
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El Niino - Southern Oscillation (ENSO)

ENSO i1s the dominant mode of climate variability on interannual
timescales, involving coupled interactions between the ocean and the

atmosphere
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El Niino - Southern Oscillation (ENSO)

ENSO i1s the dominant mode of climate variability on interannual
timescales, involving coupled interactions between the ocean and the

atmosphere

Dynamics primarily contained in equatorial Pacific; impacts felt
globally
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El Niino - Southern Oscillation (ENSO)

ENSO i1s the dominant mode of climate variability on interannual
timescales, involving coupled interactions between the ocean and the

atmosphere

Dynamics primarily contained in equatorial Pacific; impacts felt
globally

Skillful ENSO forecasts are believed to be primary potential source

of skill for seasonal climate forecasting

Probabilistic Perspectives on Climate Dvnamics — n. 36/63



Tropical Pacific: Mean State

Normal Conditions

%{?ﬂ Conveclive
“”;ﬂ Chotdation

Tarmociine

120°E S0 W

=T UViC From www.pmel .noaa.gov/tao/elnino/nino—-home.html
N~
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Tropical Pacific: El Nino State

El Nino Conditions

'

120°E 80"W

Thaetrmocline

=T 1 From www.pmel .noaa.gov/tao/elnino/nino—home.html
IC
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Tropical Pacific: La Nina State

La Nina Conditions

Thermocline

120°E 307W

=T 1 From www.pmel .noaa.gov/tao/elnino/nino—home.html
5y IC
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ENSO Indices: SOI and East Pacific SST

southern Oscillation Index

and TAQ/TRITON SST Ancmaly Time Series
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El Nino Growth: Bjerknes’ Hypothesis

Bjerknes’ Hypothesis

E. Pacific
Thermocline
/ Depth \
(+)
—\) SEC and
( ) Upweelll?ng L%Tvgﬁg?jt%zt%fr (.|.)
(—) Strength of E. Pacific SST ("')

\ E. Pacific SLP

(-)

(Rising Air, Precip.)
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ENSO Cycles: Delayed Oscillator Mechanism

From Chang and Battisti, Physics World, 1998.
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ENSO Irregularity: Stochastic Oscillator Mechanism

Five—Day Zonal Wind and Z20°C Isotherm Depth 2°5 te 2°N Average
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El Nino Impacts: Northern Hemisphere Winter

WARM EPISODE RELATIONSHIPS DECEMBER - FEBRUARY
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From iri.columbia.edu/climate/ENSO/
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ENSO Impacts: Changes in Mean Climate

(a) El Nino S-S, precip OBS

(b) La Nina S-S, precip OBS times -1 (0 Eaxlien S8 00t SOEC Wb ]
s TGy,

Adapted from Sardeshmukh et al., J. Clim (2000)
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ENSO Impacts: Changes in Climate Variability
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From Sardeshmukh et al., J. Clim (2000)
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ENSO Impacts: Extreme Events

Cold Phasa

—-‘_n":.larn’ F'hasel

U.S. Hurricanes
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Fic. |. Inverse cumulative frequency distributions of U.S. landtalling huarri-
canes, 1900-97. Red line indicates warin phase of ENS0O, blue line indicates cold
phase of ENSO, green line indicates neutral ENSO conditions.
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From Bove et al., J. Clim (1998)
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ENSO Dynamics

W As a first approximation, ENSO dynamics modelled as stable linear

dynamical system driven by noise:

C;—);:AX—FB(X)OW
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ENSO Dynamics

As a first approximation, ENSO dynamics modelled as stable linear

dynamical system driven by noise:

d .

2 _ Ax + B(x) o W

dt

X 1s the state vector (e.g. sea surface temperature field)
A 1s the linearised dynamical operator

B(x) is the noise amplitude matrix

W  is a vector of independent white noise processes
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ENSO Dynamics

As a first approximation, ENSO dynamics modelled as stable linear

dynamical system driven by noise:

CCZZ—};:AX—FB(X)OW

where
X 1s the state vector (e.g. sea surface temperature field)

A 1s the linearised dynamical operator
B(x) is the noise amplitude matrix
W is a vector of independent white noise processes

For simplicity, will assume that B is state-independent (additive

noise)
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ENSO Dynamics

W Analytic solution to SDE:
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ENSO Dynamics

W Analytic solution to SDE:
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ENSO Dynamics

W Analytic solution to SDE:

where
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W Analytic solution to SDE:

where
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ENSO Dynamics

W Analytic solution to SDE:
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ENSO Dynamics

Analytic solution to SDE:

where

Evolution of moments:
(x(t)) = P(t)x(0) ; <X(t + T)X(t)T> = P(1) < X(t)x(t)T >

Assuming max(Re(eig(A)))< 0, stationary covariance
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ENSO Dynamics

Analytic solution to SDE:

where

Evolution of moments:
(x(t)) = P(t)x(0) ; <X(t -+ T)X(t)T> = P(1) < x(t)x(t)! >
Assuming max(Re(eig(A)))< 0, stationary covariance

C = <XXT>
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ENSO Dynamics

Analytic solution to SDE:

where

Evolution of moments:
(x(t)) = P(t)x(0) ; (x(t+7)x(t)") = P(r) <x(t)x(t)" >
Assuming max(Re(eig(A)))< 0, stationary covariance

¢ = (")

satisfies fluctuation-dissipation relationship
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ENSO Dynamics

Analytic solution to SDE:

where

Evolution of moments:
(x(t)) = P(t)x(0) ; (x(t+7)x(t)") = P(r) <x(t)x(t)" >
Assuming max(Re(eig(A)))< 0, stationary covariance

¢ = (")

satisfies fluctuation-dissipation relationship

AC +CAT = — BB
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Optimal Perturbations

W Linearised operator A will generally be non-normal, i.e.

AAT £ AT A
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Optimal Perturbations

Linearised operator A will generally be non-normal, i.e.
AAT £ AT A

so eigenvectors of A are not orthogonal, with consequences:

eigenvectors of covariance C' (EOFs) do not coincide with

eigenvectors of A (dynamical modes)

perturbation norm (with metric M)

N(t) =x(t)! Mx(t) = x(0)" P(t) M P(t)x(0)

may grow (by potentially large amount) over finite times even

though asymptotically stable:

lim N(t) =0

t—00
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Optimal Perturbations

® Defining amplification factor
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Optimal Perturbations

@ Defining amplification factor

n(t) = x(0)' P(t)Y M P(t)x(0)
B x(0)T' Mx(0)
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Optimal Perturbations

Defining amplification factor

n(t) = x(0)' P(t)Y M P(t)x(0)
B x(0)1' Mx(0)

optimal perturbation e maximises 7 (¢) subject to constraint

x(0)1' Mx(0) = 1 = generalised eigenvalue problem:
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Optimal Perturbations

Defining amplification factor

n(t) = x(0)' P(t)Y M P(t)x(0)
B x(0)1' Mx(0)

optimal perturbation e maximises 7 (¢) subject to constraint

x(0)1' Mx(0) = 1 = generalised eigenvalue problem:

Pt MP(t)e = AMe

Response to fluctuating forcing:

var(X(t)) = B! ( /O t P(s)TMP(s)ds> B
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Optimal Perturbations

Defining amplification factor

n(t) = x(0)' P(t)Y M P(t)x(0)
B x(0)1' Mx(0)

optimal perturbation e maximises 7 (¢) subject to constraint

x(0)1' Mx(0) = 1 = generalised eigenvalue problem:

Pt MP(t)e = AMe

Response to fluctuating forcing:

var(X(t)) = B! ( /O t P(s)TMP(s)cLs) B

= 1mportance of projection of noise structure on “average” optimals for

iy vaintaining variance;

14 . . 99
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Stochastic ENSO Models

™ How are A and B determined?
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How are A and B determined?

1. Empirical: Linear Inverse Modelling

W estimate covariances from observations and compute

A=t (<X(t +7)x(t)T) <X(t)X(t)T>_1)

T
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How are A and B determined?

1. Empirical: Linear Inverse Modelling

W estimate covariances from observations and compute

A1 (<X(t +7)x(t)T) <x(t)x(t)T>_1)

T

® Compute B from Lyapunov equation

A <XXT> + <XXT> Al = —BBT
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W estimate covariances from observations and compute

A1 (<X(t +7)x(t)T) <x(t)x(t)T>_1)

T

® Compute B from Lyapunov equation
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W Issues:
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How are A and B determined?

1. Empirical: Linear Inverse Modelling

W estimate covariances from observations and compute

A1 (<X(t +7)x(t)T) <x(t)x(t)T>_1)

T

® Compute B from Lyapunov equation
A <XXT> -+ <XXT> Al = —BB?

W Jssues:

i. if x(¢) not truly Markov, estimates will depend on lag 7
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Stochastic ENSO Models

How are A and B determined?

1. Empirical: Linear Inverse Modelling
W estimate covariances from observations and compute
1 —1
A=—In ((x(t+7)x()7) (xOx(t)") )

® Compute B from Lyapunov equation
A <XXT> -+ <XXT> Al = —BB?

W Issues:
i. if x(¢) not truly Markov, estimates will depend on lag 7

ii. must enforce positive-definiteness of BB’
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LIM: Optimal Perturbations from Observations

Optimal perturbation e

G0E 120F 150E 180 1 500 1 200 QeI

Perturbation P(t)e at t = 7 months

-

- —_ a2
ho e D14

2 e

&IE 120F 1 50E 180

From Penland and Sardeshmukh (1995)
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LIM: Response to Stochastic Forcing

AUGUST 1995 PENLAND AND SARDESHMUKH 2015
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FI1G. 15. (a)-(d) Three 40-yr segments of the Nifio-3 SST anomaly calculated from output generated by the linear model.
Also shown is the measured record. Which is which?

UVic From Penland and Sardeshmukh (1995)
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Stochastic ENSO Models

2. Mechanistic: Stochastic Reduction of Tangent Linear Model
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Stochastic ENSO Models

2. Mechanistic: Stochastic Reduction of Tangent Linear Model

W Partition dynamics into “slow” and “fast” variables x and y:

dx

- fF

- (x,y)
dy 1 ( )
- — - X
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dx
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Stochastic ENSO Models

2. Mechanistic: Stochastic Reduction of Tangent Linear Model

Partition dynamics into “slow” and “fast” variables x and y:

dx
- fF
o (x,¥)
dy 1 (x.y)
- — - X
Reduce coupled system to effective stochastic dynamics for x:
dx :
il Lx+ N(x,x) + S(x)o W

(many ways of doing this; some formal, some ad hoc)

Linearise model around appropriate state (e.g. climatological

mean)
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Mechanistic Model: 6-Month Stochastic Optimals

(a)
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From Kleeman and Moore, J. Atmos. Sci., 1997.
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Prediction Utility

® Can assess “utility” of ensemble prediction p(x) by comparing

forecast pdf with “climatological” pdf ¢(x), using relative entropy
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R [ (1)
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Prediction Utility

Can assess “utility” of ensemble prediction p(x) by comparing

forecast pdf with “climatological” pdf ¢(x), using relative entropy
p(x)
R:/px ln(—)dx
) q(x)
Assuming p and q are both Gaussian, can decompose R:

R = Signal 4 Dispersion

where

Probabilistic Perspectives on Climate Dvnamics — n. 57/63



Prediction Utility

Can assess “utility” of ensemble prediction p(x) by comparing

forecast pdf with “climatological” pdf ¢(x), using relative entropy
p(x)
R:/px ln(—)dx
) q(x)
Assuming p and q are both Gaussian, can decompose R:

R = Signal 4 Dispersion

where

. 1 _ n
Signal = = (jp — 1g)" g (Hp = 1) = 5
1 det(X2)
Disp = =1 : tr(X.%,
P > n(det(zg)> (2%
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“Observed” Prediction Utility

(a) signal component

45
L
a0
50
20
0

lead Time (months)

1982 1584 1083 1988 1990 1882 1994 1994 1 998

(b) dispersion component

Time (months)

Lead
sl

« M AnE E _i's s Pt -l ! = : = .l
1982 1084 1983 19688 1990 1362 1994 1T 1994
Initial Condition

Fiz. 11, Signal component (SC) and dispersion component (DC) of R for HCML.

From Tang, Kleeman, & Moore, J. Atmos. Sci., 2005.
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Individual Forecast Contributions to Correlation

HCOM1

Lead Time {months)

1982 1984 18886 1088 1GO0 1992 1994 1998 1988

From Tang, Kleeman, & Moore, J. Atmos. Sci., 2005.

W Predictive utility relates well to “skillful” forecasts
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Individual Forecast Contributions to Correlation

HCM1

Lead Time {months)

1982 1984 1886 1088 1GO0 1992 1994 1998 1988

From Tang, Kleeman, & Moore, J. Atmos. Sci., 2005.

W Predictive utility relates well to “skillful” forecasts

@ ENSO forecast skill derives mostly from initial conditions
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Case Study II: Conclusions

W State of Tropical Pacific has influence on “weather” and “climate”

pdfs globally
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Case Study II: Conclusions

State of Tropical Pacific has influence on “weather” and “climate”
pdfs globally
Linearised stochastic dynamics can be constructed giving insight to:
¥ maintenance of ENSO variability
W sources of predictability

® 1mportance of “non-normal” dynamics
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Case Study II: Conclusions

State of Tropical Pacific has influence on “weather” and “climate”
pdfs globally
Linearised stochastic dynamics can be constructed giving insight to:
maintenance of ENSO variability
sources of predictability
importance of “non-normal” dynamics

Other studies have relaxed some of the above assumptions, allowing

for e.g. multiplicative noise and nonlinearity
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Overall Conclusions

@ Climate science is fundamentally probabilistic
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Overall Conclusions

Climate science 1s fundamentally probabilistic

Need for probabilistic approach arises from essential complexity of
system; some of these complexities can be addressed by better
models or observations, but some are irreducible
Fundamental challenges:

characterise climate state pdfs

understand physical origin of pdfs

use pdfs to improve forecasts/predictions

Individual processes/phenomena have been investigated with

considerable success, but much remains to be done

Probabilistic Perspectives on Climate Dvnamics — n. 61/63



References

1. Imkeller, P. and J.-S. von Storch (eds), 2001: Stochastic Climate
Models. Birkhiduser, 432 pp.

2. Imkeller, P. and A. Monahan, 2002: Conceptual stochastic climate
models. Stoch. and Dynamics, 2, 311-326.

3. Palmer, T. et al., 2005: Representing model uncertainty in weather
and climate prediction. Ann. Rev. Earth Planet. Sci., 33, 163-93.

4. Palmer, T. and P. Williams: Stochastic Physics and Climate
Modelling. Phil. Trans. Roy. Soc., to appear in 2008.

5. Penland, C. 2003: Noise out of chaos and why it won’t go away.
Bull. Amer. Met. Soc. 84, 921-925.

@ UVic

Probabilistic Perspectives on Climate Dvnamics — n. 62/63



Tropical Multiscale Convective Systems

Theory, modeling, and observation
July 30 - Aug. 3, 2007

University of Victoria, Victoria, Canada

Organizers: B. Khouider, A. Monahan, N. McFarlane, J. Scinnoca, K. von Salzen

Invited Lecturers Topics

o Phillip Austin (UBC)
e Joseph Biello (UC Davis) Multiscale organized convective
* Wojciech Grabowski (NCAR) systems

® Boualem Khouider (UVic) Convectively coupled waves

* George Kiladis (NOAA) MJO, El Nifio

® Andrew Majda (NYU) CRMs and GCMs

® Norm McFarlane (CCCma)

Cloud physics

Idealized process models

r ® Mitch Moncrieff (NCAR) * Convective parametrizations
® Cecile Penland (NOAA) ® Multiscale asymptotics
L va e John Scinocca (CCCma)

* Knut von Salzen (CCCma)

The Summer School/Workshop in Tropical multiscale convective systems:
Theory, modeling, and observations is a 3-day summer school followed by a
2-day workshop. The summer school is intended for graduate students, post-doc-
toral fellows, and young researchers in both applied math (with some background
in PDEs) and fluid dynamics and/or atmospheric sciences working in the area of
tropical meteorology or keen to learn about the subject.

The workshop will focus on the state of the art and new research directions in tropi-
cal meteorology. Abstract submission and registration forms are available on-line.
The deadline for abstract submission is May 15, 2007. Experienced PhD students,
postdocs, and young researchers are particularly encouraged to participate.

Financial aid is available for eligible students and post-docs.

For more information go to the website or contact the organizers.

http://pims.math.ca/science/2007/07sstmcs/

adian Centre for Climate Modelling and Analysis
re canadien de la modélisation et de I'analyse climatique
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